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During the last six years, we were engaged in professional development programme for mathematics teachers of 

special schools for students with intellectual disabilities (IDs). We were able to observe that mathematics teachers     

of students with IDs are left in a difficult situation where support in subject specific knowledge is lacking. 

Although the knowledge of the characteristics learners with special educational needs (SENs) as provided by 

psychology does help to open the door to successful teaching and learning of these students, how to teach subject 

content with constraints of students’ disabilities is left open. This paper reports some qualitative data collected from 

the programme, which sorts out several key challenges in the field of mathematics education for students with IDs 

and demonstrates how the design science of mathematics education helps teachers to address teaching problems. 

Based on the data, we claim that: (a) teachers’ ability to figure out milestones and intermediate learning states 

within a prolonged process of knowledge construction is crucial to teach students with IDs; and (b) using a design 

science approach to create carefully designed teaching units serves a dual role of providing teachers with teaching 

ideas as well as facilitating their understanding of mathematical knowledge structure. 
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Introduction 

In the last six years, we were engaged in professional development programme (Teaching for 

 
During the past decades, an increasing number of studies have been carried out on mathematics education 

for children with special educational needs (SENs) (Myers, Jun, Brownell, & Gagnon, 2015; Marita & Hord, 
2017). However, it was found that mathematical learning in this field was primarily studied from the behavioral, 
information processing, and medical perspectives, whereas considerably few focused on the teacher (Lambert 
& Tan, 2016). A pressing need was acknowledged for providing more evidence with respect to what constitutes 
effective teacher training in this area (Allsopp & Haley, 2015).  
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Mathematising, abbrev. TFM hereafter) in Hong Kong for mathematics teachers of special schools for students 
with intellectual disabilities (IDs). We were able to observe that mathematics teachers of students with IDs are 
left in a difficult situation where support in subject specific knowledge is lacking. This paper presents some 
qualitative data collected recently, which include observations in project meetings and teaching practice, 
semi-structured interviews with seven teacher participants, and teaching materials developed by the project. 
With reference to the bulk of data triangulated with existing literature, this paper sorts out several key 
challenges faced by teachers and demonstrates how TFM helps teachers address these challenges. 

The structure of the paper is as follows. It begins with a brief introduction of the rationale of TFM, which 
is followed by a brief outline of the challenges of mathematics education for SEN students in Hong Kong. 
Afterwards, recent work of TFM on professional development of teachers of special schools is reported with 
emphasis put on the importance of clarifying knowledge structure and its impact on the design and 
implementation of teaching. 

The Rationale of TFM 
TFM was first introduced to Hong Kong in 1998. There are two important notions on which the project 

rests. In the first place, it is Hans Freudenthal’s (1973) notion of “mathematics as a human activity,” which sees 
learning mathematics as simply an activity to re-invent mathematics. Under this philosophy, there is no passive 
learner, because a person is not considered as learning mathematics if he or she is not engaged in re-inventing 
the mathematics required to be learned. Instead, learning and teaching should be planned in order that learners 
can participate actively and gradually develop their understanding of the mathematical content by creating it 
themselves. 

 

 
Figure 1. The action flow chart of TFM project (Translated by Fung, 2004). 

 

The second, and equally important, is Erich Ch. Wittmann’s (1984; 1995; 2001) notion of “mathematics 
education as a design science,” under which carefully designed teaching units should form the core of study for 
researchers, teacher educators, and teachers. Specifically, teaching units serve to integrate knowledge of 
different fields, such as mathematics, psychology, and didactics into the practice of teaching. 

Based on these two fundamental notions, TFM approaches most of the problems of teaching by 
developing teaching units. Once, a question of mathematics teaching is received, irrespective of whether it 
originates from general school or special schools, expertise from various related domains are pulled together to 
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work out solution according to the development cycle described in Figure 1. Once, a solution framework 
(Which does not take into account characteristics of target student group) is generated, it will be passed to 
implementing teachers for fine-tuning to action plan in order to match local parameters (such as students’ 
ability, classroom environment, available resources, etc.). Afterwards, it will be put to field test, which will be 
followed by an evaluation of the implementation process and result. Amendment of the solution framework or 
action plan will be made accordingly where appropriate. In this model, the researcher, or in Freudenthal’s 
(1980) term, the “theoretician,” works closely with the teacher to ensure that any solution implemented is both 
mathematically and didactically sound. 

An Example of a Teaching Unit 
Here is an example of a teaching unit developed to special school recently. Emily (pseudonym), a teacher 

teaching mathematics to students with mild grade IDs, said that there had been a long period of time that they 
had not taught division to their students. It was because that their students could not memorize multiplication 
table, she and her colleagues thus believed that their students were not ready to learn division.  

Before any attempt to generate solution to teaching problem, TFM requires that an analysis of knowledge 
structure be done in advance. The concept of division is actually based on two different activities of dividing 
things—distributing things into groups of d or distributing things into d equal parts. The former is called 
“division by grouping where the number in each group is known”, and the number of groups is to be 
determined. The latter is called “division by sharing where the number of groups is known”, and the number in 
each group is to be determined. Students could find out the unknowns of the two activities by grouping or 
sharing physical objects and then counting (see Figures 2 and 3). Completing these two activities does not need 
any prior knowledge of multiplication. Communication of result of division can be made by students in 
horizontal form as shown in Figure 4 without much difficulty. It is pretty clear that not capable of memorizing 
the multiplication table, or even not knowing multiplication at all, does not deprive students of the opportunity 
of carrying out division with the help of manipulatives, upon which a basic understanding of the concept of 
division can be acquired. Capability to use the multiplication table only enables the student to get the result of 
division by calculation. 

After serious study of the mathematical structure behind, Emily conducted a teaching experiment to teach 
division to her students (12-16 years of age, with mild IDs). From the classroom observation, it was found that 
all students had acquired a basic understanding of the concept of division with the use of manipulatives. The 
next milestone for teaching is letting students re-invent the role of multiplication table in the calculation of 
division.  

With the help of subject experts, Emily prepared a worksheet (see Figure 5) for students doing the 
grouping (or similarly, sharing) activity. The design secrets behind the worksheet are related students’ grouping 
or sharing experience to the multiplication table (see the bolded numbers in Figure 5). During the teaching 
experiment, even students with just marginal experience of the multiplication table could well relate the entries 
to the multiplication facts listed in the multiplication table, hence recognizing the role of multiplication table in 
the calculation of division. At this stage, those with fluency in multiplication table could carry out column 
division on their own. For the rest, Emily supplied each with a multiplication table. In this case, students were 
free to consult it, so as to bypass their memory weakness. 
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Figure 2. Grouping activity. 

 

 
Figure 3. Sharing activity. 

 

 
Figure 4. The meaning of “12 divided by three is four.” 

 

 
Figure 5. Worksheet paving the way for students to discover the role of multiplication in the calculation of division 
(Translated from Chinese). 

 

This teaching unit is an example of how TFM deals with the problem of teaching mathematics to students 
with IDs. It engages students in the process of re-inventing mathematics, and assists them to discover what they 
are supposed to learn. Serious analysis of knowledge structure enables Emily to distinguish the core, which is 
the part of teaching that should be kept intact at any cost, from the less important contents, which may well be 
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detached without causing unmanageable impact on students’ subsequent learning. This understanding gives 
Emily a good sense when selecting, adjusting, and omitting instructional contents, thereby making appropriate 
decisions to relieve students from unnecessary burden. The triadic relationship between knowledge structure, 
instructional design, and teaching practice will be described later in the paper. 

Contextual Challenges and the Work of TFM  
Latest figures indicate that 5.7% of the student population in Hong Kong has SENs (Finance Committee, 

2014). Local policy put students with intellectual or physical disabilities in special schools while the rest 
receive inclusive education. 

ID students studying in an inclusive classroom have to cope with the pace of teaching and learning that is 
generally tailored for non-ID students. Consequently, very often teachers tend to skip the kind of detailed and 
progressive teaching activities that are seen to be crucial to ID students’ learning, but at the same time regarded 
by other students as developing too slowly and repetitively. Coupled with a mathematics curriculum, which is, 
on the average, two years ahead of the international median (Schmidt, 1996), most ID students under inclusive 
education are very often excluded from fruitful learning. 

Teachers of special schools, on the contrary, are not tied tightly to any rigid curriculum requirement and 
are free to work out anything that is meaningful to their students. On the up side, devoted teachers have ample 
autonomy to explore and tailor their teaching to the SENs of their students. On the down side, lacking a clear 
demand for effective teaching relative to clear curriculum requirement allows poor teaching to prevail and 
propagate. Unlike general schools where a variety of textbooks and related resources are available, special 
schools suffer immense shortage of teaching resources. Given that most teachers follow, or are heavily 
influenced by, resources available, teachers of special school would easily find themselves being left in the 
unknown area of teaching. In response to the professional development need of these teachers, the government 
offers courses on catering for diverse learning needs, and in-depth training courses on supporting student with 
SEN (Education Bureau, 2015). Unfortunately, these courses do not address the mathematics-specific 
preparation of teaching for SEN students. 

It was under such circumstances when TFM was introduced to teachers of special schools four years ago. 
The mission was to improve the quality of mathematics learning of students with SENs. During the period, we 
seek answers for the following questions: 

1. If there is indeed something called mathematics-specific preparation of teaching for ID students, how 
does it look like? 

2. What kind of research will support practice of mathematics teaching for ID students? And how? 
The two authors of the paper were participant observers of the project. By interacting with teachers we 

studied, we were able to observe what information did teachers seek for during the project and how teachers’ 
professional development happened. The first author played the role of both a teacher educator and a researcher. 
The second author served as a guide by pointing participating teachers to the knowledge and resource base of 
TFM. During the last four years, 49 teachers took part in the development program. Seven of them (see Table 1) 
were selected to reveal their own learning experience in how to teach mathematics to ID students and the 
characteristics of the experience they consider helpful to their work. The demographics of the seven 
interviewees are as follows (see Table 1): 
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Table 1 
Demographics of Interviewees 
Teacher 
(Label) Category of school Years of teaching in 

special school 
Years of participating in 
TFM 

T1 Mild IDs 9 1 
T2 Mild and moderate IDs 23 2 
T3 Mild and moderate IDs 20 1 
T4 Physical disabilities and IDs 9 1 
T5 Mild IDs 2 1 
T6 Moderate IDs 25 2 
T7 Physical disabilities and IDs 20 2 

Knowledge Structure and Its Impact 
In the following section, we describe an instructional framework for the teaching unit—counting, addition, 

and subtraction—that we use to exemplify the importance of clarifying knowledge structure and its impact on 
the design and implementation of teaching. 

Counting, Addition, and Subtraction  
When teachers prepare to teach subtraction, more often than not, they think about subtraction. During our 

encounter with teachers, no matter teaching in a special classroom or an inclusive classroom, this phenomenon 
prevails. This is widely acceptable in the teaching profession, though far from being perfect. For many teachers, 
the aim of their lesson preparation is to make their lessons effective, which is almost unconditionally identified 
with “student can work out tasks according to the procedures told by the teacher.” Under favorable conditions, 
this may happen and then the teacher will regard the lesson as being effective. However, if we look at it from 
the student’s perspective, we would also like to ask, “Does this part of learning match well with previous 
experience?” Furthermore, “Does this part of learning effectively and efficiently pave the way for subsequent 
learning?” These questions lead us to consider what Bruner (1977) concluded in his classic work that “the 
curriculum of a subject should be determined by the most fundamental understanding that can be achieved of 
the underlying principles that give structure to that subject” (p. 31). In what follows, we try to outline, albeit 
very briefly, a knowledge structure for teaching counting, addition, and subtraction, spanning from the most 
basic level of counting to the highly symbolic level of column subtraction of two-digit numbers. It forms the 
foundation for teacher development described in this paper. 

Before a child can run into arithmetic, he or she must first know how to label an amount with a name. In 
principle, we need infinitely many different names to correspond to infinitely many different amounts. This 
creates great trouble if mathematics needs to deal with arbitrarily large amounts. Here comes the need to have a 
structure—a structure to enable us to label great many different amounts by using just a small number of 
symbols. The Hindu-Arabic numeration system we use today is one solution to such problem. It requires ten 
different numerals (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9), a base-10 place value system, and a positional recording 
convention. Two obvious pre-requisites for applying such system are: (a) the ability to recognize the symbols 
for the 10 numerals, and be able to arrange them in ascending (and descending) order of magnitude; and (b) the 
ability to think and act based on different units, such as 1’s, 10’s, 100’s, etc. 

Going from 1 to 9, students are confronted with nine different symbols. They need to learn the actual 
amount (in terms of number of certain objects), the sound (as read aloud), and the written text corresponding to 
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each of them. This can be demanding for young children, especially those with IDs. The activity that pulls all 
these together is called counting. According to Gelman and Gallistel (1978), counting “involves the coordinated 
use of several components: noticing the items in an array one after another; pairing each noticed item with a 
number name; using a conventional list of number names in the conventional order; and recognizing that the 
last name used represent the numerosity of the array” (p. 73), and encompasses the skillful application of the 
following principles: The One-One Principle which says that objects are partitioned into the to be counted group and 
the counted group and that the element of the former is moved to the latter one at a time; The Stable-Order 
Principle which says that a counting person must be able to use the same sequence of tags to correspond to 
items to be counted; The Cardinal Principle which says that the tag used for the last one counted is the cardinal 
number of the sets of objects counted; The Abstraction Principle which states that the preceding principles can 
be applied to both physical and non-physical objects; and lastly, The Order-Irrelevance Principle which says 
that the counting result is independent of the order of objects being counted (Gelman & Gallistel, 1978, p. 73). 

For students with IDs at moderate to severe grade, learning to count from 1 to 10 is a process that can be 
very long and painstaking. They have difficulties in: (a) remembering the sequence of sounds; (b) remembering 
the sequence of symbols; (c) matching the sequence of sounds with the sequence of symbols; and (d) matching 
the two sequences with the number of objects they see. In order to help them overcome obstacles during 
memorization process, the Louis Program Training Centre (Retrieved from http://www.lp.org.hk/e_index.htm) 
has developed a program of home training under which students start learning small numbers through repetitive 
counting tasks that incorporate progressive minor variations. In the counting book used, we find objects to be 
counted. Their corresponding generic representation using circles and number symbols (see Figure 6). Page 
after page, changes incorporated range from positions of objects, characteristics of objects, to hint level 
concerning the number symbols. The idea was adopted by some teachers of special school who turned the 
counting book into an electronic version to be used on interactive whiteboard. Its obvious advantage over the 
printed book is that clues and hints for the sound sequence can also be included. 

 

 
Figure 6. Design of counting tasks. 

 

Achievement 1. Student knows how to count up to N, and hence is able to: 
(a) determine any number of objects not exceeding N by counting; 
(b) get any number of objects not exceeding N by counting. 
Once students can count up to a certain number N (which could be any not-so-small number), the concept 

of addition (put together) and subtraction (taken away) can be studied. To find a + b, all one needs to do is to 
first count and get a counters, then count and get b counters, and finally putting them together and count to get 
the sum. To find a − b, one could first count and get a counters, then count and remove b counters, and finally 
count the remaining to get the difference. These processes can be regarded as the basic principle of addition and 
subtraction. If a person can remember the positive integer sequence up to N, he or she can perform addition and 
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subtraction within the range by counting counters alone. Once the skill is further improved to include counting 
pictures (or any static things that cannot be moved around), we arrive at another achievement milestone. 

Achievement 2. Within the counting limit N, given a and b, student knows how to get a + b, and a – b by 
counting counters or pictures. 

Based on fluency of counting to N, student could develop techniques of counting up or down from any 
arbitrary number within the range. These techniques enable the student to get a + b, by using just b counters 
only. Counting up begins at a and for each of the b counters counted, the student counts up one number. The 
process ends when all the b counters are counted, and the last-named number is a + b. Doing it the reverse way, 
the students can get a − b, by using again just b counters. Counting down begins at a and for each of the b 
counters counted, the student counts down one number. The process ends when all the b counters are counted, 
and the last-named number is a – b. 

When these techniques are applied to a restricted context where the number of counters (b) is replaced by 
student’s ten fingers, and the student is capable of recognizing quickly any number (not exceeding 10) of 
fingers erecting, the student then obtains a convenient method of calculation, called “finger-counting.” 

Achievement 3. In expressions of the form a ± b = c, where all three numbers do not exceed N, a is given, 
and b ≤ 10, the student can determine any one of b and c once the other is known. 

When student’s counting limit becomes larger over time, counting large number of objects is possible and 
can be accomplished in a speedy manner through counting by 2, 5, or 10. In particular, counting by 10 has its 
special significance on extending the naming and recording of numbers from using just a sequence of isolated 
names, to a system where the 10 Hindu-Arabic numerals are structurally applied to represent practically 
infinitely many numbers. 

Achievement 4. By grouping into powers of 10 (1, 10, 100, etc.), and restricting that any group of the 
same size cannot have more than 9, any number can be recorded uniquely by using just the 10 numerals, filling 
the digits from right to left which successively corresponds to the number of 1’s, 10’s, 100’s, etc. occurring. 

The numeration system follows from Achievement 4 is what we called “the base”—10 positional 
numeration system. Essentially, it is a number recording system that registers the number (not exceeding 9) of 
each power of 10 by column, starting from the unit column on the right. Addition and subtraction can be done 
by column, with cross-column exchange activity inserted where appropriate. In addition, when it occurs that a 
column sum exceeds 9, carrying forward to a higher power of 10 is necessary because each digit can only 
register up to 9. Similarly, in subtraction, when there is insufficient number of a certain power of 10 to be taken 
away, borrowing from the next higher power column is necessary. Irrespective of whether carrying or 
borrowing is involved, calculation within a column takes the form a ± b, with a ≤ 18, b ≤ 9. It follows that 
calculation within a column can be completed based on Achievement 3 with N being 20. In short, 
addition/subtraction of multi-digit numbers is essentially repeated application of Achievement 3 (with N being 
20) to each of the digits. 

Impacts of Clarifying Knowledge Structure on Teaching 
Next, we describe some issues that emerged in our observation and interview data, thereby, exemplifying 

the potential of the knowledge structure in helping teachers design and carry out teaching activity. 
The knowledge structure is useful for teachers for several reasons. First, it helps teacher articulate the 

learning objectives of students. Almost all the interviewed teachers mentioned that they felt very challenging to 
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set appropriate learning objectives and tasks, and T1 gave us an explanation: 

In general school curriculum, multiplication and division are taught in Grade 2 and Grade 3, but a student with 
moderate IDs in special educational school only starts to learn this topic in his 12th year of schooling. It means he or she 
spends 12 years but only learns the content that normal students spend two or three years learning. Regarding the same 
content but increased class hours, how to break down the learning content into small objectives? This is worth thinking, 
but beyond my limited mathematics knowledge. 

Four teachers (T3, T4, T6, and T7) felt that some topics in mathematics are “hard to teach”. Both T3 and 
T7 mentioned “counting 1-10” as an example. T7 explained: 

These topics are so easy that people could not even figure out what to teach! However, students with moderate IDs 
spend years on these topics. What to teach and how to teach these topics are difficult questions for teachers. 

T6 shared their experience in preparing and teaching these “hard” topics. T6 said when she does not have 
idea about how to teach a topic, she always “search different activities relating to this topic” from various 
sources. Very often, she used them as the content to be covered during class time without knowing the value 
and importance of those activities. T7 provided an example about counting and illustrated how TFM helped her 
clarify the objectives of learning activities. She said: 

[…] some students in my class have difficulties in counting. So, I let them sing counting 1-10 song every lesson, 
hoping that it could help them learn counting […]. However, after participating in TFM, I knew singing number song 
simply help students remember the sequence of sounds, and other learning activities need to be included to help students 
match the sequence of sounds with the sequence of symbols, or the sequences with the number of objects they see […]. 
Had I not studied the knowledge structure, I might never have found what important parts were missing in my teaching. 

Second, knowledge structure helps teacher understand the connection of knowledge. T4, T5, and T6 
mentioned this point during the interview. T6 shared her experience in teaching counting and addition:   

TFM helped me find out the teaching gaps between the two topics—counting and addition. […] I used to think that 
the value of counting by 2, 5, and 10 is only to train students to count more conveniently. But now, I know counting by 10 
is actually paving way for students learning carrying in addition. If they did not learn counting by 10, they will have an 
ambiguous concept of carrying. […] When we were learning carrying during addition, we may not have to learn counting 
by 10 first. It is because we have high level of abstract thinking, we could jump this step (counting by 10) to carrying. 
However, it is not the case when it comes to children with IDs. Especially for children with weak abstract thinking ability, 
they have to learn concepts through a great amount of activities using manipulatives. After understanding the importance 
of pre-knowledge of counting by 10 when learning carrying in addition, I provided a lot of activities for my students to 
learn it. I provide different kinds of objects for my students to count by 10 and let them turn those objects into a packet to 
represent “carrying” when the number of objects adds up to 10. When the number of objects is more than 10, my students, 
such as Ka (one of her students), will not put all the objects into a bag. On the contrary, if they find the number of objects 
in the bag is more than 10, they will take away the surplus part. But students, who do not learning counting by 10, would 
not do so. They just copy their teachers’ action— put objects into the bags. 

Third, knowing the knowledge structure of topics would also help teacher develop instructional design. 
For example, when teachers have a deep understanding about counting, they are more capable of designing 
appropriate activities for students. In TFM lesson preparation meeting, teachers could identify the nature and 
purpose of the activities—whether an activity is matching the sound to the symbol or matching the sound to the 
amount, whether an activity is training the sequence of sound or training the sequence with the numbers. With 
the knowledge about counting, teachers were clear about what learning experience they are providing to their 
students during lesson. Based on that, they optimize the original matching activity (see Figure 7) in to a version 
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for students with more severe IDs. They did this by breaking down the original activity into three steps (see 
Figure 8), which uses a “transition card” for students to easily understand their learning objective. It is because 
students with moderate to severe developmental disabilities may have difficulty in comprehending teachers’ 
instruction. A transition card is provided to bridge the understanding of the symbol “3” and the amount “3”. 
Class observation shows that the “transition card” did help some students with low ability.  

 

 
Figure 7. Matching the card with 3 counters to the card with the symbol “3”. 

 

 
Figure 8. Steps to help students match the symbol “3” with its corresponding amount. 

 

 
Figure 9. Worksheets for practice giving number of objects by counting. 

 

.  
Figure 10. Student’s work of calculating addition by counting. 

 

With an understanding of the knowledge structure of addition and subtraction, teachers recognize that 
before learning addition and subtraction, student must be capable of getting any number of objects by counting. 
Therefore, teachers designed a worksheet (see Figure 9), which paves the way for further learning in addition, 
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and subtraction (see Figures 10 and 11). They first provide some physical objects for students to do the addition 
and subjection by counting. Second, they asked students to draw circles to replace the physical objects. Three 
teachers who have implemented this design reported that after these activities, their students had good 
command of the concepts of addition and subtraction. T6 said,  

When they saw “–”, they know that they should take away or cross some objects. When they saw “+”, they know that 
they should count all the objects. They could distinguish the two operations clearly. 

 

 
Figure 11. Student’s work of calculating subtraction by counting. 

 

T7 also mentioned that before participating in TFM, she used to have little confidence in designing 
learning activity, because she “does not know whether the activity is mathematically correct or not”. However, 
after learning TFM, she felt more confident in mathematics. She shared one experience of criticizing her 
colleague’s idea of using peculiar drawing (see Figure 12) to teach students subtraction. She said, 

When I saw the drawing, I immediately realized it is not appropriate for explaining subtraction. The drawing cannot 
help students develop a sense of “taking away”. Instead, students may misunderstand that what the drawing shows is five 
circles. If the teacher uses this drawing to illustrate subtraction, students probably could not acquire any conceptual 
understanding of it. Instead, they just imitate what the teacher does during lesson.  

 
Figure 12. A drawing not appropriate for explaining subtraction. 

 

T5 also shared her experience about how the knowledge structure of subtraction helps her adjust learning 
objective and designing learning activity to students at different levels. She used to believe that “the skill of 
counting down is a pre-requisite to learning subtraction.” However, after consulting TFM advisor, she 
understood “counting down is just one of the strategies in doing subtraction.” Learning subtraction involves 
both an understanding of the concept, and various means to get the difference. The core message that students 
should know about subtraction is that it is “an operation representing taking away some objects and finding the 
number of remaining objects.” Therefore, she adjusted the teaching objective and students’ learning activities. 
She categorized her students into three groups according to their pre-knowledge of counting: 

The highest ability group who had the ability of counting down will learn calculating subtraction by counting down. 
The middle ability group who could draw correct number of circles will learn doing subtraction by drawing and crossing 
circles. For those with low ability, she provides them with the physical objects, and teaches them taking away the specified 
number of objects and counting out the remaining objects. 
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T5 also mentioned that she “used to require all students to learn the method of counting down,” and now 
she only “requires students with high enough ability to learn the counting down strategy to calculate 
subtraction.” 

When teachers have a good understanding of a mathematical concept and the knowledge structure behind 
it, they have the ability to distinguish whether a piece of knowledge or skill is a minor teaching point or belongs 
to the core. This is very important in mathematics education for students with special educational needs 
because teachers have to face the challenges of students’ disability and diversity. In the absence of a set of 
objectives suitable for all students, teachers have to make decision about which content is fundamental and 
have great impact on students’ further learning, and which is not.  

Conclusions 
This paper intends to consolidate insights from the TFM professional development program for 

special-school teachers, hoping to shed light on the mathematical preparation needed for teaching students with 
special educational needs. We conclude by answering the two questions raised before: 

If There is Indeed Something Called Mathematics-Specific Preparation of Teaching for ID Students, 
How Does It Look Like? 

Teachers need supports in mathematics. This kind of mathematics does not originate from the mathematics 
commonly taught at university level, but rather from a re-invention perspective—How mathematics knowledge 
could be constructed and developed at students’ level. In order to tailor teaching objectives and activities to 
students with ID, teachers’ ability to figure out milestones and intermediate learning states within a prolonged 
process of knowledge construction is crucial. Without thorough deliberation and serious study of knowledge 
structure, such ability can hardly be developed among teachers. 

What Kind of Research Will Support Practice of Mathematics Teaching for ID Students? And How? 
Our findings suggest that design research is the answer. Design research is a kind of research that aims at 

developing a local instruction theory with two objectives. One is to study students’ learning trajectory of a 
mathematical topic and the other is to study the means to support that learning process (Gravemeijer & van 
Eerde, 2009). The main pre-condition for designing effective learning trajectory is, according to previous 
discussion, an in-depth analysis of knowledge structure. This is especially the case for mathematics where new 
knowledge is often derived from the old. Could teachers do the job themselves? Our interviewed data 
unambiguously confirmed the otherwise. If teachers alone cannot possibly do the job, we need contribution 
from, in Freudenthal’s (1980) term, a theoretician: 

What the theoretician in the team should be able to do on the ground of his background knowledge is to react to the 
phenomena in the field, connecting them, placing them into larger frames without appealing to, let alone, settling on, 
pre-established theories. For instance, he should be able to recognize common elements in subject matter or presentation as 
a signal that promises success or failure even when no theory exists that in a certain situation allows the deduction of this 
result. (p. 177) 

The theoretician, being someone well-trained in both mathematics and its teaching, takes up the tasks of 
clarifying the knowledge structure and suggesting feasible learning trajectories. While all these can be done 
without much understanding of student characteristics, further work is needed to turn them into detailed 
instructional designs ready for implementation at specific classrooms. At this point, teacher development is 
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needed to ensure teachers actually carrying out the teaching can understand the knowledge structure upon 
which teaching is being designed, and the rationale behind the learning trajectory adopted, thereby fill in the 
details of the action plan entailed. The study and design of teaching units, thus, becomes the focal point for 
research and teacher development to happen (Wittmann, 1984; 1995).  
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