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Abstract: DCT (deep cryogenic treatment) is commonly used in industry to improve the wear resistance characteristics of steels, 
especially. However, there are just a few researches about the effects on non-ferrous metals. The purpose of this work was to 
investigate how DCT affects the properties of Cu-14Al-4Ni alloy treated at different soak time and submitted to thermomechanical 
cycling. A comparative experimental analysis was performed of the thermal properties of alloys obtained on a vacuum furnace, 
treated by DCT and thermomechanically cyclized. The results indicates that thermomechanical cycling promoted the appearance and 
growth of the martensitic phase γ'1, less ductile than the martensitic phase β'1, which together with the induced hardening produced an 
increase in transformation temperatures and microhardness. The higher the number of cycles, the greater these effects. The DCT 
promoted an increase in the intensity of the diffraction peaks corresponding to the phase β'1 and the maintenance of them during the 
thermomechanical cycling of the material, which indicates that the DCT stabilizes the martensitic phase β'1 and, consequently, caused 
a reduction and stabilization of the martensitic transformation temperatures and the microhardness, when compared to the untreated 
material. The longer the soaking time of DCT, the greater these effects. 
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Nomenclature 

DCT deep cryogenic treatment 
SMA shape memory alloy 

EDS energy dispersive spectroscopy 

XRD X-ray diffraction 

T Mpeak 
peak temperature of martensitic 
transformation 

T Apeak 
peak temperature of austenitic 
transformation 

Greek Letters 

β'1 martensitic phase 

γ'1 martensitic phase 

β1 high temperature phase 

2θ diffraction angle 

1. Introduction 

The study of shape memory alloys (SMAs) has 
been explored in recent decades, due to their 
properties, such as mechanical work due to the shape 
change of the material when exposed to different 
temperatures [1]. SMAs are a group of metallic 
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materials with the property to recover the original 
shape (shape memory effect) by imposing higher 
temperatures, due to inducing phase transformations 
in the material and thermoelastic properties of 
pseudoelasticity [2, 3]. 

Cu-Al-Ni system alloys have good 
thermomechanical properties, good shape recovery 
and higher hysteresis. Another factor that justifies the 
use of this type of system is its low cost of material 
acquisition and certain facilities observed at the 
alloy’s manufacturing, reducing the cost of production 
in relation to Ni-Ti based systems [4, 5]. 

One of the factors that reduce the application of Cu-
Al-Ni alloys is the reduction of the stabilization 
capacity of the martensitic/austenitic phases. 

Different processes for the elaboration of SMA 
have been studied along the techniques of 
thermomechanical treatment and addition of refining 
elements in order to reduce the level of complexity of 
the austenite/martensite transformation, like the DCT 
(deep cryogenic treatment) [6-8]. 

DCT is treatment that consists of using 
temperatures closer to liquid nitrogen temperature (-
196°C) and subsequent stabilization at room 
temperature, in order to obtain certain properties, such 
as high wear resistance, toughness, hardness and 
compressive residual stress, among others, and the use 
of this process is increasing [9]. However, further 
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