
Journal of Energy and Power Engineering 14 (2020) 39-52 
doi: 10.17265/1934-8975/2020.02.001 

 

Adaptability of the Recloser-Fuse Protection Scheme in 

the Presence of Distributed Generation 

Patrícia Santos e Abreu and António Gomes Martins 

INESC Coimbra, Department of Electrical and Computer Engineering, Rua Sílvio Lima, Polo II, Coimbra 3030-290, Portugal 

 
Abstract: This paper addresses the behaviour of an IEEE (Institute of Electrical and Electronics Engineers) test network when 
distributed injections are added to the distribution network. The penetration of different dispersed generation technologies, modifies the 
distribution system characteristics, with impact on a number of parameters, depending on their size and location on the network. For 
this purpose, this paper comprises three case studies: in the first case an exhaustive analysis is carried out of the occurrence of faults 
throughout the network, along with the introduction of distributed generators; in the second case the network behavior is assessed 
against the use of three of the most commonly used types of generators based on rotating machines; in the third case study an evaluation 
is made of the network performance when the three types of DG (distributed generation) units are distributed in multiple buses. In all 
cases the protection system is analyzed with the aim of ensuring coordination among the protection devices. All simulations are 
performed using the Power Factory software package from DigSILENT. From the simulation results, conclusions are drawn that 
provide insights into the behaviour of protection systems, highlighting the limitations of the original protections and coordination with 
different distributed generators technologies. 
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1. Introduction  

In recent years, the introduction of distributed 

production in the distribution network has been 

increasing in order to take advantage of the use of 

renewable energy sources. However, the usage of DG 

(distributed generation) is not only beneficial to 

electricity users, but also to utilities. Its advantages can 

be summarized as: increased voltage stability, loss 

reduction and higher overall efficiency, environmental 

benefits and low pollution [1]. 

The generators used to convert primary renewable 

energy to electricity may be asynchronous or 

synchronous generators, which can be used in thermal, 

hydro and wind generation plants. They can operate as 

a generator or a motor, since the electromechanical 

conversion of energy is always reversible [2, 3]. 

In spite of its benefits, DG integration, however, 
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may have a significant influence on the coordination of 

network protection systems. Energy flow becomes 

bidirectional, the selectivity and speed of operation of 

the protection systems may be altered and thus make 

temporary faults to cause permanent disconnections of 

parts of the network, or to cause disconnection of larger 

portions of the network than needed when faults occur, 

affecting network quality of service. 

Traditional protection systems are designed 

according to the network radial topology. With the 

introduction of DG, there are zones of the systems that 

will no longer follow this topology, which may lead to 

loss of coordination between protection devices. The 

effect of DG on coordination will depend on its 

capacity, type and placement. In the literature, several 

studies are focused on choosing the optimal size and 

location of DG units [4-8]. 

In the most unfavorable case to a DSO (distribution 

system operator), regulation will not prevent investors 

from defining DG placement sites, provided there are 

suitable technical conditions. The DSO may, then, not 
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be able to influence DG locations from the perspective 

of the maximum benefit to the network. On the other 

hand, in many regions of the world, distribution 

companies are not fully engaged in network 

modernization investment through wide 

implementation of digital solutions, since financial 

resources are frequently scarce. Hence, there is a need 

to cope with new DG projects carried out by private 

investors, making the currently available protection 

systems technology cope with the new operating 

conditions caused by DG additions. Even when a DSO 

carries out planned network modernization, many 

sectors of the distribution system will, for extended 

periods of time, before modernization, keep operating 

with less up-to-date technology, simultaneously having 

to cope with new DG interconnections. The authors 

have dealt in a different publication [9] with the 

specific issue of the need to adapt the protection 

systems of distribution networks as seamlessly as 

possible to new DG interconnections, avoiding costly 

replacements or heavy investments.  

The present paper proposes an operative approach to 

the assessment of the capacity of a distribution network 

feeder to accept DG additions without disrupting the 

existing protection system. It also analyzes the 

influence of different generating technologies, 

focusing on the three options most widely used in wind 

and hydro power: synchronous, asynchronous and 

doubly fed asynchronous machines. Three case studies 

are presented to reach the proposed goals: in the first 

case an exhaustive analysis of fault occurrences is 

carried out to assess the network performance when a 

fault occurs and DG is introduced into the test network; 

in the second case the behavior of three most 

commonly used types of rotating generators is 

analyzed and in the third case an evaluation is made of 

the network performance when the three types of DGs 

units are distributed through multiple buses.  

The IEEE (Institute of Electrical and Electronics 

Engineers) 34 Node Radial Test Network was used as a 

test network where faults were simulated and DGs of 

various sizes were placed on all buses to allow the 

identification of the most critical DG locations and in 

order to evaluate the limitations of the original 

protections to respond to security, coordination and 

selectivity criteria, simulating short-circuits in all buses. 

Critical DG locations are those where the existing 

protection system does not respond adequately. Once 

the critical locations are identified, the performance of 

the generators is discussed, taking into account the 

technologies at stake: asynchronous generator, DFIM 

(double fed induction generator) and synchronous 

generator. Finally, the operation of the protections 

when integrating DGs into multiple buses was 

evaluated. The aim is to try to identify which 

technology presents fewer problems to the distribution 

network protections, when these are based on the 

recloser-fuse combination. All simulations are 

performed using the Power Factory software package 

from DigSILENT. 

This paper is structured as follows: Section 2 

presents the DG technologies considered. Section 3 

describes how the coordination of protections is 

established. Section 4 presents the case study, 

protection scheme and DG model to apply. Section 5 

shows simulations, sets out the results obtained for 

each case study together with discussion of the results. 

The conclusions are reported in Section 6. 

2. DG Technologies 

2.1 Technologies 

DG technologies, to convert the energy obtained 

from renewable primary energy into electrical energy, 

can be based on asynchronous or induction machines, 

operating either based on SCIMs (squirrel cage 

induction machines), DFIM, or PMSMs (permanent 

magnet synchronous machines). According to Freitas 

et al. [3], most of the large generators used in 

hydroelectric, thermal and some wind turbines are 

synchronous machines. On the other hand, the same 

authors mention that a large part of the induction 
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machines, in operation, are used in wind turbines. In 

the past they were also used in medium-sized 

hydroelectric, and thermal power stations.  

The technology to be used in renewable energies 

depends on the frequency generated, due to the 

difference in rotational speeds, which can be of two 

categories: constant frequency of constant speed, the 

SCIM, or constant frequency of variable speed, with 

DFIM and PMSM [10].  

The interconnection of DG is carried out with one of 

these machines and can be directly coupled to the 

network or can be interfaced through electronic 

converters. When connected to the power system, these 

DG technologies have different impacts on the 

operation, control and stability of the power system, 

affecting the size and location of DG units [4].  

Some authors have compared types of technologies: 

Rizzo et al. [11] establish a comparison between 

different machines operating in stand-alone mode and 

connected to the distribution network; Freitas et al. [3] 

analyze the behavior of each technology through the 

network performance, in terms of steady-state voltage 

profile, power losses, voltage stability and short-circuit 

currents. Other authors [12-15] made comparisons 

when they operated as wind turbines of different 

technologies. 

Comparing the two asynchronous machines 

addressed in this work some advantages of each 

technology are: SCIM does not use power electronics, 

making it more economical, using a gearbox to operate, 

unlike the others; DFIM is an attractive system from an 

economic point of view, showing an increase in 

efficiency, an improvement in the quality of energy and 

a control of active and reactive power [14-16]. 

It is possible to highlight some characteristics from 

the comparison between generators when converting 

renewable energy: in wind energy, asynchronous 

generators are always used with a gearbox whereas 

synchronous generators do not need this component; 

there can be variable speed in generators of both types; 

the wound rotor asynchronous generator, needs power  

Table 1  Characteristics between asynchronous and 
synchronous generators [2]. 

Asynchronous machine Synchronous machine 

Moderately efficient  Efficient 

Less expensive Expensive 

Little maintenance Requires maintenance 

Sink of reactive power 
Reactive power flow can be 
controlled through field current

Suitable for week networks 
only in conjunction with 
power electronics  

Suitable for connection to weak 
networks, used in autonomous 
systems 

 

electronics, while, on the other hand, the synchronous 

generator needs an electronic interface to provide a DC 

(direct current) link; in hydro, asynchronous generators 

require a gearbox. By using a synchronous generator it 

is possible to carry out reactive power control when 

necessary [2]. Some features of these technologies are 

presented in Table 1. 

According to some investigations the DFIM 

dominates the large scale wind turbines market, while 

the use of PMSM is continuously increasing in small 

scale wind power, and the SCIMs are less and less used 

[14, 17]. 

2.2 Impact of DG on Distribution Networks 

The introduction of DG can negatively affect 

distribution systems, through the redistribution of 

power flows, changes in short-circuit currents, 

overvoltage and faults in the protection systems. In the 

presence of DG a miscoordination of protections may 

happen, depending on the size, type and location of DG. 

This circumstance highlights the need of the DSO to 

have a strategy for treating existing protections in order 

to adapt them to the existence of new DGs, also taking 

into consideration the behavior of different generation 

technologies. 

Approximate models of synchronous generators, 

used in small hydro DG, which are represented by a 

single driving voltage in series with equivalent 

impedance, are utilized for short circuit studies. The 

value of the equivalent impedance considered in the 

analysis depends mainly on the sought time frame of 

the analysis, i.e., on the values defined for the ܺௗ
′′ , ܺௗ

′  
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and ܺௗ parameters, in subtransient, transient and 

synchronous periods, respectively. For asynchronous 

generators, used in wind turbines, the short-circuit 

current depends only on the subtransient values [18]. 

Short-circuit current levels in the presence of 

distributed power injections depend on the type of 

generators used in the DG construction. In Ref. [19], 

typical value ranges are presented of the ratio between 

the output current and the short-circuit current: 

 Asynchronous machines: 100%-400%, the 

duration depending on controller settings and current. 

 Synchronous machines: Starting at 500%-1,000% 

for the first few cycles and decaying to 200%-400%. 

 Induction machines: 500%-1,000% for the first 

few cycles and decaying to a negligible amount within 

10 cycles. 

Regardless of the cycle duration, high short-circuit 

current values can cause problems in the coordination 

of the protection system and affect the continuity of 

supply. 

3. Recloser-Fuse Coordination 

Protective devices, reclosers and fuses are installed 

in the main and lateral feeders, respectively, of the 

distribution network. For coordination between 

reclosers and fuses, the DSO can choose from two 

philosophies: fuse-saving scheme or fuse-blowing 

scheme [20]. 

In the literature, some authors report that the most 

widely used scheme aims at fuse preservation [21, 22], 

which will be focused in this chapter, illustrated in Figs. 

1 and 2. The coordination range of fuse and recloser is 

defined for all fault currents between Ifmin and Ifmax. 

Within this range the recloser operates before the fuse, 

which corresponds to the required coordination. 

The fuses have two main relevant characteristics in 

coordination analysis: MM (minimum melting) and TC 

(total clearing). The MM feature corresponds to the 

time required to begin melting the fuse for a certain 

value of the current passing through it. The TC feature 

corresponds to the fuse total melting time for a given  

 
Fig. 1  Recloser-fuses radial distribution feeder (adapted 
from Ref. [23]). 
 

 
Fig. 2  Coordination between recloser and fuse. 
 

value of the current flowing through it. The recloser 

operates according to two curves: fast and slow. 

In this case, the recloser operates always before the 

fuse, i.e. the fast recloser curve is below the MM fuse 

curve. If the fault is permanent, after the recloser closes 

the circuit, the fuse must operate. Given that the fuse 

TC curve is below the recloser slow operating curve, in 

the case of a permanent fault the fuse should blow 

before the recloser operates (at its slow curve). If the 

fuse does not blow, the recloser shall operate according 

to its slow operating condition, acting in that case as a 

backup protection device isolating the fault. 

4. Study Case Description 

4.1 Test Network 

The network test IEEE 34 Node Test Feeder is part 

of several networks described by a working group 
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designated Distribution Test Feeder Working Group of 

the subcommittee IEEE Power & Energy Society (PES) 

Distribution System Analysis Subcommittee, which 

can be used as base tests, in the present work carried 

out with the network simulation software, DigSILENT 

Power Factory 2018. 

This particular network exists in the state of Arizona, 

United States, and has an unbalanced nature, a typical 

characteristic of distribution networks. With a base 

power of 2.5 MVA, it has two transformers, a 69/24.9 

kV installed at the substation and the other 24.9/4.16 

kV installed at a lateral, two voltage regulators 

strategically located on the network, two capacitor 

banks, six concentrated loads and nineteen distributed 

loads, of constant power, impedance and constant 

current types [24]. 

For the simulation of the test network some 

adjustments were made, according to Mwakabuta and 

Sekar [25], shown in Fig. 3. The power flow simulation 

results obtained were very close to the original. The test 

network presents a main feeder and four lateral feeders. 

4.2 Protection Scheme 

To select the characteristics of the various protection 

systems, three-phase short-circuits were simulated in 

Power Factory, using the “complete method” which is 

based on the superposition theorem to determine the 

short-circuit currents. 

The locations of protective devices were set at the 

main feeder bus 800, and at the laterals, as shown in Fig. 

3. The locations are referenced by the network nodes’ 

numerical codes. 

The reclosers are usually designed with inverse time 

overcurrent curves, in this case that a Cooper Power 

Systems, model Form 4C having been chosen, placed 

on the main feeder, location P1 [9]. 

The characteristic curves of the fuses are those of the 

S&C Electric Company, Positrol fuses, whose 

operating time and the fault current observed by the 

fuse are parameters that need to be configured. The 

fuses were adapted to each lateral characteristic (P2 to 

P6). 

DGs protections were implemented with overcurrent 

relays of the General Electric IAC51804A model, 

available in the software library. 

4.3 DGs Models 

In order to connect distribution network to DG, a 

coupling transformer had to be configured to obtain a 

voltage of 400 V, the DG rated voltage.  

In the first case, in order to know the network 

protection system behavior when a fault occurs and a 

DG is connected, an exhaustive analysis was 

performed on the test network. Three types of DGs, all 
 

 
Fig. 3  IEEE 34 Node Test Feeder with protection devices. 
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Fig. 4  Asynchronous machine complete short-circuit subtransient model (adapted from Ref. [27]). 
 

synchronous generators, were parameterized according 

to Funmilayo and Butler-Purry [26]. DGs penetration 

levels were defined at 20%, 50% and above of 100% of 

the total load supplied by the substation. This analysis 

considered each and all network nodes for DG 

placement and fault simulation, one node at a time. 

In the second and third cases, three types of 

distributed injection technologies were used. 

Asynchronous generators, which can operate as a 

standard asynchronous machine or a doubly fed 

induction machine, were selected from the Power 

Factory library with a power of 400 kW. On the other 

hand, due to the low power of the synchronous 

generators these had to be parameterized according to 

the data provided [26] and a power of 400 kW. It was 

decided to choose the same power so that a better 

comparison could be made between the alternatives.  

Short-circuit analyses were carried out, for all 

generator technologies, through the “complete method” 

where the internal voltage source is initialised by a 

preceding load flow calculation, determining 

subtransient and transient fault currents using 

subtransient and transient voltage sources and 

impedances. Fig. 4 shows the short-circuit subtransient 

model of an asynchronous machine. The transient 

model does not have the voltage source in the positive 

sequence. The positive sequence impedance is 

calculated according to Eqs. (1)-(4). The negative 

sequence impedance is set equal to the positive 

sequence impedance (Eq. (5)) [27].  

ଵݖ ൌ ଵݎ ൅  ଵݔ݆ (1)

ଵݖ ൌ ௅ோ (2)ܫ/1

ଵݔ ൌ ଵݖ ට1 ൅ ௅ோݎ
ଶൗ  (3)

ଵݎ ൌ ଵݔ ൈ ௅ோ (4)ݎ

ଶݖ ൌ  ଵݖ (5)

where: 

z1 and z1: positive and negative sequences 

impedances, respectively (Ω); 

r1: positive sequence resistance (Ω); 

x1: positive sequence reactance (Ω); 

I
LR

: locked rotor current (A); 

r
LR

: locked rotor resistance (Ω). 

DFIMs, in short-circuit analysis, are modelled with 

an equivalent synchronous machine and have not any 

coupled power electronics interface. 

5. Simulations, Results and Discussion 

5.1 First Case 

In the first case an exhaustive analysis was carried 

out, with of 650 simulations, evaluating the impact of 

increasing synchronous machine based DG penetration 

levels in the test network. The flowchart for an 

exhaustive analysis is shown in Fig. 5, adjusted for 

each value of the DG unit analyzed. In all cases, the 

current variation, ΔI, was calculated as the difference 

between the fault currents without DG and with DG, as 

a percentage of the fault current without DG given by 

Eq. (6), to verify the behavior of the fault current for 

the various DG penetration values, comparing them to 

the corresponding values of the network in operation 

without any DG. 

ሺ%ሻܫ∆ ൌ
௦஽ீܫ െ ௖஽ீܫ

௦஽ீܫ
 (6)

r1 x1

u

Positive sequence

r2 x2

Negative sequence

r0 x0

3.Ze

Zero sequence
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Fig. 5  Flowchart for exhaustive analysis of default occurrences, for each different power value of DGs. 
 

where: 

∆I : current variation; 

IsDG: short-circuit current without DG; 

IcDG: short-circuit current with DG. 

The evolution of the current variation registered in 

Fig. 6 shows the number of cases, translated into 

percentage, in six intervals. Each interval refers to   

the number of cases in which the current variation 

occurred within the indicated limits (0-15%, 

16%-30%, ...). The interval >100% means that the 

current variation, established by Eq. (6) is greater than 

100%, which occurs, especially, when the DG is 2.5 

MVA. The placement of 0.406 MVA DG units led to 

an increase, of the short-circuit current variation (ΔI), 

by a maximum of 27% compared to the case of the 

network without DG. For 1.075 MVA DG units this 

variation was higher. With the placement of 2.5 MVA 

DG units, the ration between the value of the fault 

currents with DG and without DG was even higher 

when compared to the previous ones, which may lead, 

in most cases, to loss of coordination, as can be seen in 

Fig. 6. 
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Fig. 6  Evolu
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Table 4  DGs placed on multiple buses equipped with 
synchronous machines. 

Case Fault 
DG No. DGs 

total  858 836 824 814 806 

1 848 1 1 0 0 0 2 

2 840 1 1 1 0 0 3 

3 862 0 1 1 1 0 3 

4 848 0 0 2 1 0 3 

5 862 0 0 2 1 0 3 

6 848 0 0 2 1 0 3 
 

protection system, when compared with the case of 

integration of various DGs on a single bus, providing 

the DSO information about the performance of the 

protection system when DGs are placed on multiple 

buses. Synchronous machines do not allow the 

integration of as many DGs as asynchronous machines 

before loss of coordination occurs. 

6. Conclusions 

This paper presents the results of a comprehensive 

analysis to assess the performance of a distribution 

network when there is integration of DGs units, 

identifying the situations when there is lack of 

coordination of the recloser-fuse protection scheme. In 

those cases where there is lack of financial resources to 

fully modernize the distribution network, the present 

paper shows it is possible to maintain the conventional 

protection system, even integrating several DG 

technologies in the network. The integration of a 0.406 

MVA DG unit, 20% of the nominal network load, does 

not affect the correct operation of the protection system. 

By duplicating DG penetration, problems began to 

arise in the protection system operation. In lateral 

feeders these problems were most notable when faults 

were simulated by locating DG anywhere on the 

network. Through this analysis it was possible to verify 

the limitations of each bus, regarding the penetration of 

DG, when there is no change in the conventional 

protection system. 

The performance of the network with different DG 

technologies, always placed on the same bus, was also 

assessed. The use of synchronous machines presented 

the worst results, whereas the use of asynchronous 

machines allows the integration of a higher number of 

DG units without compromising the coordination 

between recloser and fuses. 

When placing multiple power injections based on 

asynchronous machines along the network, there were 

cases where it was possible to connect four DG units 

without jeopardizing the conventional protection 

system operation, DG penetration representing 75% of 

the total network load. Contrasting with these results, 

in the case of synchronous generators only two DGs 

were enough to cause coordination problems. 

According to the results, given the parameters defined 

for each technology, it can be said that the use of 

asynchronous machines allows the integration of more 

DG units in the distribution network when compared to 

synchronous machines. 

The penetration of DG units, the types of technology 

used, the distribution network configuration, the 

network protections, the capacity of the electrical 

network to operate with bidirectional power flows, 

were some of the aspects that interfered on the 

integration of DG units. It is straightforward to extend 

the methodology used in the paper to larger networks if 

the network is split into zones and each zone is 

individually analyzed, one feeder at a time, in order to 

assess coordination between the available protection 

devices. This is a realistic approach, since, in most 

cases, the assessment of network operation by the DSO 

is driven by the need for a gradual response to new DG 

projects. A way to mitigate the cases in which the 

protection coordination is lost was proposed by Abreu 

et al. [9], using settings adjustments of the reclosers’ 

parameters. In a context of the need for parsimony in 

the use of capital, it is prudent to carry out a careful and 

detailed analysis of the operational implications, for the 

management of the network and protection systems, of 

the interconnection of new DG units. 
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