
Journal of Materials Science and Engineering A 9 (3-4) (2019) 43-55 
doi: 10.17265/2161-6213/2019.3-4.001 

 

Bilayered Glass-Ceramics as Sealants for SOFCs 

Stefanie Hauber1,3, Svenja Dittrich2,3, Tobias M. Walter2, Bernhard Durschang1, Karl G. Schell2, Ethel C. 

Bucharsky2, Elisabeth Reitz3,Gerhard Sextl1 and Michael J. Hoffmann2 

1. Fraunhofer ISC, Würzburg 97082, Germany 

2. Karlsruhe Institute of Technology IAM-KWT, Karlsruhe 76131, Germany 

3. ElringKlinger AG, Dettingen an der Erms 72581, Germany 

 

Abstract: Glass-ceramics are often used as sealants in solid oxide fuel cells (SOFC). But interfacing components, such as ferritic 
stainless steel and YSZ electrolyte, may vary in their requirements regarding sealing properties, especially in terms of thermal 
expansion. A bilayered glass-ceramic system was developed to overcome the mismatch in coefficients of thermal expansion (CTE) 
between ferritic steel and YSZ. Therefore, two different glass-ceramics with slightly different CTEs were developed, one with good 
bonding characteristics to the ferritic steel and the other to the YSZ electrolyte. Steel and electrolyte components were coated with a 
layer of their corresponding glass sealant paste and heated up to form a sandwich sample. During the heat treatment of the sealing 
process, the glasses are crystallized into glass-ceramics. The resulting interface between the two glass-ceramics is of special interest. 
Cross-sections of the sandwich samples were cut, polished and investigated using SEM. The glass-ceramics show continuous, 
gap-free layers and excellent bonding to both steel and YSZ. Energy release rates are measured for single and bilayered glass sealants 
by mechanical testing. The designed bilayered glass-ceramics fulfill the special requirements of ferritic steel and YSZ. They show 
excellent potential to become a new outstanding sealant for SOFCs. 
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1. Introduction 

The reduction of greenhouse gases and harmful 

emissions is more relevant than ever. Recently, 

Germany and five other European countries were sued 

by the EU Commission for exceeding the nitrogen 

oxide limit values [1]. A significant contribution to 

cleaner air is provided by fuel cells. In particular, solid 

oxide fuel cells (SOFCs) provide an effective, 

noiseless and low emission alternative to, for example, 

conventional diesel generators [2, 3]. 

Compared to other fuel cells, which can only work 

with pure hydrogen as a fuel gas, SOFCs can also use 

hydrocarbons, such as e.g. biogas. Actually, SOFCs 

are mainly used as auxiliary power units for 

decentralized energy supply in both mobile and 

stationary applications, for example at the 

construction sites of pipelines and wind turbines or to 
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power houses and boats. The special feature of SOFCs 

is the very high operating temperature between 750 

and 1,000 °C. These high temperatures represent the 

greatest challenge when it comes to the materials 

being used to build those fuel cells [2, 4-6]. 

One of the most critical parts in SOFCs is the 

sealant between interconnector and electrolyte. The 

interconnector is usually made of ferritic steel [7] 

while the oxygen permeable electrolyte consists of 

fully yttria-stabilized zirconia. There are a number of 

requirements that are placed on this sealant. It must 

have good adhesion to both steel and electrolyte and 

has to be gas-tight to prevent uncontrolled mixing of 

oxygen and fuel gas. The sealant should be electrically 

insulating in order to prevent short circuits. And 

probably the biggest challenge is a suitable coefficient 

of thermal expansion which at best lies between 

interconnector and electrolyte. In addition, 

temperature resistance of the sealant is important to 

withstand the high operating temperatures of the 
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SOFC (between 750 and 1,000 °C) and thermal cycles 

which occur by turning the fuel cell on and off. A 

suitable material for the application as a sealant in 

SOFCs is a glass-ceramic. There is currently a great 

interest in the perfect single glass-ceramic that meets 

all those requirements [7, 8]. 

Instead of developing a single glass-ceramic that is 

reasonably adapted to both steel as well as electrolyte, 

two different glass-ceramics, one with good bonding 

properties to the steel and the other with good bonding 

to the electrolyte are developed and stacked together 

to a bilayered glass-ceramic sealant. 

For characterizing the adhesion of glass-metal 

interfaces, a four-point-bending test after 

Charalambides [9], modified by Hofinger et al. [10], is 

used which is described in several studies [11–13]. It 

seems to be more reliable to measure the adhesion of 

layers on compact support than the pull-off method or 

the indentation method, which are applied on porous 

support [14]. Thus, the Charalambides test is a proper 

method for the mechanical characterization of a 

sandwich-sample of a single and bilayered 

glass-ceramic sealant.  

2. Experimental 

2.1 Glass Preparation and Glass-Ceramics 

Characterization 

The two starting glasses contain approximately 20 

mol% MgO, 10 mol% CaO, 10 mol% B2O3, 5 mol% 

Al2O3 and 45 mol% SiO2. Glass 2 additionally 

includes 6 mol% ZrO2+Y2O3. The glasses are 

prepared by melting a glass batch of the above 

mentioned oxides at about 1,500 °C in a Pt-Rh 

crucible. Subsequently, the melt is poured into cold 

water, resulting in the formation of a glass frit. The 

glass frit is then ground to powder in a planetary ball 

mill to achieve a d50 particle size of 5-30 µm. CTE 

measurements are carried out with a dilatometer 

(Netzsch Dil 402 C) from 25-500 °C in air. For this 

method, the ground glass powders are pressed into BN 

coated, cylindrical Al2O3 crucibles, heat-treated at 

900 °C for 2 h and then the obtained glass-ceramic 

bars are cut into samples of 25 mm length.  

To analyze the sintering and flow behavior of the 

glasses, thermo-optical measurements were performed 

by a “Thermo-Optical Measurement” (Fraunhofer ISC 

TOM) device. This device consists of a furnace where 

the sample is heated and a light source, which 

irradiates the sample during the heating process. A 

camera collects shadow images of the sample, which 

can be recorded at certain intervals. The changes in 

shape of the glass-sample are in situ visible with this 

method. For those thermo-optical measurements, the 

glass powders were pressed in the form of pellets with 

the dimension of 9 to 10 mm in height and 21.25 mm 

in diameter after pre-pressing at 10 MPa and 

subsequent isostatically cold pressing at 400 MPa. 

2.2 Screen-Printing and Joining of 

Bilayeredglass-Ceramic Sealants 

The glass powder is dispersed in a commercially 

available suspension medium (Zschimmer und 

Schwarz) to obtain a suitable screen-printing paste. A 

network former and a dispersing agent (BYK 

Additives & Instruments) improve the flow properties, 

which are characterized by rheological measurements. 

For the deposition of glass-ceramic thick films, the 

screen-printing paste must exhibit a shear thinning 

behavior, which is identified by a reduction in 

viscosity at increasing shear rate. Furthermore, it is 

important that the paste completely regains its 

structure after the screen snap-off. This is examined 

by rheological measurements using a rotational 

rheometer (Haake Mars 60, Thermo Fisher) with 

plate-plate geometry (diameter = 35 mm, gap = 500 

µm). The viscosity curve is recorded at 20 °C using a 

ramp test with a pre-shear of 10 s-1 for 1 min; the 

shear rate is increased from 0.1 to 100 s-1 at constant 

stress. Shear jumping tests are measured at shear 

loadings comparable to the screen-printing process (a 

low shear rate of 0.1 s-1 and high shear rate of 100 s-1 

are applied). Afterwards, the screen-printing paste is 
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(a)                                        (b) 

Fig. 12  Energy release rate of Glass 1 and Glass 2on ferritic steel and the dependence of energy release rates on (a) sintering 
temperature (860 to 930 °C), dwelling time (0 and 2 h) and (b) applied load (30 to 120 kPa).  
 

Table 1  Layer width of Glass 1 and 2 before and after sintering at 930 °C with an applied load of 120 kPa. 

 Layer width after screen-printing [mm] Layer width after sintering [mm] 

Glass 1 5 4.5 

Glass 2 5 7 
 

plateau with constant energy release rate is obtained. 

A sufficiently long dwell time is important for the 

crystal formation and the resulting high mechanical 

strength of Glass 2. 

Another important factor is the applied load on the 

sandwich sample. For S/G2/S the energy release   

rate slightly increases with higher sintering loads  

(Fig. 12b). 

As mentioned before, Glass 2 shows more viscous 

flow behavior than Glass 1. This results in a larger 

layer width after sintering. The layer widths of Glass 1 

and Glass 2 before and after sintering are listed in 

Table 1. 

Therefore, the influence of the layer width on the 

energy release rate is investigated. Glass 1 is 

screen-printed on ferritic steel substrates with 2.5 mm 

and 5 mm layer width. These samples were heated up 

to 930 °C with a dwelling time of 2 hours and a load 

of 120 kPa. Afterwards, the energy release rate is 

calculated with Eq. (1). The Gss-value of the film with 

half of the track width (2.5 mm) is approximately 6 

N/m and for the 5 mm layer it is about 12 N/m. This 

shows that the energy release rate is directly 

proportional to the track width. To get the same result 

for sealants with different track widths the equation (b 

= substrate width, b1 = width of printed film, seen in 

Fig. 2) by Hofinger [10] for the energy release rate is 

adapted to: 

௦௦ೞ೛೐೎ܩ
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In comparison to Eq. (1), the change of the area 

moment of inertia is neglected.  

According to these results, the values of the energy 

release rate presented in Fig. 12 are normalized to a 

specific width of 1 mm for both glasses as shown in 

Fig. 13. By considering the layer width, there is 

almost no difference between Glass 1 and Glass 2. At 

930 °C they provide a normalized energy release rate 

of 2.5 (N/m)/mm. These results point out that both 

glasses have a similar good adhesion on ferritic steel. 

The difference in glass composition and the degree  

of  crystallization  have no significant  influence  on the 



  

 

Fig. 13  Norm
 

Fig. 14  SEM
 

Fig. 15  Com

 
 

malized energy

M-Image of cra

mparison of the

Bilaye

y release rate f

ack inlet and cr

e normalized e

ered Glass-C

for Glass 1 and

rack path for t

energy release r

Ceramics as S

d Glass 2 at dif

the bilayered g

rate for single 

Sealants for S

fferent sinterin

glass-ceramic s

and bilayered

SOFCs 

ng temperatur

sealant between

d glass-ceramic

 
es and dwell ti

n ferritic steel 

 
c sealants. 

53

imes.  

substrates. 

3



Bilayered Glass-Ceramics as Sealants for SOFCs 

  

54

 

normalized mechanical properties of the sealant. 

In order to characterize the interface between the 

two glasses, mechanical tests are performed on the 

S/G2/G1/S sample. In addition, the cross-section of 

the mechanical tested sample is investigated by SEM, 

see Fig. 14. The mechanically introduced crack does 

not propagate along the G2-G1-interface, it passes 

through Glass 2 near the glass-steel interface. If the 

mechanical setup is turned around that the G2-layer is 

above the G1 layer, the crack would run through G1. 

This result demonstrates the strong adhesion 

between the two glasses. 

In Fig. 15, the normalized energy release rates of 

the single layers (S/G1/S and S/G2/S) are compared 

with the bilayered glass-ceramic (S/G2/G1/S). The 

normalized energy release rates of the bilayered 

glass-ceramic layers are in the range of 3 (N/m)/mm 

for a sintering temperature of 900 °C. This is slightly 

above the single glass-ceramic sealants and points out 

the good mechanical behaviour of the newly 

developed bilayered glass-ceramic. It seems that the 

interface between glass 1 and 2 offers, in addition to 

the two substrates, an area where crystalline phases 

can easily grow and thus improve the mechanical 

behaviour of the bilayered sample.  

4. Conclusion 

Bilayered glass-ceramics can fulfill all of the 

requirements for an SOFC sealant. Good adhesion on 

steel and electrolyte could be demonstrated by the 

continuous bonding of the glass-ceramics with the 

joining partners. By adjusted glass compositions and 

adapted manufacturing processes, samples without 

gaps and hardly any large pores could be obtained. 

The gas-tightness depends on the sintering and 

flowing behavior of the glasses/glass-ceramics and on 

the applied load during heat treatment. The thermal 

expansion coefficient of Glass 1 is in the ideal range 

between those of steel and electrolyte. Although the 

CTE of Glass 2 is slightly too low, a successfully 

joined sample can be achieved. The mechanical 

properties of sandwich samples were investigated by 

four-point bending tests. The energy release rate was 

measured and correlated to the sintering temperature, 

dwell time and load. A high amount of enstatite 

crystals results in a high mechanical strength and a 

better adhesion on ferritic steel substrates is given. 
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