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Abstract: A ring R is called right principally-injective if every R-homomorphism f: aR → R, a ∈ R, extends to R, or equivalently, if 

every system of equations xa = b (a, b ∈ R) is solvable in R. In this paper we show that for any arbitrary graph E and for a field K, 

principally-injective conditions for the Leavitt path algebra LK(E) are equivalent to that graph E being acyclic. We also show that the 

principally-injective Leavitt path algebras are precisely the von Neumann regular Leavitt path algebras. 
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1. Introduction 

 

All the rings that we consider here are assumed to be 

associative with local units (such as the Leavitt path 

algebras). 

One of the fascinating directions to study in Leavitt 

path algebras is the characterization of the 

ring-theoretic properties of a Leavitt path algebra LK(E) 

in terms of the graph-theoretic properties of the graph E 

(see chapter 4 [1]). This motivates us to study 

Principally-injective Leavitt path algebras. 

Recall that a ring R is locally unital if for each finite 

set F of elements of R, there is an idempotent u (i.e. u
2
 

= u ∈ R) such that ua = au = a for all a ∈ F. The set of 

all such idempotents u is said to be a set of local units. 

A ring R is said to be (von Neumann) regular if each a 

∈ R satisfies a ∈ aRa. The von Neumann regular 

Leavitt path algebras LK(E) of arbitrary graphs E over 

a field K were characterized in Ref. [2] in terms of the 

graphical properties of E, namely, the graphs E must 

have no cycles. 

For a subset X of a ring R (not necessarily unital), 

the set   (X) = {t ∈ R: xt = 0  x ∈ X} is right 

annihilator of X. The left annihilator   (X) is also 

                                                           
Corresponding author: Soumitra Das, PhD scholar, M. Phil, 

research fields: associative rings and algebras. 
 

defined in a similar fashion for X ⊆ R. It is 

straightforward to check that   (X) is a right and   (X) 

is a left ideal of R. A ring R is called right principally 

injective (P-injective) if every R-homomorphism 

f: aR → R, a ∈ R, extends to g: R → R or equivalently 

(see Lemma 3.1), if every system of equations xa = b 

(a, b ∈ R) has a solution x in R. Thus every right 

self-injective ring is right P-injective. We shall see in 

Lemma 3.2 that the following are equivalent for a 

(locally unital) ring R (i) R is right P-injective (ii) 

    (a) = Ra for all a ∈ R. We note in Lemma 3.4 that 

every (locally unital) regular ring R is both right and 

left P-injective. As consequences we will prove in 

Theorem 3.9 that every regular Leavitt path algebra 

LK(E) is regular if and only if LK(E) is P-injective if 

and only if the graph E contains no cycle. 

For the other definitions in this note, we refer to 

Refs. [4-5]. 

2. Preliminaries 

We recall the fundamental terminology for our note 

which can be found in the text [1]. For the sake of 

completeness, we shall outline some of the concepts 

and results that we will be using. A (directed) graph E = 

(E
0
; E

1
; r; s) consists of two sets E

0
 and E

1
 together 

with maps r, s: E
1 
→ E

0
. The elements of E

0
 are called 

vertices and the elements of E
1
 edges. For each e ∈ E

1
, 

D 
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r(e) is the range of e and s(e) is the source of e. If r(e) 

= v and s(e) = w, then we say that v emits e and that w 

receives e. A vertex v is called a sink if it emits no 

edges and a vertex v is called a regular vertex if it 

emits a non-empty finite set of edges. An infinite 

emitter is a vertex which emits infinitely many edges. 

For each e ∈ E
1
, we call e* a ghost edge. We let r(e*) 

denote s(e), and we let s(e*) denote r(e). A path μ of 

length n ⪈ 0 is a finite sequence of edges μ = e1e2 … 

en with r(ei) = s(ei+1) for all i = 1, …, n-1. In this case 

μ* = en* … e2*e1* is the corresponding ghost path. A 

vertex is considered a path of length 0. For a vertex v, 

we define v* = v. The set of all vertices on the path μ 

is denoted by μ
0
. The set of all paths in E is denoted 

by Path(E). A path μ = e1e2 … en in E is closed if r(en) 

= s(en), in which case μ is said to be based at the 

vertex s(e1). A closed path μ as above is called simple 

provided it does not pass through its base more than 

once, i.e., s(ei) ≠ s(e1) for all i = 2, …, n. The closed 

path μ is called a cycle if it does not pass through any 

of its vertices twice, that is, if s(ei) ≠ s(ej) for every i ≠ 

j. 

Given an arbitrary graph E and a field K, the Leavitt 

path algebra LK(E) is defined to be the K-algebra 

generated by a set {v : v ∈ E
0
} of pair-wise orthogonal 

idempotents together with a set of variables {e, e*: e ∈ 

E
1
} which satisfy the following conditions: 

(1) s(e)e = e = er(e) for all e ∈ E
1
. 

(2) r(e)e* = e* = e*s(e) for all e ∈ E
1
. 

(3) (The CK-1 relations) For all e, f ∈ E
1
, e*e = r(e) 

and e*f = 0 if e ≠ f. 

(4) (The CK-2 relations) For every regular vertex v 

∈ E
0
, v =      ∈         . 

A useful observation is that every element a of LK(E) 

can be written in the form a =          
   , where κi 

∈ K, αi, βi are paths in E and n is a suitable integer. 

We mention two basic examples: 

(1) If E is the graph having one vertex and a single 

loop: 

 
then LK(E)   K [x, x

－ 1
], the Laurent polynomial 

K-algebra via v ⟼ 1, c ⟼ x and c* ⟼ x
－1

. 

(2) If E is the oriented n-line graph having n 

vertices and n-1 edges: 
 

 
 

then LK(E)     (K), via vi ⟼ fi,i, ei ⟼ fi,i+1 and 

ei*⟼ fi+1,i , where {    : 1      } denotes the 

standard matrix units in   (K).  

3. Results 

We start with the following observation. 

Lemma 3.1. (cf. Proposition 3.17 [4]). The 

following conditions are equivalent for a locally unital 

ring R. 

(1) Every R-homomorphism f: aR → R, a ∈ R, 

extends to g: R → R 

(2) Every system of equations xa = b (a, b ∈ R) in R 

has a solution x in R 

Proof. (1) ⟹ (2). Consider a system of equations 

xa = b in R with a, b ∈ R. Define f: aR → R by f(ar) = 

br,  r ∈ R. Then f is well defined as ar = ar’ 

implying that a(r-r’)= 0, that is (r-r’) ∈   (a) ⊆   (b). 

So, f(ar) = br = br’ = f(ar’). Clearly, f is a right 

R-homomorphism. By (1), there exists g: R → R such 

that g(a) = f(a). Then b = f(a) = g(a) = g(ua) = g(u)a, 

where u is the local unit for a. Hence x = g(u) is the 

required solution in R. 

(2) ⟹ (1). Let f: aR → R, a ∈ R, be R-linear. Then 

f(a) = b for some b ∈ R. By (2), xa = b is solvable in R. 

Write x = c in R such that ca = b. Define g: R → R by 

g(r) = cr,  r ∈ R. Then g is the required extension of f 

on R. 

We shall need the following lemmas. 

Lemma 3.2. (cf. Lemma 5.1 [5]). The following 

conditions are equivalent for a locally unital ring R: 

(i) R is right P-injective. 
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(ii)     (a) = Ra for all a ∈ R. 

Proof. (i) ⟹ (ii). For any z ∈   (a), az = 0. This 

implies that a ∈   (z),  z ∈   (a), yielding Ra ⊆ 

    (a). Let x ∈     (a). Then,   (a) ⊆   (x) .Define 

f: aR → R by f(at) = xt. This is well-defined as at = at’ 

impling that a(t-t’) = 0, that is (t-t’) ∈   (a)⊆   (x). 

So, f(at) = xt = xt’ = f(at’). By (i), there exists  

g: R → R such that f(a) = g(a) = g(ua) = g(u)a ∈ Ra, 

where u is the local unit for a. Hence     (a) = Ra.  

(ii) ⟹ (i) Let f: aR → R, a ∈ R, be R-linear. Then 

f(a) = d, for some d ∈ R. We show that d ∈ Ra. Take x 

∈   (a). Then 0 = f(ax) = f(a)x = dx, so,   (a) ⊆ 

  (d). This implies that     (d) = Ra ⊆     (a). So, d 

∈     (a) = Ra, therefore, d ∈ Ra. Hence f(a) = d = ca 

for some c ∈ R. Define g: R → R by g(x) = cx. Then g 

is the required extension of f on R. 

Before deriving the next lemma, we insert a remark 

here. 

Remark 3.3. For the graph E =  

the corresponding Leavitt path algebra R = LK(E) is 

not right (left) P-injective can be seen as follows: c* ∈ 

    (v-c) but c* ∉ R(v-c). Thus  

    (v-c) ≠ R(v-c). 

Lemma 3.4. Let R be a locally unital ring. If R is 

(von Neumann) regular then R is right (left) 

P-injective. 

Proof. Always, Ra ⊆     (a) for any a ∈ R. To see 

    (a) ⊆ Ra. Let us take x ∈    (a), then   (a) ⊆ 

  (x). Write a = ara for some r ∈ R and choose v a 

local unit of x. Then (v-ra)va ∈   (a) ⊆   (x). This 

shows that x = xrava ∈ Ra. The result now follows 

from Lemma 3.2. 

Recall that a ring R is said to be semiprime if, for 

every ideal I of R, I
2
 = 0 implies I = 0. 

Lemma 3.5. (cf. Lemma 4.3.4 [1]). Let R be a 

locally unital ring which is semiprime and right 

P-injective. Then for every idempotent e ∈ R, the 

corner ring eRe is right P-injective. 

Proof. Write S = eRe and let x ∈     (a), where x, a 

∈ S. Then   (a) ⊆   (x). By Lemma 3.2, it suffices to 

show that   (a) ⊆   (x) (then x ∈ Ra, so x = ex ∈ eRa 

= Sa, as required). So let y ∈  (a), then ay = 0 ⟹ aey 

= 0 ⟹ aeyke = 0,  k ∈ R ⟹ xeyke = 0,  k ∈ R (since 

  (a) ⊆   (x)). Thus, xyRe = 0 and exy = xy. Now 

consider the two-sided ideal RxyR of R, and note that 

(RxyR)
2 ⊆ RxyRxyR ⊆ RxyRexyR = {0}. But R being 

semiprime RxyR = {0} and hence xy = 0 (since R has 

local units). This completes the proof. 

Recall that a ring is a right PP ring if every 

principal right ideal is projective. 

It is worth mentioning that a ring R without identity 

may not be a projective R-module. But a Leavitt path 

algebra over an arbitrary graph is always projective as 

a module over itself (see Corollary 2.3 [3]). 

We use a part of Lemma 8 [6] and note the 

following lemma. 

Lemma 3.6. (cf. Example 5.8. [5]). Let R be a 

locally unital ring which is semiprime. If R is right 

P-injective, right PP ring then R is (von Neumann) 

regular. 

Proof. Let a be any element in R with u a local unit 

of a. Since R is a right PP ring, aR is projective and so 

the short exact sequence 0 →   (a) → R → aR→ 0 

splits. Writing S = uRu and arguing as in Lemma 8 [6] 

we get that the following short exact sequence 

0 →   (a) → S → aS → 0 splits. Thus,   (a) = eS, 

where e
2
 = e ∈ S. Hence (by Lemma 3.2) Sa =     (a) 

= S(u-e). Now Sa ⊕ Se = S implies that a ∈ aRa. 

Before stating our main theorem, we shall recall 

few more lemmas. 

Lemma 3.7. (see Proposition 2.3.1 [1]). Let E be an 

arbitrary graph and K be any field. Then the Leavitt 

path algebra LK(E) is semiprime. 

Lemma 3.8. (see Theorem 3.7. [7]). Let E be an 

arbitrary graph and K be any field. Then every 

one-sided ideal of LK(E) is projective. 

We are now in a position to show that every right 

(or left) P-injective Leavitt path algebras are (von 

Neumann) regular. 
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Theorem 3.9. Let E be an arbitrary graph and K be 

any field. Then the following are equivalent. 

(1) LK(E) is right (left) P-injective. 

(2) LK(E) is von Neumann regular. 

(3) E is acyclic (i.e. contains no cycle). 

(4) LK(E) is locally K-matricial. 

Proof. (1) ⟹ (2) follows from Lemma 3.7, Lemma 

3.8 and Lemma 3.6. (2) ⟹ (1) follows from Lemma 

3.4. The equivalence of (2), (3) and (4) can be seen in 

Theorem 3.4.1 [1]. 
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