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Abstract: Based on the biological heat transfer equation of Penne, the internal temperature distribution of the biological tissue was 
studied, taking into account the evolution of stenosis and hematocrit. The one-dimensional simplifying cylindrical heat equation of 
the biological living tissues in permanent regime was solved by the FDM (finite difference method) and analytically, to assess the 
temperature change under the variation of stenosis, hematocrit, K (thermal conductivity), kinematic viscosity, generation of 
metabolic heat and the heat transfer coefficient. The main results show that the temperature increases as the stenosis and hematocrit 
increase in size; and the secondary results show that the heat transfer coefficient and the K lower the body temperature while 
metabolic heat generation increases body temperature. This is in accordance with the literature. 
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1. Introduction 

With the advancement of clinical medicine in 

thermal diagnosis of diseases, it is very important to 

understand thermal phenomena and the behavior of 

biological body temperature. One approach is to study 

the distribution of temperature in biological tissue. 

However, precise thermal analysis of biological tissue 

is difficult because they include conduction, 

convection, radiation, internal metabolism, evaporation, 

phase change and the regulation of the inherent 

temperature. Not only is the tissue heterogeneous and 

anisotropic, but the mechanisms also maintain body 

temperature, such as blood flow and metabolic heat 

generation. Recently, the development of research 

shows that the problem of heat transfer in biological 

tissues becomes a complex problem. But there are 
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several discussions without conclusion in this area. 

Thus Pennes [1] proposed a simple linear mathematical 

model to describe the thermal interaction between 

human tissue and perfused blood, and the effect of 

metabolism. He measured the radial temperature in the 

forearm by drawing thin thermocouples through the 

arms of nine elongated subjects. This was based on 

experimental observation. Using this experimental 

concept, the models [2-8] have discussed thermal 

behavior in various constant parameters with human 

tissue layers. The distribution of temperature takes 

over in the blood and arterial tissues. Ref. [9] found an 

analytical solution of heat diffusion equation for brain 

tissue with negligible effect on blood flow and 

metabolic heat generation. Ref. [10] studied the 

abnormal thermoregulation model in the human dermal 

part. He also studied the temperature distribution in the 

steady state and in the unstable state in three layers of 

the dermal part. Ref. [11] studied the effect of the 
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thermal parameters of the dermal part in living 

cylindrical tissues. For the different models which 

have been investigated in literature, none of them 

considered the effect of hematocrit and stenosis which 

strongly influence the flow regime. In the present work, 

we are going to use the model in Ref. [1] used by Ref. 

[11], by coupling with hematocrit and stenosis to better 

control the variation of the temperature. Furthermore, 

we shall analyze the partitioning effect of hematocrit 

and the evolution of atherosclerosis on variation 

temperature variation. Here, we neglected the axial and 

angular direction and considered only the stationary 

state model of radial direction. The numerical FDM 

(finite difference method) and analytical results 

obtained are presented graphically and compared to the 

results of Ref. [11, 12] by applying the appropriate 

values of the physical and physiological parameters. 

The solution obtained can be used for the measurement 

of thermal parameters, the reconstruction of the 

temperature field and thermal diagnosis and in the 

treatment which maximizes the therapeutic effect 

while minimizing undesirable side effects. It may also 

be useful to design medical devices to operate within a 

special range of heating and cooling temperature rates, 

such as Ref. [12], thus for the prediction of 

cerebrovascular diseases. 

2. Materials and Methods 

2.1 Modelisation of Temperature 

Over the past years, many researchers have 

developed different models with different views. The 

mathematical model used for the transfer of bio-heat is 

based on the Penne equation. Pennes [1] is preferable 

for studying the heat transfer between the blood and 

the tissues which also associates the metabolism effect 

and the blood perfusion. The modified Pennes 

equation is written as: 

ܿߩ
߲ܶ
ݐ߲

ൌ ሻܶ׏ሺ݇׏ ൅ ௕ሺߩ௕ܿ௕ݓ ௔ܶ െ ܶሻ ൅ ௠ (1)ݍ

where ߩ, ܿ, ݇  are the density (kg/mଷ), the specific 

heat (J/kg·Ԩ) and the K (thermal conductivity) of 

tissue, respectively. ݓ௕  is the blood perfusion rate 

per unit volume (kg/s·mଷ). ܿ௕ is the specific blood, 

 ௠ is the metabolic heat generation per unit volumeݍ

(w/ mଷ ), ௔ܶ  represents the temperature of arterial 

blood (Ԩሻ and T is the tissue temperature (Ԩ). Based 

on the Pennes equation, the one-dimensional 

mathematical model was used to describe the heat 

transfer from living cylindrical tissues, in the 

stationary state, is presented below [11, 13]. 

1
ݎ

݀
ݎ݀

൬ݎ
݀ܶ
ݎ݀

൰ ൅
௕ߩ௕ܿ௕ݓ

݇
ሺ ௔ܶ െ ܶሻ  ൅

௠ݍ

݇
ൌ 0 (2)

The model is axial symmetric, so the boundary 

conditions are described as [11, 13]: 

൞
ݎ ൌ 0 ,

݀ܶ
ݎ݀

ൌ 0

ݎ ൌ ܴ , െ݇
݀ܶ
ݎ݀

ൌ ݄஺ሺܶ െ ∞ܶሻ
   (3)

where R is the radius of the concerned tissue, ݄஺ is 

the coefficient of heat transfer which accounts for the 

effects of both convection and radiation on the surface 

of the tissue, ∞ܶ is the ambient temperature. 

2.2 Stenosis Modeling 

Stenoses are characterized by a lesion of lipid 

infiltration, called an athermous plaque which 

develops on the internal surface of the arterial vessel 

(Fig. 1) and which blocks blood circulation and 

hematocrit (Fig. 2). 

2.3 Characterization of Different Values of Reynold 

To characterize the different Reynold values at the 

different stages of stenosis, we concentrated our mine 

in the work of Rizzini [15], which during its 

simulation calculated the Reynolds number (Re). The 

Re is a dimensionless quantity which is useful for 

determining whether the flow is laminar or turbulent: 

if it is greater than a critical value, the flow is 

turbulent, if it is less, the flow is laminar. In general, 

the Re is defined by the flowing formulation 

Re ൌ
݀ߴ௕ߩ

௕ߤ
 (4)
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Fig. 1  Illustration of a plaque that blocks blood circulation. 
Source: https://www.doctissimo.fr/html/sante/encyclopedie/sa_1583_ischemie_cereb.htm. 
 

 
Fig. 2  Circulation of hematocrit in different stage of stenoses [14]. 
 

where ߩ௕ is the blood density, d is the diameter of 

the vessel, ߴ is the mean blood velocity throughout 

the vessel and it can be expressed as the ratio between 

the mean incoming flow (Q) and the inlet area (A): 

ߴ ൌ
ܳ
ܣ

ൌ
4ܳ
ଶ (5)݀ߨ

where ߤ௕  is the blood viscosity that is expressed 

using a simplified formulation of the Einstein 

relationship and is given by the following formula: 

௕ߤ ൌ ௣ሺ1ߤ ൅ ௧ሻ (6)ܪ2.5

where ߤ௣ represents plasma viscosity. 

For low value of shear rate, blood behaves like 

pseudoplastic fluids and this behavior occurs for ܪ௧ > 

12%. This is due to the presence of fibrinogen which 

determines the aggregation of the red blood cells into 

“rouleau”, generally mode up by fewer tens of 

erythrocytes, increasing blood viscosity. Since these 

parameters were known, Re was calculated at rest 

condition both for the non-stenotic model and in 

correspondence to the diameter of 3 stenoses, to see if 
 

Table 1  Different stages of artery conditions with correspondence to Reynolds values determined by Rizzini [15] at rest 

condition ܜܛ܍ܚࡽ ൌ ૟૙ ܖܑܕ/ۺܕ. 

Different stage of artery condition Non-stenotic model 30% stenosis 50% stenosis 75% stenosis 

Re 334.04 482.27 675.15 1,350.33 
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these three degrees of stenosis may promote a laminar 

flow or cause a turbulent flow. The values obtained by 

Ref. [15] are reported in Table 1. 

2.4 Final Model Formulation 

In this section, we will couple the bio-heat model 

with the stenos model. Introducing Eq. (6) into Eq. (4), 

we will have: 

Re ൌ
݀ߴ௕ߩ

௣ሺ1ߤ ൅  ௧ሻܪ2.5
 (7)

Using Eq. (7), we obtain the new blood density: 

௕ߩ ൌ
௣ሺ1ߤ ൅ ௧ሻReܪ2.5

݀ߴ
 (8)

Now let us introduce Eq. (8) into Eq. (2) to have a 

final expression of our model: 

1
ݎ

݀
ݎ݀

൬ݎ
݀ܶ
ݎ݀

൰ ൅
௣ሺ1ߤ௕ܿ௕ݓ ൅ ௧ሻReܪ2.5

݇ ݀ ߴ
ሺ ௔ܶ

െ ܶሻ  ൅
௠ݍ

݇
ൌ  0 

(9)

2.5 Resolution Based on FDM 

In this section, we are going to solve Eq. (9) 

numerically by using FDM. 

From Eq. (9), we have: 

݀ଶܶ
ଶݎ݀ ൅

1
ݎ

൬
݀ܶ
ݎ݀

൰ ൅
௣ሺ1ߤ௕ܿ௕ݓ ൅ ௧ሻReܪ2.5

݇ ݀ ߴ
ሺ ௔ܶ

െ ܶሻ  ൅
௠ݍ

݇
ൌ  0 

(10)

Using the FDM we can obtain the following 

equations: 

߲ܶ
ݎ߲

ൌ ௜ܶାଵ െ ௜ܶିଵ

2݄
 (11)

߲ଶܶ
ଶݎ߲ ൌ ௜ܶାଵ െ 2 ௜ܶ ൅ ௜ܶିଵ

݄ଶ  (12)

with h = ∆ݎ. Now let us introduce Eqs. (11) and (12) 

into Eq. (10), we have: 

ሺ1 െ  
1
2݅

ሻ ௜ܶିଵ െ  ሺ2 ൅

௪್௖್ఓ೛ሺଵାଶ.ହு೟ሻRୣ

௞ ణ ௗ
݄ଶ

݇
ሻ ௜ܶ

൅  ሺ1 ൅
1
2݅

ሻ ௜ܶାଵ ൌ F 

(13)

where F ൌ  െ 
௛మ

௞
ሺݍ௠ ൅

௪್௖್ఓ೛ሺଵାଶ.ହு೟ሻRୣ

௞ ణ ௗ ௔ܶሻ. 

2.6 Discretisation of Boundary Condition 

This section presents the discretization of boundary 

condition applied in the model. According to Eq. (3) 

we write: 

for ݅ ൌ 0 ׷ 2 ଵܶ െ ሺ2

൅

௪್௖್ఓ೛ሺଵାଶ.ହு೟ሻRୣ

௞ ణ ௗ
݄ଶ

݇
ሻ ଴ܶ

ൌ ܨ  

(14)

for i = 1, 2, …, R-1. 

ሺ1 െ
1
2݅

ሻ ௜ܶିଵ െ ሺ2 ൅

௪್௖್ఓ೛ሺଵାଶ.ହு೟ሻRୣ

௞ ణ ௗ
݄ଶ

݇
ሻ ௜ܶ

൅ ሺ1 ൅
1
2݅

ሻ ௜ܶାଵ ൌ  ܨ

(15)

and for i = R. 

2 ோܶିଵ െ ܦ ோܶ ൅ ܧ ൌ (16)    ܨ

with 

D = [(2+
ೢ್೎್ഋ೛ሺభశమ.ఱಹ೟ሻR౛

ೖ ഛ ೏
௛మ

௞
)െ 

ଶ௛௛ೌ

௞
(1+

ଵ

ଶோ
)] 

and 

E = 
ଶ௛௛ೌ ∞்

௞
(1+

ଵ

ଶோ
) 

From Eqs. (14)-(16) we can find the following 

system of linear equations represented in matrix form: 

AX = B                (17) 

where 

ܣ ൌ

ۏ
ێ
ێ
ێ
ۍ

ܽ
ܾ௜
0
ڭ

2 0 … 0
ܽ ܿ௜ … 0
ܾ௜ ܽ ܿ௜ 0

ڭ ڭ ڰ ڭ
0 0 0 2 െےܦ

ۑ
ۑ
ۑ
ې

; ܺ ൌ

ۏ
ێ
ێ
ێ
ۍ ଴ܶ

ଵܶ

ଶܶ
ڭ
ோܶے

ۑ
ۑ
ۑ
ې

 and B=

ۏ
ێ
ێ
ێ
ۍ

ܨ
ܨ
ܨ
ڭ

ܨ െ ےܧ
ۑ
ۑ
ۑ
ې
 

a= -(2+
ೢ್೎್ഋ೛ሺభశమ.ఱಹ೟ሻR౛

ೖ ഛ ೏
௛మ

௞
ሻ; ܾ௜=ሺ1 െ  

ଵ

ଶ௜
)  

and ܿ௜ ൌ ሺ1 ൅  
ଵ

ଶ௜
) where i is the number of line . 

The matrix (17) gives the nodal values in FDM 

which make it possible to calculate the temperature 

distribution profile. 
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2.7 Analytical Resolution 

To solve analytically, we first carry out the 

dimensioning of Eq. (9) and its boundary condition by 

introducing the characteristic quantities [16, 17]. 

כݎ ൌ
ݎ
ܴ

כܶ ;  ൌ
ܶ െ ∞ܶ

௔ܶ െ ∞ܶ
 (16)

Then, replace Eq. (16) in Eq. (9): 

1
כݎ

݀
כݎ݀ ൬כݎ כܶ݀

כݎ݀ ൰

൅
௣ሺ1ߤ௕ܿ௕ݓ ൅ ௧ሻRe ܴଶܪ2.5

݀ ߴ ݇
ሺ1 െ ሻכܶ

൅
௠ܴଶݍ

݇ሺ ௔ܶ െ ∞ܶሻ
ൌ 0 

(17)

Here the dimensionless parameters and variables 

will be defined as: 

௕ݓ
כ ൌ

௣ሺ1ߤ௕ܿ௕ݓ ൅ ௧ሻRe ܴଶܪ2.5

݀ ߴ ݇
 ; ௠ݍ

כ

ൌ
௠ܴଶݍ

݇ሺ ௔ܶ െ ∞ܶሻ
 ; ݄஺

כ ൌ
݄஺ܴ

݇
 

(18)

Thus Eqs. (9) and (3) can be rewritten in the form: 

1
כݎ

݀
כݎ݀ ൬כݎ כܶ݀

כݎ݀ ൰ െ ௕ݓ
כܶכ െ ௕ݓ

כܶכ ൅ ሺݓ ௕
כ ൅ ௠ݍ

כ ሻ

ൌ 0 

(19)

כݎ ൌ 0 ,
כܶ݀

כݎ݀ ൌ 0, and כݎ ൌ 1,
כܶ݀

כݎ݀ ൌ  െ݄஺
כ כܶ (20)

Also, in order to normalize the equation, we 

assume: 

ܣ ൌ ௕ݓ
כ ൅ ௠ݍ

כ  , ܤ ൌ ௕ݓ
כ , ߮ ൌ ܣ െ (21) כܶܤ

By thus substituting Eq. (21) in Eq. (19), we obtain: 

݀ଶ߮
ଶכݎ݀ ൅

1
כݎ

݀߮
כݎ݀ െ ߮ܤ ൌ 0    (22)

It is clear that Eq. (22) is a modified zero order 

Bessel differential equation, the general solution of 

which can be expressed as follows: 

Rሺzሻ ൌ ܿଵܫ௩ሺݖሻ ൅ ܿଶ݇௩ሺݖሻ   (23)

where ܫ௩  and ݇௩  are respectively the modified 

Bessel functions of the second type. In order to 

determine it, if the analytical solution can be expressed 

by the Bessel function, Eq. (22) was compared to the 

generalized Bessel equation as follows: 

݀ଶܴ
ଶݔ݀ ൅ ൤

1 െ 2݉
ݔ

െ ൨ߙ2
ܴ݀
ݔ݀

൅ ቈ݌ଶܽଶݔଶି݌ଶ ൅ ଶߙ

൅
ሺ2݉ߙ െ 1ሻ

ݔ

൅
݉ଶ െ ଶݒଶ݌

ଶݔ
൨ ܴ ൌ 0 

(24)

The corresponding solution of Eq. (24) is: 

ܴ ൌ ௣ሻݔ௩ሺܽܬ௠݁ఈ௫ሾܿଵݔ ൅ ܿଶ ௩ܻሺܽݔ௣ሻሿ (25)

where ܬ௩ and ௩ܻ are respectively the modified Bessel 

functions of the first type, ܿଵ and ܿଶ  are arbitrary 

constants which can be obtained as a function of the 

given boundary conditions. The result of the comparison 

between Eqs. (22) and (24) is shown below: 

ߙ ൌ 0, m = 0, ݒ ൌ 0, p = 1, ܽଶ ൌ െߚ 

Thus, the solution of Eq. (22) can be expressed as: 

߮ ൌ ܿଵܫ଴൫√כݎܤ൯ ൅ ܿଶܭ଴൫√כݎܤ൯ሻ (26)

By replacing Eq. (26) with Eq. (21), the solution of 

Eq. (19) can be written as: 

כܶ ൌ
௕ݓ

כ ൅ ௠ݍ
כ

௕ݓ
כ െ ቈ

ܿଵ

௕ݓ
כ ௕ݓ଴൫ඥܫ

൯כݎכ

൅
ܿଶ

௕ݓ
כ ௕ݓ଴൫ඥܭ

   ൯൨כݎכ
(27)

The next step is to determine the values of two 

arbitrary constants c1 and c2. 

According to the characteristics of the Bessel 

equation, when z = 0, we have: 

ଵሺ0ሻܫ ൌ ଵሺ0ሻܭ  ݀݊ܽ  0 ՜ ∞ 

Taking into account the boundary conditions of Eq. 

(20), simple derivations lead to: 

ܿଶ ൌ 0 ,
כܶ݀

כݎ݀ ൌ െ
ܿଵ

௕ݓ
כ ௕ݓଵ൫ඥܫ

൯   (28)כݎכ

so we have: 

ሻכݎሺכܶ ൌ ቆ1 ൅
௠ݍ

כ

௕ݓ
ቇכ ൦1

െ
௕ݓ଴൫ඥܫ

൯כݎכ

௕ݓ଴൫ඥܫ
൯כ ൅ ඥ௪್

כ

௛ಲ
כ ௕ݓଵ൫ඥܫ

൯כ
቏  

(29)
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Finally, the analytical solution of T is: 

Tሺכݎሻ ൌ ஶܶ ൅ ሺ ௔ܶ െ ஶܶሻ ቆ1 ൅
௠ݍ

כ

௕ݓ
ቇכ ൦1 െ

௕ݓ଴൫ඥܫ
൯כݎכ

௕ݓ଴൫ඥܫ
൯כ ൅ ඥ௪್

כ

௛ಲ
כ ௕ݓଵ൫ඥܫ

൯כ
൪   (30)

 

Table 2  Values of parameters. 

Symbol Value Unit Description Reference 

 ௕ 0.00003 kg/s·mଷ Blood perfusion [13]ݓ

ܿ௕ 3,850 J/kg·Ԩ Blood specific heat [11] 
K 0.48 W/m·Ԩ Tissue K [11] 

݄஺ 30.023 W/m·Ԩ Heat transfer coefficient 
[11] 
[11] 

 ௠ 1,085 W/mଷ Heat generation per unit volumeݍ
[11] 
[11] 

௔ܶ 37 Ԩ Artery temperature [11] 
R 0.0285 m Radius [11] 

 ௧ 45%ܪ
- 
 

Hematocrite [11] 

 m/s Mean blood velocity [15] 0.0167 ߴ
 ௣ 0.165 mPas Plasma viscosity [15]ߤ

3. Results and Discussions 

3.1 Validation of Results 

The results of the new model were validated by the 

reproduction of the results of the literature established 

for a simple pipe (without stenosis and Hematocrit). In 

this work, we introduced the stenosis and the 

hematocrit, we observe the rise in temperature of 0.5 

degree when r = 0. Beyond that, for an r which tends 

towards 0.03 we observe a convergence, this is due to 

the boundary condition (Fig. 3a). 

Fig. 3b shows a decrease in temperature when the 

radial direction becomes important. This is due to the 

fact that when the body temperature is above the set 

value, the hypothalamus causes the phenomenon of 

sweating, evaporation, which causes a lowering of the 

skin temperature. At the same time, the skin arterioles 

dilate in order to promote heat exchanges with the 

outside. 

3.2 Influence of Stenosis on Temperature 

Fig. 4 describes the evolution of the temperature with 

the increasing of the stenosis size. It shows that, as the 

obstacle increases, the temperature increases too. This 

increase in temperature is due to the friction of the 

fluid particles. This implies that, the stress becomes 

important at the cross of the stenosis section and it 

will therefore be important to control the temperature 

to avoid the evolution of stenosis. In the previous 

work [14] it was observed that, when the stenosis 

increased radially, the amplitude of the oscillations 

decreased as the inertial blood flow decreased rapidly 

due to blockage of the lumen. This suggests that the 

loss of singular inertial blood flow occurs when there 

is disturbance of the normal flow. 

In the same vein [18] it shows for a high 

temperature, more than 38 °C, the patient is victim of 

cardiovascular and cerebrovascular disease. This is in 

agreement with our result, since Fig. 4 shows that at a 

higher temperature of 38 °C the stenosis is already 

more than 50% of reduction in the initial wall. 

Furthermore, in the experience of Ref. [19], they 

observed a rat with a body temperature above 40 °C, 

plunging into a brain violation in a few hours. This is 

in agreement with our result, since Fig. 4 shows that 

when the temperature is higher than 40 °C, the degree 
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(a) 

 
(b) 

Fig. 3  Temperature as a function of the radial direction. 
 

 
Fig. 4  Influence of stenosis on temperature. 
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Fig. 5  Influence of the heat transfer coefficient on temperature. 
 

of stenosis is higher than 75% of reduction of the 

arterial wall, therefore this is normal that, this rat is 

exposed to the brain offense. 

3.3 Temperature Decrease Study 

3.3.1 Influence of the Heat Transfer Coefficient 

Fig. 5 shows that increasing the heat transfer 

coefficient decreases body temperature. This is 

because the temperature of the atmospheric pressure 

cools the body surface. For example convection is the 

transfer of heat to the air surrounding the skin. The 

warmed air rises away from the body and is replaced 

by cooler air that is subsequently heated. Convection 

can also occur in water when the water temperature is 

lower than the body’s temperature, the body loses heat 

by warming the water closet to the skin, which moves 

away to be replaced by cooler water. The convection 

current created by the temperature changes continues 

to draw heat away from the body more quickly than 

the body can replace it, resulting in hyperthermia. 

About 15% of the body’s heat is lost through 

convection to finish heat flow from a higher 

concentration to a lower concentration. 

3.3.2 Influence of K 

The result of Fig. 6 shows that the K has the effect 

of lowering the temperature. This decrease in 

temperature is because the atmospheric air touches the 

body at a lower temperature. According to Fourier law, 

the temperature moves from the hottest medium to the 

least hottest medium. For example conduction is the 

transfer of heat by two objects that are in direct 

contact with one another. It occurs when the skin 

comes in contact with a cold or worm object. For 

example, when holding a glass of ice water, the heat 

from your skin will warm the glass and in turn melt 

the ice. Alternatively, on a cold day, you might warm 

up by wrapping your cold hand around a hot mug of 

coffee. Only about 3% of the body’s heat is lost 

through conduction. 

3.4 Study of an Increase of Temperature 

3.4.1 Influence of Ht (Hematocritis) 

The result of Fig. 7 shows that, the increase of 

hematocrit increases the body temperature; this is due 

to the fact that, the hematocrit increases the density of 

the blood, and that provokes an increase in resistance 

of the blood flow [14, 20]. 

3.4.2 Influence of the Generation of heat Metabolic 

(qm) 

Fig. 8 shows that, increasing qm increases the 

temperature. This is due to the fact that the metabolic 

generates heat, which causes the body temperature to 

rise. In the process of ATP production by cells 

throughout the body, approximately 60% of the 

energy produced is in the form of heat used to 

maintain body temperature. 
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Fig. 6  Influence of K on the temperature. 
 

 
Fig. 7  Influence of Ht on the temperature. 
 

 
Fig. 8  Influence of the generation of qm (metabolic charger) on temperature. 
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\  
Fig. 9  Influence of Ta (arterial temperature) on the skin temperature. 
 

3.4.3 Influence of Ta 

Fig. 9 shows that increasing Ta increases body 

temperature. Furthermore we observe that the Ta is 

equal to the body temperature (Ta = 36.5, 37, 37.5, 

38 °C is equal to body temperature T = 36.5, 37, 37.5, 

38 °C respectively). 

4. Conclusion 

In this article we have studied the distribution of the 

temperature of biological tissue, taking into account 

stenosis and hematocrit. The heat transfer model of 

Penne in one-dimensional biological heat transfer in 

steady state has been solved by the numerical and 

analytical method, to obtain the temperature changes 

with variation in the size of the stenosis and 

hematocrit. The results of this contribution brought a 

new technic to use temperature to control the 

evolution of stenosis; this is to improve the prediction 

of cardiovascular and cerebral diseases. The results 

provided by this article promote the knowledge to 

control the evolution size of stenosis by taking just a 

temperature of the body. These provide a good 

knowledge of the thermal behavior of biological tissue, 

which is precious for the measurement of thermal 

parameters, the reconstruction of a temperature field 

and the diagnosis and treatment of cardiovascular and 

cerebral disease. 
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