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Abstract: In wastewater facilities, struvite (MgNH4PO4·6H2O) precipitation and subsequent accumulation within sludge processing 
can be an expensive nuisance or a pathway to orthophosphate reclamation and beneficial reuse. Predictive solubility models developed 
in the past have been computationally intensive, highly conservative, and have employed uncertain equilibrium constants for the 
evaluation of solution saturation. The StrPI (Struvite Precipitation Index) developed in this study is a new, computationally light 
framework for predicting struvite precipitation based on saturation pH. The model permits process-specific calibration (i.e. StrPI plus a 
correction pH) to deal with the highly variable characteristics of wastewater streams and to eliminate the pH-independent 
overprediction inherent in existing solubility models. Verification of this model was performed across a range of waste compositions, 
ionic strengths, and root-mean-square velocity gradients using data from both synthetic laboratory experiments and field tests. The 
StrPI framework was found to be an effective and uncomplicated predictor of struvite precipitation in both environments. 
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1. Introduction 

Struvite (MgNH4PO4·6H2O) is one of the most 

prevalent and expensive nuisance precipitates within 

digestion and postdigestion processes in municipal 

wastewater treatment. Crystals will readily form on 

pipes, mixers, and submerged equipment, often costing 

plants hundreds of thousands of dollars per year in 

replacement parts and maintenance costs [1-4]. 

Conversely, recent technologies such as the Ostara™ 

and AirPrex® processes have been developed to 

intentionally precipitate struvite for phosphate and 

nitrogen recovery as well as a means to produce a 

high-value, slow-release fertilizer [5, 6]. In both cases, 

highly variable concentrations and uncertain 

equilibrium parameters make modeling struvite 

precipitation an academically and computationally 

rigorous endeavor, as was explored in Barnes and 
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Bowers [7]. While moderately effective at predicting 

precipitation within a range of uncertainty, existing 

models are highly conservative. As shown in Barnes 

and Bowers [7], this conservatism often underestimates 

the pH of precipitation by more than an order of 

magnitude, with the result that operators waste 

resources in an effort to keep pH, magnesium, 

phosphate, or ammonia at unnecessarily low levels. 

In most municipal wastewater plants, day-to-day 

processes are monitored and controlled by operators on 

site. These operators are expected to change plant 

operating parameters to react to variable conditions 

within the processes, be it increasing/decreasing 

additive doses, mixer speeds, flow rates, etc. While 

often highly skilled in their field, plant operators are 

not expected to have the necessary chemistry and 

engineering background to execute complex 

precipitation models such as Monte Carlo simulations 

to consider uncertainties. 

As wastewater stream composition often 

fluctuates—sometimes rapidly—operators need a 
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timely way to predict struvite precipitation. Such a 

method should be readily translated into adjustments of 

operating parameters such as pH and alkalinity, both of 

which are easily controllable, similar to the Langelier 

Saturation Index for calcium carbonate [8]. 

This study proposes and evaluates a struvite 

precipitation metric, the StrPI (Struvite Precipitation 

Index), to evaluate the actual pH of struvite saturation. 

In its simplest form, this proposed metric is defined as: 

            (1) 

where pH is the current solution pH and pH* is the pH 

of struvite saturation. Then, StrPI > 0 implies 

supersaturation, < 0 implies undersaturation (struvite 

does not precipitate), and 0 implies struvite is at 

equilibrium. 

2. Uncertainty 

As discussed in depth in Barnes and Bowers [7], the 

three primary sources of model uncertainty—variable 

wastewater composition, measurement errors, and 

disagreement between published equilibrium 

parameters—have a marked effect on the certainty and 

predictive bounds of equilibrium models. 

Concentrations measured from individual grab samples 

are commonly used in predictive wastewater models [1, 

9], as is common in academic analyses. However, 

operational predictions of struvite precipitation require 

a site-specific understanding of the variability of 

solution pH and concentrations of magnesium, 

orthophosphate, and ammonium. 

In Barnes and Bowers [7], an equilibrium model that 

accounted for known uncertainty and measured 

waste-stream variability was found to be effective, 

though slightly conservative, in predicting struvite 

precipitation onto metal coupons placed within a 

conventional centrate nitrification basin. This method, 

while valuable, requires a level of plant-specific 

statistical nuance and computational analysis that 

would be untenable in normal day-to-day operations. 

Models that rely on empirical calibration and 

grab-sample data may be less comprehensive, but they 

allow rapid, informed analysis to be readily applied to 

active treatment facilities. The struvite precipitation 

index was developed to be robust enough to maintain 

predictive power across variable waste streams, but 

also simple enough to be used in day-to-day operations. 

3. Precipitation Potential 

Precipitation of struvite is the result of a difference 

in the chemical potential of the salt in a supersaturated 

solution, μs, and the chemical potential of the salt at 

equilibrium, μ∞. This difference, Δμ, can be given as: 

 (2) 

where k is the Boltzmann constant, T is absolute 

temperature, and αi is the ion fraction of each 

component [10]. More specifically: 

   (3) 

Assuming that the standard state chemical potentials 

are equal, or μ0
∞ =μ0

s, then 

(4) 

Where Ω is the supersaturation ratio as developed by 

Bouropoulos and Koutsoukos [10]: 

            (5) 

where MgT, Np and PT are total dissolved magnesium, 

ammonia (as N), and orthophosphate (as P) as molar 

concentrations, respectively, and αi is the ion fraction 

for each component. Ksp is the solubility product for 

struvite, and Kspcond is the pH-conditional struvite 

solubility product, given by Ref. [7]: 

       (6) 

Following the theory, 

        (7) 
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Disregarding any limiting kinetics, a supersaturated 

solution (i.e. Ω > 1) implies that precipitation will 

occur. This Ω factor is the method by which the StrPI is 

calculated in this study. Note that Ω is simply a 

diagnostic ratio and carries no inherent probabilistic 

information. Expectations attributed to Ω must be 

derived empirically on a case-by-case basis due to 

dissimilarities between wastewater streams and kinetic 

inconsistencies between processes. 

When evaluating struvite precipitation using Ω 

calculations, plants may determine and maintain a 

buffer zone (e.g. keep Ω below 0.5 rather than 1.0 to 

eliminate precipitation). However, this correction does 

not scale with solution pH and cannot be applied 

consistently across variable waste streams. The 

introduction of a pH-based struvite precipitation index, 

a parameter more easily calculated and conceptualized 

than Ω, will simplify plant operations. Further, pH is 

usually the only parameter that is readily within 

operator control and thus is a superior unit for model 

predictions (and calibrations)—as exemplified by the 

industrywide ubiquity of the Langelier Saturation 

Index for calculating calcium carbonate saturation [8]. 

4. Struvite Equilibrium Chemistry 

Struvite precipitation occurs in solutions where 

available magnesium, ammonium, and phosphate ions 

exceed the struvite solubility limit at a given pH, or: 

       (8) 

Several studies have investigated strutive solubility 

at equilibrium, and all generally agree on the form of 

the struvite solubility product [1, 7, 9, 11-13]: 

 (9) 

where Ksp is the struvite solubility product and Kspcond is 

the pH-conditional solubility product. For ammonium, 

orthophosphate, and magnesium, the ionization 

fractions are described as a function of pH as follows: 

          (10) 

 (11) 

  (12) 

The total dissolved species concentrations (MgT, NT 

and PT) are: 

 (13) 

            (14) 

and, 

 (15) 

which includes: 

 (16) 

  (17) 

where Mgf and Pf represent the free magnesium and 

orthophosphate species, respectively, and Ksp, K_{a1P}, 

Ka2P, Ka3P, KaiN, K1Mg, KMgP, KMgHP and KMgH2P are 

experimentally derived equilibrium constants reported 

in the literature. 

These ionization fractions are highly pH-dependent. 

Over the operating range of a typical wastewater 

treatment plant, from pH 6.0 to 8.5, struvite solubility 

decreases significantly as pH increases. In addition to 

full reactor supersaturation, struvite may precipitate in 

localized areas of a treatment process. This may occur 

around caustic discharge tubes or due to localized pH 

increases from CO2 volatilization in low-pressure 

zones around venturis, pipe bends, and mixing blades. 

The StrPI may be uniquely useful in mitigating 

precipitation in these zones if they are characterized 

individually, as operators can check the pH of their 

processes against a set of localized pH constraints. 

In highly saline water (ionic strength > 1.0M), Eq. 

(12) may not be representative of field conditions as 

chloride/magnesium complexes such as MgCl+ may 

form. In typical wastewater, however, where [Cl-]≤ 

0.5M and [Mg2+]≤ 0.1M, these complexes would 

comprise less than 2 percent of total magnesium and 

may subsequently be disregarded as negligible. Where 
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magnesium and chloride concentrations are high, 

MgCl+ can form, and struvite may precipitate more 

sparingly than predicted. 

4.1 Equilibrium Constants 

In addition to the struvite equilibrium constant, Ksp, 

precipitation is controlled by eight equilibrium 

equations that together define the speciation of the 

three principal constituents, PO4
3-, NH4

+ and Mg2+. 

These eight equilibrium constants are given by: 

         (18) 

         (19) 

          (20) 

          (21) 

        (22) 

        (23) 

        (24) 

        (25) 

Similar constitutive equations for equilibrium 

calculations are employed in most published struvite 

research, but generally use individual, deterministic 

equilibrium constants [1, 9, 11-13]. Values reported in 

literature for the nine equilibrium constants vary 

widely and the effects of these inconsistencies on 

model uncertainty were found to be nontrivial. 

Barnes and Bowers [7] developed a Monte Carlo 

uncertainty model for struvite, which included associated 

probability evaluations of plant-specific field data. 

These results were used to inform the development of 

the StrPI. However, as variation between waste streams 

prevents the application of uncertainty calculations 

from one treatment plant to the next, the struvite 

precipitation index was developed without the 

incorporation of the data-driven uncertainty analyses 

that have characterized former studies. Instead, a 

generalized method to integrate plant-specific 

uncertainty into the StrPI is proposed and evaluated. 

4.2 Solubility Product Simplifications 

Once the available fractions of aqueous [Mg2+], 

[NH4
+], [PO4

3-] are evaluated at solution pH and 

combined with Eq. (9), they calculate the 

pH-conditional struvite solubility product, Kspcond , as 

described in Eq. (6). Because plant and 

process-specific uncertainties prohibit the formulation 

of a general probabilistic solution, the conditional 

solubility product was calculated as a deterministic 

value derived from published equilibrium constants. 

Specifically, as outlined in Barnes and Bowers [7], the 

published literature constants described in Eqs. (9)-(25) 

were used as uniformly distributed Monte Carlo inputs, 

and Eq. (6) was simulated to evaluate all equilibrium 

constant uncertainties. The median model value from 

this simulation can be seen as the dashed line in Fig. 1. 

The pKspcond is derived from theory and published 

laboratory data—not field measurements—so it can be 

standardized for all processes. The quality of this fit 

can be seen when compared to two prominent struvite 

studies that evaluated Kspcond in the laboratory [14, 15]. 

A quadratic polynomial, shown in Fig. 1 as a solid 

line, was fit to the simulated pKspcond. As this quadratic 

fit demonstrated exceptional agreement with the 

calculated pKspcond and significantly reduces the 

computational power and theoretical knowledge 

necessary for StrPI estimations, it was selected as a 

simplification of the equilibrium model. This 

pH-dependent quadratic fit is given by: 

 (26) 

where pKspcond is the negative base-10 logarithm of 

Kspcond. Coefficients have been truncated for readability 

and ease of use, and the effects of these truncations 

were found to be negligible when compared to model 

precision. The maximum deviation of the quadratic fit  
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Fig. 1  Median pKspcond predicted at 25 °C and 0.1 M ionic 
strength by the uniform Monte Carlo model described in 
Barnes and Bowers [7]. Curated datasets of nine published 
equilibrium parameters (Ksp, Ka1P, Ka2P, Ka3P, Ka1N, K1Mg, 
KMgP, KMgHP and KMgH2P) were used to evaluate Eq. (6). The 
discrete data points used for comparison were taken from 
two prominent struvite studies that evaluated Kspcond in the 
laboratory [14, 15]. 
 

from the comprehensive model of Barnes and Bowers 

[7] over pH 6.0 to 8.5 occurs at pH 6.0, and the pKspcond 

estimate deviates by less than 1 percent—a more than 

sufficient fit given other uncertainties. The use of 

pKspcond instead of Kspcond to develop the fit avoids 

human and machine computational problems with the 

use of small decimal coefficients. It also maintains 

graphical readability. 

The model, as described in Eq. (26), was developed 

for solutions at 25 °C and 0.1 M ionic strength. The 

robustness of this simplification over different 

temperatures and ionic strengths is explored later. 

4.3 Struvite PreciPitation Index 

The Ω supersaturation ratio, given by Eq. (5), may 

now be rewritten to incorporate the quadratic 

approximation of Kspcond: 

     (27) 

To formulate a general equation for the StrPI, Eq. 

(27) must be reorganized to identify the pH at which Ω 

equals exactly 1.0, defined in this paper as pH*. More 

specifically, pH* is defined by the theoretical point of 

saturation, or, MgT  NT  PT = Kspcond. Without the 

computational expense of a rigorous Kspcond model, pH* 

can be easily calculated. First, set Ω = 1 and rearrange 

Eq. (27), or: 

                  (28) 

then employ the quadratic equation and simplify. 

  (29) 

Combining Eq. (29) with Eq. (1), we can calculate 

the theoretical, or uncalibrated, struvite precipitation 

index (StrPI) as: 

 (30) 
where pH is the current solution pH and MgT, NT and 

PT are total dissolved magnesium, ammonia (as N), and 

orthophosphate (as P) concentrations measured in 

mol/L in a filtered wastewater sample. As with pH, the 

units of the StrPI are dimensionless. 

Eq. (30) is considered uncalibrated as it consistently 

returns values significantly above zero when 

precipitation is observed in both the lab and the field. This 

is simply a translation of the significant—but pH and 

concentration-independent—conservative overprediction 

seen in the underlying Ω model. This over-prediction 

may be due to uncertainties in equilibrium constants, 

impacts of non-ideal temperatures and ionic strengths, 

the kinetics of precipitation, or a combination of all 

three. Eq. (30) can be further expanded to incorporate 

concentrations as mg/L, the more common units of 

water and wastewater operations: 

(31) 

where Mgmg/L, Nmg/L and Pmg/L, are total dissolved 

magnesium, ammonia (as N), and orthophosphate (as P) 

concentrations measured in mg/L in a filtered 

wastewater sample. 

In theory, the calculated StrPI predictions should be 

evaluated as: 

       (32) 
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However, because of the uniform, conservative bias 

exhibited across all StrPI values (using C as a 

correction factor between theory and field 

observations), 

    (33) 

where C is a calibration term applied uniformly to all 

StrPI values. Preliminary experiments suggested a C 

value near 1.0, however, lab- and field-based 

estimations of C (and, thus, Ω overprediction) are 

discussed later in terms of a calibrated StrPI. This final 

corrected model, StrPIc, incorporates the C term and 

thus may be calibrated for any system (including T, I, 

slow kinetics, or other uncertainty). That this 

calibration is necessary may be attributable to the 

kinetic effects that maintain a supersaturated solution, 

inaccurate equilibrium constants as explored in Barnes 

and Bowers [7], or even a system of more complex 

precipitation dynamics. This study does not investigate 

the source of this uniform correction (C); however, it 

does seek to quantify and utilize it in the StrPI model. 

5. Methods 

Described in Eq. (30), the StrPI uses a basic 

polynomial fit to represent the complexities of struvite 

solubility in a form that can be readily evaluated during 

regular treatment operations. This research draws its 

value from its accuracy in predicting struvite 

precipitation within the range of potential wastewater 

composition/complexity. However, as shown in field 

tests performed by Barnes and Bowers [7], the existing 

models for struvite precipitation (i.e. those derived 

from the Ω model from Bouropoulos and Koutsoukos 

[10]), are highly conservative in practice, i.e., 

overpredict precipitation. 

Preliminary bench-scale experimentation also 

exhibited this overprediction. This suggested that a 

full-scale analysis of struvite precipitation across a 

representative range of potential wastewaters would 

serve to confirm the veracity of the StrPI framework’s 

representation of the Kspcond. Such a study would also 

allow for an analysis of the conservative inaccuracy of 

existing models and development of a possible 

correction factor/technique/method. 

Full-scale analysis was performed using data from 

both synthetic laboratory experiments and from field 

data. Synthetic wastewater allowed the StrPI/StrPIc to 

be tested against a wider range of wastewater 

compositions in a more controlled environment while 

field sampling tested the model’s efficacy in situ and 

helped identify any practical limitations. 

5.1 Methods for Synthetic Solutions 

Synthetic aqueous solutions were prepared in a 

Phipps and Bird PB-900 Series programmable jar tester 

with square, 2-liter jar-test beakers. Use of these jar 

testers, an industry standard across American water and 

wastewater facilities, allow the following experiments 

to be repeated by utilities using site-specific 

wastewater compositions. These beakers and 

associated metal stirrer are designed to create a fully 

mixed environment with a known, flat, velocity 

gradient curve. This ensures mixation at predetermined 

root-mean-squared velocity gradients, G, s-1. 

Room temperature (approximately 25 °C) deionized 

water and various concentrations of ammonia, 

phosphate, and magnesium were added as ammonium 

chloride, potassium phosphate, and magnesium 

chloride, respectively, to create conditions that led to a 

StrPI near zero at various potential wastewater pHs. 

Sodium chloride was also added in different 

concentrations to simulate background ionic strength, 

and the jar-tester mixing speed was varied to evaluate 

the impact of the velocity gradient. 

Constituents were weighed and added in powder 

form. This was necessary since constituent solubility at 

high concentrations made the use of stock solutions 

less feasible using two-liter beakers. After sodium 

chloride was added to the deionized water and fully 

dissolved for background ionic strength, ammonium 

chloride and potassium phosphate were added, as they 
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dissolve more slowly than magnesium chloride. The 

pH was then modified to 6.50 using dilute 0.1 N NaOH. 

Solutions with higher phosphate alkalinity required the 

addition of a higher volume of base to achieve the same 

pH change. This consequently introduced slightly 

elevated ionic strengths in highphosphate synthetic 

solutions compared to other solutions at the same StrPI. 

This difference was assumed to be negligible, although 

ionic strength impacts will be addressed later. Once the 

pH was set at 6.50, magnesium chloride was added. 

After all constituents dissolved, the pH was 

increased by increments of 0.10 units using 0.1 N 

NaOH until precipitation was observed. In cases where 

precipitation occurs at intermediate pH values (not 

multiples of 0.10) ascribed to partial or imprecise 

NaOH additions, the pH of precipitation was recorded 

to two decimal places. 

When added dropwise to a phenolphthalein indicator 

solution mixed at G = 100 s-1 and a pH of 8.0, 0.1 N 

NaOH did not create pinkish plumes. This was not 

always true for 1 N NaOH, for which pinkish plumes 

(pH > 9) were observed. Solutions that did not create 

pinkish plumes were assumed to be sufficiently mixed 

without localized areas of elevated pH (high transient 

values of StrPI > 0). This assumption was also 

evaluated at G = 18 s-1, with similar results. 

If the solution was highly supersaturated by a pH 

change, struvite usually precipitated heavily within the 

first minute; however, solutions near saturation 

occasionally took several minutes to show signs of 

precipitation, possibly due to nucleation kinetics. Each 

unprecipitated solution state was therefore allowed to 

mix for 10 minutes at each pH step. Filtered samples 

were taken prior to precipitation to confirm 

concentrations of added constituents, and after 

precipitation to confirm an equal reduction in molar 

concentration of each constituent (as is expected with 

struvite). 

In these experiments where synthetic wastewater 

was used, struvite precipitation was treated as a binary 

condition (precipitated/not precipitated), where 

precipitates were identified visually or by the 

formation of turbidity using a HACH 2100P portable 

turbidimeter. Precipitation was further confirmed by a 

distinct drop in pH caused by equilibration as 

phosphate, PO4
3-, is removed to form struvite. These 

results were then verified using ICP-MS on filtered and 

unfiltered acidified samples to confirm that an equal 

molar ratio of magnesium and phosphate were 

removed from the aqueous system. 

Dried-sample XRD (X-Ray Powder Diffraction) 

was conducted to confirm precipitate was entirely 

struvite. The XRD measurements were performed 

using a Scintag XGEN-4000 x-ray diffractometer with 

a CuKα (λ = 0.154 nm) radiation source. The molecular 

structure was then determined by comparing the 

diffraction patterns to literature data (International 

Union of Crystallography database). The scans were 

run from 10-80 degrees in 20 with a 0.1-degree step 

size and 10-second dwell time, and all samples were 

found to be exclusively struvite. 

A series of these precipitation experiments was run 

to examine the effects of constituent concentrations on 

struvite solubility. Jars were prepared using 

concentrations ranging from 1 × 10-3 to 1 × 10-1 M as 

Mg, P and N. These concentration limits address 

individual solubility limitations: constituent additions 

greater than 1 × 10-1 M approach saturation and tend 

not to fully dissolve. Moreover, concentrations of less 

than 1×10-3 M meant the change in 

turbidity/concentrations/pH could not be evaluated 

consistently in the jar-tester. These concentration 

ranges encompass the vast majority of potential 

scenarios within municipal wastewater facilities. 

Within this envelope, the constituent concentrations 

were each evaluated at semi-regular intervals of 1 × 

10-3 M, 2.5 × 10-3 M, 3.5 × 10-3 M, 5 × 10-3 M, 8 × 10-3 

M, 1 × 10-2 M, 2.5 × 10-2 M, 3.5 × 10-2 M, 5 × 10-2 M, 8 

× 10-2 M, 1 × 10-1. As a result of the nonlinear pH 

response of struvite precipitation, the use of regular 

measurement intervals resulted in clustered StrPI vs. 

pH data. These semi-regular intervals were selected to 
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allow StrPI to be thoroughly evaluated across the range 

of typical wastewater concentrations and pHs. 

Magnesium was not added above a concentration of 

5 × 10-2 M because of concerns about magnesium 

chloride solubility and the influence of concentrated 

chloride and magnesium ions on ionic strength. Since 

Mg2+ is often the limiting reactant for struvite 

formation in municipal waste, as measured in Barnes 

and Bowers [7] and Doyle and Parsons [9], this will 

likely have no effect on the applicability and evaluation 

of the model. 

The three constituents were added in a variety of 

triplicates to simulate a wide range of waste 

compositions and to confirm the conclusion of 

Bouropoulos and Koutsoukos [10] that no particular 

constituent(s) contributed disproportionally when they 

were present in more than the 1:1:1 stoichiometric ratio. 

Both the StrPIc/StrPI and the underlying Ω model of 

Bouropoulos and Koutsoukos [10] rely on this 

assumption when solubility is calculated as a function 

of the product of [Mg], [P] and [N]. 

Constituent triplicates were added following one of 

seven templates: 

(1) Equal molar concentrations: [Mg] = [P] = [N] 

(2) [Mg] 10× higher than [P] and [N]: [Mg] = 10 × [P] = 10 × [N] 

(3) [P] 10× higher than [Mg] and [N]: [P] = 10 × [Mg] = 10 × [N] 

(4) [N] 10× higher than [Mg] and [P]: [N] = 10 × [Mg] = 10 × [P] 

(5) [Mg] 10× lower than [P] and [N]: [Mg] = 0.1 × [P] = 0.1 × [N] 

(6) [P] 10× lower than [Mg] and [N]: [P] = 0.1 × [Mg] = 0.1 × [N] 

(7) [N] 10× lower than [Mg] and [P]: [N] = 0.1 × [Mg] = 0.1 × [P] 

This method allows for each constituent to serve as 

the stoihiometrically limiting or oversupplied molecule 

in the reaction, maintains order to the data, and 

evaluates StrPI across a large range of typical 

wastewater compositions. 

The jars were initially mixed at pH 6.5 with a 

root-mean- square velocity gradient of 100 s-1 (100 

rpm), 44 s-1 (50 rpm), or 18 s-1 (25 rpm), using the 

Phipps and Bird PB-900 Series shear-rated paddles. 

Experimentation was limited to the regions between 

pH 6.5 and 8.5 because these are standard operating 

ranges for treatment processes that exhibit struvite and, 

notably, this is the envelope over which struvite 

constituents remain soluble at concentrations used but 

are still concentrated enough to accurately measure 

precipitation by means of turbidity and the associated 

pH drop. 

Individual experiments were run using either 0.01, 

or 0.5 M background ionic strength—added as 

NaCl—to evaluate the StrPI over a range 

representative of wastewater. 

5.1.1 Temperature Simplifications 

Solution temperature has the potential to significantly 

affect the solubility of struvite, as discussed in Barnes 

and Bowers [7], Aage, et al. [16], Hanhoun, et al. [17], 

and Bhuiyan, et al. [18]. While published values of 

struvite solubility product at different temperatures 

would ideally serve to inform an empirical model such 

as the StrPI, the uncertainty in equilibrium constants 

renders analysis difficult [7]. For example, using the 

dataset for the pKsp of struvite compiled in Barnes and 

Bowers [7] and comprised of data from IUPAC [19], 

Hanhoun, et al. [17], and Ohlinger, et al. [1], the 

temperature variability of the pKsp over the range of 15 

to 40 °C is on the same order of magnitude as the 

uncertainty derived from inconsistencies in published 

equilibrium constants at 25 °C. This is best represented 

in Fig. 2, where literature values for the struvite pKsp 

evaluated at zero ionic strength are plotted against their 

associated temperatures. 

As is apparent in Fig. 2, beyond a possible linear 

correlation between temperature and the pKsp, 

conclusions cannot be drawn without more agreement 

between published solubility constants. Consequently, 

thermal effects were not included in this study. 

However, it is assumed that temperature will be 

appropriately modeled with the StrP1c. 

Research performed by Hanhoun, et al. [17] using a 

smaller dataset of published pKsp values found that 

over the temperature range of 15 to 35 °C, pKsp values 

ranged from 13.29 (±0.02) to 13.08 (±0.06). In a 

similar study, Bhuiyan, et al. [18] found pKsp values  
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Fig. 2  Literature values for for the pKsp of struvite from IUPAC [19], Hanhoun, et al. [17], and Ohlinger, et al. [1] are 
plotted against their associated temperatures. The plotted data are taken only from published constants measured in 
solutions of zero ionic strength as such solutions are the most widely reported by a substantial margin (allowing for a larger 
dataset). Linear (solid line) and quadratic (dashed line) least-squares regressions had adjusted R-squared values of 0.131 and 
0.257 respectively. Higher order polynomial regressions fit with similarly poor results. This degree of uncertainty in 
published pKsp values precludes deeper insight into temperature functionality. 
 

ranged from 14.04 (±0.03) to 13.20 (±0.03) over the 

same temperature range. These values are highly 

dissimilar, but both studies generally agree that an 

increase in temperature over this range results in an 

increased struvite solubility. 

Actual wastewater streams can exhibit seasonal, 

diurnal and spatial temperature variations; further 

model calibration may be required when stream 

temperatures deviate significantly from 25 °C. This is 

especially true for colder solutions when the aim is to 

prevent precipitation, as thermal functionality will 

slightly lower solubility. However, as waste streams 

generally do not undergo significant temperature 

changes over short periods of time, consistent model 

calibration will likely mitigate these effects. 

5.1.2 Impact of Kinetics 

The kinetics of struvite precipitation are difficult to 

predict and model, especially in solutions near the point 

of saturation. In identical supersaturated solutions, time 

to precipitation may differ by minutes, possibly resulting 

from small errors in measurements or non-homogeneity 

due to experimental imperfections. Further, the 

colloidal chemistry of struvite particle formation can 

be broken into three distinct phases—nucleation, 

coagulation, and flocculation—each controlled by 

different wastewater properties and exhibiting highly 

dissimilar rates of foulant agglomeration [20, 21]. The 

diagram in Fig. 3 depicts the relative rates of struvite 

formation/accumulation as well as the pertinent 

wastewater properties influencing each phase. It is 

possible that the short-term efficacy of the StrPI 

equilibrium model will be more affected by the slower 

nucleation phase (associated with constituent 

concentrations and pH) than the coagulation phase 

(influenced by critical coagulation concentration and 

ionic strength) since the slower colloid formation 

processes inherently take longer to reach equilibrium. 

For the sake of specificity, this research did not focus 

on kinetics, but relied instead on long mixing times and 

the simplicity of binary precipitation data to reduce its 
 

 
Fig. 3  A schematic outlining the three phases of struvite 
formation/accumulation and their relative kinetic rates [20, 
21]. The impactful wastewater properties are labeled for 
each phase. 
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effects on the data. However, in variable wastewater 

systems kinetics may cause a cycle of precipitation and 

dissolution. This may go unnoticed or be impossible to 

record within a Boolean framework. 

Laboratory and field scale experimentation 

performed in this study and in Barnes and Bowers [7] 

found that the Ω model presented in Bouropoulos   

and Koutsoukos [10] was highly conservative, often 

predicting precipitation almost a full pH point before  

it was observed. Solution kinetics are likely only one  

of many factors that affect these predictions; 

nevertheless, the ability to calibrate the StrPI to 

incorporate kinetic effects is imperative to model 

flexibility. 

5.2 Methods for Field Experiments 

Considering the variety of conditions present in a 

wastewater treatment plant [7], laboratory-scale 

experimentation does not necessarily translate to the 

field. Before it can be used, the StrPI must be shown to 

be applicable to field cases. A field test was performed 

in the centrate nitrification basins (NH4
+→NO3

-) of a 

struvite-burdened metropolitan wastewater treatment 

facility. Aluminum coupons were placed at eight 

critical locations around a conventional plug-flow 

aeration basin, and water samples were taken several 

times a day at each point. The 415-meter-long (1,360 ft) 

basins contained treated centrate from anaerobically 

digested wastewater sludge, and had an average 

residence time of approximately 2 days. Concentrations 

of the main constituents of struvite (generally: NH4
+ > 

PO3
- > Mg2+) varied greatly over time due to 

inconsistency in the centrate source. Struvite formed 

throughout the basins, but predominately in locations 

of localized pH spikes caused by CO2 stripping or 

caustic addition. The wastewater pH was initially 

raised to around 7.0 prior to nitrification to ensure 

biological activity. The influent also included flow 

from the main aeration basins (bacterial seed), and a 

recycle stream from the tail end of the centrate basins 

(about 1 million gallons per day each). 

When struvite crystals precipitated onto the metal 

coupons over a set period, they were dissolved in acid 

and the constituents were analyzed using ICP-MS 

(Inductively Coupled Argon Plasma Mass 

Spectrometry). An example of a fouled coupon 

(precipitation present) can be seen in Fig. 4. In all cases, 

the magnesium-to-calcium ratio exceeded 100:1 and 

chloride was found to be negligible. More importantly, 

the Mg:P ratio indicated struvite as the major 

precipitate. To confirm, XRD measurements were 

performed, and the sample was found to be 

predominately struvite. 

The field experiment was performed for 2 weeks, 

with eight samples taken daily from the nitrification 

basin at points near submerged coupons. Measurements 

of ammonia and phosphate were performed on site 

using a LaMotte 1,200 colorimeter, with a sensitivity 

of 0.05 ppm NH3-N and 0.05 ppm PO4
--P. Magnesium 

was measured using an ICAP Q ICP-MS in 

accordance with Bridgewater, et al. [22]. A Fisher 

Scientific accumet AP85 portable pH meter was used 

to measure the pH. The temperature was measured as 

approximately 25 °C with only minor variability, and 

the average ionic strength was estimated using Eq. (34) 

and grab-sample measurements of solution electrical 

conductivity (EC, in μS/m). 

      (34) 

valid for I < 0.3 M [23, 24]. 
 

 
Fig. 4  Coupon fouled with struvite from field experiments. 
This specific coupon was submerged at a point 325 feet (99 
meters) along a nitrification basin and removed after two 
weeks’ contact time. 
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Conductivity was measured five times over two 

weeks, with variability of less than 20 percent between 

samples. Ionic strength was estimated as 

approximately 0.1 M (±10%). The conditions for 

supersaturation over the two weeks were evaluated by 

the StrPI model using the coupon precipitation data in 

conjunction with the pH and constituent concentration 

measurements. The rate of struvite crystal redissolution 

has not been evaluated, but it is likely slower than the 

rate of precipitation due to layering effects and 

localized areas of elevated constituent concentrations 

around solid particles. Consequently, it is likely that the 

maximum value (or a high percentile, such as the 90th) 

of measured pH and constituent concentrations are 

more useful in long-term fouling predictions than 

average values. 

6. Laboratory Results 

6.1 Approximating Measurement Error 

Struvite precipitation in synthetic solutions near 

saturation is affected by localized kinetics, concentration 

inhomogeneities, and general measurement errors—all 

which contribute inescapable uncertainty in any 

predictive model. However, such a model may also 

exhibit uncertainty and inaccuracy through the effects 

of various simplifications and assumptions. Should the 

model simplification errors fall within the acceptable 

predictive range, then the effects of the simplification 

or assumption can be deemed negligible for the 

purposes of practical application. 

Each jar test evaluation of the StrPI framework 

resulted in a measured pH of precipitation. Eq. (30) and 

experiment-specific concentration data were then used 

to calculate StrPI at the point of precipitation (which 

was not 0, as predicted theoretically), denoted as StrPI*. 

For a calibrated StrPI model, precipitation should occur 

at StrPIc = 0 for all experimental conditions; however, 

StrPI* includes the conservatism of the Ω model so the 

uncalibrated values are much higher—generally nearer 

to 1.0. The StrPI* inaccuracies are partitioned into two 

statistically independent components: measurement 

errors and model simplification errors. For a set of 

StrPI* precipitation data, S*, the variance of the set can 

be written as the sum of the variances of the two 

components [25], or: 

      (35) 

where ME represents the measurement errors, ε 

represents the model errors, and the Var function 

denotes the variance of its argument. Var(ME) was 

estimated by evaluating the difference between the 

measured StrPI* of duplicate experiments, each 

sharing identical concentrations of [Mg], [P] and [N] as 

well as identical background ionic strengths and 

mixing speeds. 

These StrPI* residuals were calculated from a series 

of 27 duplicate pairs containing a wide range of 

constituent triplicates and ionic strengths, all at a G of 

100 s-1. As duplicate experiments contain the same 

model error, ε, the variance of the residuals is entirely 

due to the variance of measurement error. Following 

Ang and Tang [25], this relationship can be used to 

estimate Var(ME): 

          (36) 

where R is an array of StrPI* residuals between 

duplicate experiments. 

For the synthetic experiments, ME was found to 

have a variance of 0.017, which results in a standard 

deviation of approximately 0.131 pH units. This is 

within the range of acceptable model uncertainty, 

especially as temporal and localized wastewater 

variability would generally negate the value of a more 

accurate model. A one-sample Student’s t-test (p = 

0.05) was performed on R and the residuals were found 

to be approximately normally distributed. The estimated 

measurement error was subtracted from the right side 

of Eq. (35) to calculate ε. This facilitates investigations 

into the effects of ionic strength and root-mean-square 

velocity gradient simplifications of the StrPI. 

6.2 Ionic Strength Analysis 

Ions added as a byproduct of increasing pH (by 
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adding NaOH) or added as ammonium chloride, 

potassium phosphate, or magnesium chloride, were 

rendered negligible by the addition of 0.01 M or 0.50 

M NaCl as swamping ionic strength, I. The maximum 

value of I (0.50 M) was not set to a higher value 

because of concerns of magnesium chloride 

interference at more concentrated doses as described in 

Barnes and Bowers [7]. Nonetheless, both the addition 

of constituents and the pH modification during 

experimentation cause an inherent increase in the ionic 

strength of the solution. In cases involving 

precipitation at a relatively low pH (i.e. well below 7.0) 

and 0.01 M background NaCl, the necessary elevated 

constituent levels may overcome the background ionic 

strength’s swamping effect and reach non-background 

ion concentrations comparable to that supplied by the 

NaCl. 

While ionic strength is an important modeling 

consideration, in wastewater it can be highly dissimilar 

between individual plants (magnitude and composition) 

and between periodic grab samples. Moreover, ionic 

strength is generally estimated using conductivity 

measurements—a method understood to introduce 

some uncertainty. This research is meant to simplify 

the prediction of struvite precipitation so that the StrPI 

can be approximated promptly, and eliminate 

exhaustive experimentation required to include an 

ionic strength factor. Nonetheless, the effect of ionic 

strength variability between experimental runs was 

assessed. 

Preliminary experiments suggested that solution 

ionic strength has a small to negligible effect on 

measured StrPI* over the range of experimental 

constituent concentrations. This result suggests that 

ionic strength effects can be assessed by evaluating the 

model at its boundary conditions. Time-intensive 

experiments that use a grid of ionic strengths to span 

the model’s expected practical range, as was done with 

constituent concentrations, can thus be eliminated. This 

analysis at boundary conditions again collects pairs of 

“duplicate” solutions ([Mg], [P] and [N] ranging from 

1×10-3 to 1×10-1 M); however, in this case, the 

background ionic strength of one duplicate is added at 

0.01 M, while the other is added at 0.50 M. 

This method does not model the functional effects of 

ionic strength on StrPI*. Instead, it quantifies the 

impact of the effect across a range of probable 

wastewater conditions. As published solubility 

products suggest that the relationship between Kspcond 

and ionic strength contains no inflection points over the 

model range, the use of maximum and minimum values 

for I should encapsulate the range’s full breadth of 

ionic strength interference on StrPI* [19]. 

An analysis of variance on the StrPI* data using a 

linear fixed effects model was performed to evaluate 

the effects of ionic strength, as is discussed later. As the 

ionic strength was evaluated at only one of two values, 

the condition of background ionic strength was 

converted to a binary value Ix, set at 0 for I = 0.01 M 

and 1 for I = 0.50 M. 

6.3 Root-Mean-Square Velocity Gradient Analysis 

Past field studies have evaluated the range of 

wastewater turbulence within municipal treatment 

facilities. These studies reported values in the form of 

the root-mean-square velocity gradient, G, a common 

measure of mixing intensity generally used to define 

flocculation. Specifically, Das, et al. [26] ran a 

comprehensive field study of the effects of the 

root-mean-square velocity gradient on a full-scale 

activated sludge wastewater treatment plant that 

evaluated and expanded upon the conclusions of Parker, 

et al. [27]. While these papers suggested that ideal 

flocculation occurs at a G between 20-70 s-1, G values 

measured in the aeration basins of 14 full-scale 

treatment plants were much higher, resulting in a 

general range of 88-220 s-1 [26]. Additionally, Das, et 

al. [26] measured the G in mixed liquor transport systems 

and found that values ranged between 1 and 72 s-1. 

The StrPI* baseline experiments performed in this 

study were run at 100 revolutions per minute (rpm). 

From the Phipps and Bird documentation, at room 
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temperature this imparts a homogeneous 

root-mean-square velocity gradient, G, of 100 s-1. This 

value was selected as it allowed for adequate mixing of 

the added constituents, fit within the range supplied by 

Das, et al. [26] for aeration basins, and would not 

create a large vortex. 

To examine the specific effects of G on struvite 

precipitation, the 100 rpm experiments were replicated 

using G values of 18 s-1 (25 rpm) and 44 s-1 (50 rpm). 

For the G = 18 s-1 experiment runs, constituents were 

rapidly mixed at a low pH to allow for faster 

dissolution. However, the paddle speed was slowed 

before the pH was brought above 6.5. 

The impact of turbulence on precipitation was 

determined by comparing 34 slowly mixed (25 rpm) 

solutions to 34 quickly mixed (100 rpm) but otherwise 

identical solutions—employing the same method as 

used with ionic strength. The velocity gradient was also 

treated as a binary value, Gx, for use in the linear fixed 

effects model: 100 s-1 was set as Gx = 1 and 18 s-1 was 

set as Gx = 0. 

Unlike the ionic strengths included in Ix, the selected 

G values are not meant to encompass the entire range 

of potential turbulence within a treatment plant. They 

do, however, represent a significant difference in 

root-mean-square velocity gradient, and encompass the 

entire “ideal aeration basin” span of 20-70 s-1 described 

in Das, et al. [26] and Parker, et al. [27]. Should the 

difference between these two mixing rates have no 

significant effect on StrPI, it is unlikely that values 

outside this range would differ. 

We note that turbulence simulated using synthetic 

precipitation does not encompass all impacts of mixing 

rates in the field. Specifically, in an open-air 

wastewater process, localized areas with high velocity 

gradients may evolve and release CO2 at faster rates 

than are occurring in the bulk solution. This can cause 

small pockets of elevated pH which inherently exhibit 

higher StrPI* values than are predicted by bulk-flow 

pH measurements. In these cases, the StrPI may be 

calibrated to the local areas of elevated pH, or a safety 

factor may be implemented independently of the StrPI 

equation. 

6.4 Analysis of StrPI Using a Linear Fixed Effects 

Model 

There are two principal factors of interest: ionic 

strength and mixing speed. To quantify the impact of 

these two factors, a standard linear fixed effects model 

was fit to the data and an associated analysis of 

variance was carried out [28]: 

      (37) 

where StrPI* is the measured StrPI at precipitation; Ix 

is the binary set representing ionic strengths of I = 0.01 

and I = 0.50 as 1 and 0, respectively; Gx is the binary set 

representing root-mean-square velocity gradients of 

100 s-1 and 18 s-1 as 1 and 0, respectively; and a, b, and 

intercept represent fitted constants. As the binary Ix and 

Gx variables span the range of expected ionic strength 

and turbulence values, respectively, a and b represent 

the magnitude of each factor’s impact on the measured 

StrPI* (e.g. a larger a value means a larger expected 

difference between the StrPI* in solutions of 0.01 M vs. 

0.50 M ionic strength). The intercept coefficient 

represents the magnitude of the uniform bias in the 

uncalibrated StrPI model that causes precipitation to 

not occur at StrPI* = 0 (not a function of ionic strength 

and mixing speed). 

A regression algorithm was used to minimize the 

sum of the squares of the errors for all StrPI* data with 

initial conditions included within Ix and Gx (77 runs). 

The results of this fit can be seen in Table 1. 

6.4.1 Estimation of Model Uncertainty 

The RMSE (Root Mean Squared Error) was evaluated 

for the 77 experimental runs. This value, 0.127, serves 

as an approximation of the standard deviation of the 

regression errors and is comparable to 0.131, the 

approximate standard deviation of measurement error 

calculated using Eq. (36). The similarity between these 

two values suggests that the fixed effects model 

sufficiently captured the model error, ε. This absence of  
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Table 1  Regression results for linear fixed effects model of 
measured StrPI* values described in Eq. (37). The p-value is 
calculated for a null-hypothesis where the coefficient is 
equal to zero. Note: coefficients a and b apply to the binary 
Ix and Gx data, not I or G, and thus should not be used to 
estimate functionality. Instead, the estimates simply 
compare the change in StrPI* when I or G vary between 
their max and min values. 

Coefficient Estimate Std error t-Stat p-Value 

a 0.0453 0.0408 1.11 0.271 

b -0.0182 0.0384 -0.473 0.637 

Intercept 1.16 0.0340 34.1 5.14 × 10-47

 

Num. Obs. MSE RMSE 

77 0.0162 0.127 
 

unexplained error also implies that using the product of 

[Mg], [P] and [N] to model saturation, as suggested by 

Bouropoulos and Koutsoukos [10], is robust when 

evaluated at different stoichiometric ratios. 

6.4.2 Impacts of Ionic Strength and Velocity 

Gradient 

The  least-squares  estimates  for  the Ix and Gx 

coefficients, a and b, were both small. Moreover, the 

estimates had a standard error of similar magnitude. 

The  associated  p-values  also  failed  to  reject the 

null-hypotheses of both a = 0 and b = 0 (using a level 

of significance, α, of 0.05), meaning the coefficients 

are statistically indistinguishable from zero. This 

suggests the difference in saturation points between 

solutions with 0.01 and 0.50 M background ionic 

strength is insignificant (accounting for an estimated 

0.045 unit shift of pH*). The same conclusion can be 

drawn about saturation between solutions where G = 

100 s-1 and G = 18 s-1. It must be noted, “statistically 

insignificant” is not equivalent to “has no effect”. It is 

possible that ionic strength and mixing speed have 

slight effects on struvite precipitation over their 

expected ranges, but these impacts are swamped by 

measurement errors during statistical analysis. 

Nonetheless, I and G are unlikely to affect practical 

applications. 

A second set of mixing speed duplicate residuals (44 

vs. 100 s-1) was used in the fixed effects model to 

confirm the viability of root-mean-square velocity 

gradient assumptions across the 18 s-1 to 100 s-1 

envelope. This second set compared 21 moderately 

turbulent solutions (44 s-1, Gx = 0) to 21 highly 

turbulent ones (100 s-1, Gx = 1). This analysis also 

failed to reject the null hypothesis, which supports the 

conclusions of the first Gx set. In conclusion, the effect 

of ionic strength and mixing speed over the model’s 

applicable range is statistically indistinguishable from 

zero, and I and G terms can be justifiably excluded 

from the StrPI model. 

6.4.3 Estimating Bias in the Uncalibrated Model 

In addition to a and b, the fixed effects analysis 

outlined in Table 1 estimated the y-intercept of the 

linearized StrPI* model. Calculated as 1.16, intercept 

represents the magnitude of the uniform overprediction 

of an uncalibrated model. This bias can be observed in 

Fig. 5, where the dataset of StrPI* values included in 

the fixed effects model is plotted against solution pH 

at precipitation, pH*. Note, the mean StrPI* is 

approximately 1.16, whereas an ideal calibrated 

prediction, StrPI*, should have a mean near zero. 

The bias in Fig. 5 highlights the need for model 

calibration. It also suggests an estimate of the StrPI 

calibration value, C, described in Eq. (33). The value of 

intercept from Table 1 serves as a good initial guess for 

C; however, it does not take into account the site-specific 

requirements of the model, i.e., setting the calibration 

to eliminate either false negatives or false positives. 

Specifically, when trying to prevent struvite scaling, an 

ideal calibration would see precipitation occur at or 

above the point where StrPIc = 0. Likewise, when 

trying to facilitate struvite precipitation, the selected C 

should be higher than 1.16 to allow precipitation to 

occur before StrPIc = 0, with the exact value set in 

consideration of the necessary level of certainty. 

Fig. 6 contains the normal probability plot of all 

measured StrPI* values generated from the synthetic 

precipitation experiments. It indicates that StrPI 

prediction uncertainty at known initial conditions is 

approximately normally distributed. 
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Fig. 5  The calculated StrPI* vs. actual measured pH of precipitation for all synthetic struvite precipitation experiments 
included in the fixed effects model (77 points). The estimated bias, intercept = 1.16, and associated error bars were drawn 
from the synthetic experiments. Note, many of the data points are coincident or stratified as a result of identical duplicate 
pairs and the 0.10 unit resolution of pH measurements. 
 

 
Fig. 6  The normal probability plot of all measured StrPI* values generated from the synthetic precipitation experiments. 
The assumption of normality was supported by a one-sample Student’s t-test (α= 0.05). 
 

Using the linear effects model outlined in Table 1, 

the uncertainty of the StrPI model was estimated to 

have a standard deviation of 0.127 pH units. Paired 

with the assumption of normality, this value was used 

to represent model uncertainty associated with StrPI 

predictions. These can be seen in Fig. 5, where dashed 

lines are drawn at ±1.0 and ±2.0 standard deviations 

from the mean. 

6.5 Calibration Using Synthetic Results 

The StrPI model was developed specifically to 

permit field calibration of the generalized StrPI 

equation. As these calibrations are performed by 

operators, they can accommodate for plant- or 

process-specific irregularity and nuance that is not 

captured by universal models. This calibration factor 

can be added to Eqs. (30) or (31) to establish a 

calibrated StrPI, StrPIc: 
 

                  (38) 

where pH is the measured pH of the waste stream and C, 

the StrPI calibration factor, corrects for the uniform 

bias in an uncalibrated model. C is a single number, 

likely positive, that can be adjusted to allow for a less 

 



The Struvite Precipitation Index: A Practical Framework for Predicting Struvite  
Supersaturation in Water and Wastewater 

 

419

(or more) conservative StrPI. While a least-squares fit 

of the synthetic experiments estimated that C = 1.16, 

this distributes uncertainty equally about the 

mean—which is not necessarily ideal for use in 

operations. The model should be recalibrated (i.e. C 

should be adjusted) to incorporate the specific 

predictive needs of individual treatment plants. 

Concentrations are in mol/L as [Mg], [N] and [P]. 

Conversely, using concentrations in mg/L: 

 
              (39) 

Fig. 7 contains the calibrated StrPI* vs. measured 

pH at precipitation for all synthetic precipitation 

experiments included in the fixed effects model. 

Calculations of StrPIc were calculated using a C value 

of 0.90 in the top subplot and 1.42 in the bottom 

subplot. These values represent two standard 

deviations below and above the mean (C = 1.16), 

respectively. The data in Fig. 7 are well represented 

within ±2 standard deviations, where about 95% of 

normally distributed data should fall. 

6.6 Calibration-Updated Solubility Product 

A uniform shift in the expected pH of precipitation 

to accommodate empirical results is a viable 

engineering solution to an uncertain situation. The bias 

corrected by C may be a result of several factors. Those 

factors can include kinetics, inhomogeneities, or—at 

least in part—because of an incorrect assumption of 

Ksp. Solubility product implications of the model 

calibration can be examined by comparing the 

quadratic fit of pKspcond (Eq. (26)) to a quadratic fit 

corrected by subtracting C. The magnitude of the 

effects of calibration can be seen in Fig. 8, where the 

pKspcond and Kspcond of an uncalibrated model (C = 0) are 

compared to a calibrated model where C = 1.16. 

Uncertainty that results from the wide range of 

equilibrium constants described in Barnes and Bowers  
 

 
Fig. 7  The calculated StrPIc vs. measured pH of precipitation and associated error for all synthetic struvite precipitation 
experiments included in the fixed effects model (77 points). For (a), the calibration factor, C, is set to 0.90—two standard 
deviations below the least-squares estimate of C. This calibration was selected so there is 95% certainty precipitation that will 
occur when StrPIc > 0 (reasonable for preventing precipitation). For (b), C is set to 1.42—two standard deviations above the 
least-squares estimate of C (reasonable for facilitating precipitation). Note, many of the data points are coincident or 
stratified as a result of the identical duplicate pairs and the 0.10 unit resolution of pH measurements. 
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pH 

 

Fig. 8  The ratio of a calibrated StrPI model (C = 1.16) to an uncalibrated model (C = 0). On the upper subplot, the two 
pKspcond values were evaluated using the simplified pKSPcond model outlined in Eq. (26) over the pH range of 6.5 to 8.5. This 
value is converted to the Kspcond on the lower subplot. 
 

[7] may contribute to the uniform bias; however, the 

published pKsp values at 25 °C and I = 0 have a range of 

about 1 order of magnitude and a mean of 12.96. As 

such, it is unlikely the large pKspcond ratios displayed in 

Fig. 8 are a result of equilibrium constant uncertainty 

alone, if at all. The overprediction of precipitation is 

likely in part due to kinetics, and the conditional 

solubility products presented in Fig. 8 may be 

markedly different from those derived through 

comprehensive chemical analysis. 

Following the calibration of StrPI to synthetic 

solutions and the conclusion that it is functionally 

independent of G and I for practical purposes, the 

model was verified using real wastewater samples at an 

operating treatment plant. 

7. Precipitation in Field 

7.1 Field Results 

Coupons were placed in reactors where struvite 

scaling could realistically occur. The StrPIc model (C = 

0.90) accurately predicted long-term scaling in the field 

when using measured values (90th percentile of pH, 

[Mg], [P] and [N]) at each coupon location as inputs. 

This can be seen in Fig. 9, where the 90th percentile is 

represented by the top of the error bars. The specific 

choice of 90 percent is unsubstantiated outside of the 

field data’s quality-of-fit; however, it is reasonable to 

use the worst-case scenario for StrPIc inputs (e.g. 90th 

percentiles of measurements) if preventing 

precipitation is critical. It should be noted, it is unlikely 

that 90th percentile values of pH, [Mg], [P] and [N] 

will occur concurrently in a wastewater stream, and the 

error bars likely enclose well over 99.9% of potential 

StrPIc values. The predictions fit without false 

negatives or positives when using values one standard 

deviation above the mean (approx. 66th percentile), but 

this will vary between treatment facilities. When the 

StrPIc is applied to a new treatment process, the 

distributions of waste stream concentrations should be 

evaluated to ensure they are not heavily skewed in a 

way that would undermine predictions. Also, the model 

should be re-calibrated if precipitation does not occur 

near a StrPIc of zero. 

As shown in Fig. 9, solutions evaluated using the 

90th percentile of measurements never resulted in 

precipitation when the StrPIc was less than zero. 

Further, the same predictions also correctly anticipated 

struvite buildup on three of five coupons where the 

calculated StrPIc was greater than, or within, one 

standard deviation of zero. 

7.2 Suggested Initial Calibration Values 

The StrPI calibration value, C, was found to be 1.16 

when fit using least-squares regression on the lab data.  
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Fig. 9  Field results for eight coupons submerged along a 415-meter (1,360-ft) centrate nitrification basin, each evaluated for 
the existence of struvite precipitation. Temperature was 25 °C (±2 °C). The dashed line denotes the expected point of 
precipitation for the calibrated model (StrPIc = 0) using a C of 0.90 (empirical fit from lab experiments). Dotted lines denote a 
model confidence interval of ± one standard deviation. The error bars depict the estimated range of the StrPI over the 
two-week experiment, calculated using 10th and 90th percentile of measured pH, [Mg], [P] and [N] values. Both circular 
markers represent the StrPIc evaluated at the mean values of each set of pH, [Mg], [P] and [N]. 
 

This calibration, which appears to fit well using the 

90th percentile of field measurements, does not take 

into account the predictive needs of all situations. If a 

system is designed to precipitate struvite—the 

Ostara™ or AirPrex® processes, for example—then 

ideal calibration would ensure precipitation rather than 

its absence. Specifically, it might use a C greater than 

1.16 to err on the side of underprediction and reduce 

the prevalence of false positives. Conversely, if a waste 

stream is highly variable, localized areas are 

particularly problematic, or minimal struvite 

precipitation is especially detrimental, a conservative C 

may be ideal. For example, C could be set so low that 

an StrPIc of zero falls several standard deviations 

above the lab-derived estimation of the saturation 

point. 

The StrPIc model requires that C be set based on 

localized condition. Its validity, therefore, should be 

periodically assessed and updated to reflect changing 

field conditions. Labscale experimentation similar to 

that laid out in this study can be used to quickly analyze 

new waste conditions and adjust calibration 

accordingly. However, situational inhomogeneity and 

the potential for CO2 evolution require that the primary 

metric for calibration be the observation of 

precipitation within actual processes. Precipitation can 

be evaluated through use of coupons (as discussed in 

this study), chemical analysis of grab samples, or 

through the continued telltale accumulation of crystals 

on mixers, pipes, and other problem areas. 

The C value should be set at a point that reflects the 

safetyfactor (or other predictive needs) of the 

individual process, and the model should be 

recalibrated when new data sets become available or 

aqueous conditions change substantially. Increasing 

the value of C will make the StrPIc predictions less 

conservative (precipitation occurs at a lower StrPIc), 

and vice versa. The initial implementation of StrPIc can 

be simplified through use of these calibration 

guidelines, drawn from this study’s field and laboratory 

experiments. Using measured pH, [Mg], [P] and [N] 

data: 
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C = ... 

0  uncalibrated and highly conservative 

0.90  struvite prevention (95% certainty of no precipitation 

when StrPIc < 0)  

1.04  calibrated to 90th pctl. of field data (lowest C with no 

false positives)  

1.16  calculated using least squares regression of lab data 

(centered on error)  

1.42  struvite recovery (95% certainty of precipitation when 

S trPIc > 0) 

(40) 

Note: statements of certainty apply to equilibrium 

model fit, not to the underlying variability of the waste 

stream. The underlying distributions of measured 

model inputs and the selection of which percentile to 

use for said inputs (e.g. 90th percentile) may 

significantly impact model effectiveness. Future 

research may look to evaluate the StrPIc in variable 

waste conditions using a Monte-Carlo framework, 

similar to that discussed in Barnes and Bowers [7]. 

The StrPIc model is designed to be used as a 

predictive tool that can be useful for general 

operational decisions, not as an analytical refinement 

of existing theory. Model flexibility, therefore, is more 

important than finding a single, unifying equation. The 

use of a single additive calibration constant to modulate 

predictions over a wide pH range streamlines StrPIc 

framework implementation, shortens the learning 

curve for plant operators, and simplifies in-the-moment 

calculations. 

8. Conclusions 

The struvite precipitation index is useful for 

wastewater operations as an accessible metric for 

evaluating the potential of an aqeuous system to 

precipitate struvite (either to prevent or promote 

struvite precipitation). While this effort was restricted 

to a pH range of 6.0 to 8.5, it was shown synthetically 

to be effective in its predictions. This conclusion was 

verified through a complex field case. 

A calibration constant, C, was included in the StrPIc 

equation to accommodate plant-specific kinetics, 

uncertainty, inhomogeneity, and a desired factor of 

safety. Jar-test results suggest an initial calibration of C 

= 1.42 for promoting struvite precipitation and C = 

0.90 for preventing it. The StrPIc is modeled as a 

function of [Mg], [N] and [P] (each as mol/L in Eq. (38) 

or mg/L in Eq. (39)) and solution pH. The approach 

was verified in a field case, and StrPIc predictions were 

found to fit best when using the 90th percentile values 

of concentrations derived from distributions of waste 

stream measurements. 

It is possible to adapt the StrPI equation to processes 

that are highly dissimilar to those tested in this study. 

Refinements could accommodate abnormal pH levels, 

ionic strengths, and turbulence; significant localized 

pH spikes due to carbonate evolution; or extreme 

differences between [Mg], [N] and [P]. As presented, 

however, the StrPI equation can serve as a valuable tool 

for municipal wastewater treatment plants subject to 

struvite scaling or performing nutrient reclamation. 

Process-specific calibration allows a user to account 

for stream uncertainty and variability in a flexible and 

robust manner. Lastly, the StrPI can be a useful tool to 

predict the potential effects of constituent spikes, 

upstream pH modulation, or other significant changes 

in plant operations. Currently, these conditions can only 

be assessed after precipitation has occurred or through 

the use of highly conservative computer models. 
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