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Abstract: We perform a simple calculation of a classical cellular automata model based on two types of cells (neurons), excitatory and 
inhibitory ones, randomly distributed in a 2D space. The only varying parameter is the percentage of inhibitory neurons. Even under 
such simple conditions, we obtain a transition between two states (which we conjecture to be normal and epileptic). The difference 
between these states are manifested both in the neuronal activity amplitude and in their frequency. The amplitude changes are shown to 
be similar to those obtained in a tonic-clonic seizure. 
 
Key words: Cellular automata, epilepsy, seizures, neurons. 
 

1. Introduction 

Epilepsy is a major brain malfunction inflicting 

millions of people worldwide. Although being under 

extensive investigation both theoretically and 

experimentally for a long period, real understanding of 

the basic causes of the phenomenon is still missing. 

Seizure initiation, maintenance and termination are 

attributed to many operating causes. Examples are the 

changes in synaptic effectiveness [1], ion 

concentrations [2], cation conductance [3], glutamate 

concentration [4], connection of different brain parts [5] 

and pH [6]. The model which we wish to present in  

this work is intimately connected to having in the brain 

two types of neurons: excitatory and inhibitory. The 

former when activated deliver to the neurons a positive 

signal while the second type deliver the command “not 

to”. A receiving neuron counts the number of 

impinging “orders” from all neurons it is on their 

receiving end, and decides whether to function 

according to the difference between the numbers of the 

two types. If the number of excitatory received 

information is larger, it becomes operational and vice 

versa. In the healthy brain the ratio of the number of 
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excitatory to the inhibitory neurons is approximately 

4:1 [7]. Most observations indicate that, during an 

epilepsy seizure, there is a drop in the inhibitory 

neutrons. In this paper we assume that this is a fact. It 

seems that the major reason is the reduction of GABA 

(γ Aminobutyric acid) [4] which effectively reduces 

inhibition by decreasing the transmission of 

information out of such neutrons. 

There exist some complex dynamical models, e.g. [8, 

9], which use the value of the connection between the 

inhibitory and excitatory neurons as a bifurcation 

parameter. A different approach for mathematical 

modelling of epileptic behavior is based on network 

theory. e.g. [10]. 

We would like to treat a dynamical model in order to 

try to understand the global spatiotemporal basic 

processes appearing in epilepsy. Such understanding 

cannot be provided by network methods, which 

disregard the special attribute. Therefore, we chose a 

model based on cellular automata (CA) built from such 

two types of cells, which is possibly the simplest model 

of the brain conditions. 

Cellular automata were first studied by Ulam and 

von Neumann with the particular purpose of modelling 

biological self-reproduction (see: Von Neumann [11]). 

Our Cellular Automaton model consists of a regular 

grid of cells in two dimensions. Each cell can attain just 
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three modes (see below). For each cell a set of cells 

called its “neighborhood” is defined. An initial state at 

“time = 0” is assigned to each cell. A new generation is 

created (advancing “t” by one) by changing the state of 

each cell according to some rule that is determined by 

the state of the cell and its neighbors. This change is 

applied to the whole grid simultaneously. There were 

just few attempts in the literature to use CA for our 

problem [12]. Our approach is more similar to the 

classical method. 

2. The Model 

Our model consists of a two dimensional array of 

cells (or “neurons”). Each cell can be either excitatory 

(E) or inhibitory (I). Both neutron types are distributed 

randomly in the array. The percentage of the I-neurons 

is a varying parameter. Each cell can reside in one of 

three modes: ready (D), Refractory (R) and operating 

(O). We consider as “neighborhood” both the nearest 

and next nearest cells of a given central cell. At every 

cycle each neuron changes according to the following 

two rules: (1) An O-mode changes into an R-mode, an 

R mode changes, after a prescribed (an input parameter) 

number of cycles, into a D-mode, (2) All O-cells of a 

neighborhood of a D-mode neutron are counted and 

we subtract from the sum of the E-neurons the sum of 

the I-neurons. If this is a positive number, we change 

the D-mode into an O-mode. Following a cycle (i.e. 

going over all neurons) we update the total number of 

neurons in mode=O and consider this number as the 

measure of electric signal emerging from the array. 

3. Calculations and Results 

In our calculations we assume periodic boundary 

conditions. We checked also the case of Dirichlet 

boundary conditions and did not find large differences. 

Our grid consists of 120 × 120 cells (“neurons”). We 

chose four cycles for the refractory value. The number 

of cycles was 12,000. For our Fourier analysis of the 

results we discarded the first 6,000 cycles. For each 

case we repeated the calculation five times, and took 

the average result, so as to eliminate the influence of 

the randomly chosen distribution of inhibitory neurons. 

These calculations were performed for many different 

percentages of inhibitory neurons. As was mentioned 

before, the total number of neurons which are in the 

state of firing is our measure of the electric signal. We 

will call this measure: e . Results are given in Fig. 1a. 

Here we show e  as a function of the percentage of 

inhibitory neurons ( i ). 

To see if our results are robust, we repeated our 

calculations using a much larger grid: 360×360 (i.e. 

Nine times as many neurons). In Fig. 1b we show the 

results, which do not differ much. 

Viewing both of these figures we see that around

0 2.i   we have a change in the slope of the line. 

We wish to examine this result. For this purpose, we 

calculate the Fourier transform for different percentage 

of inhibitory neurons. At 0 17.i   we obtain a peak 

frequency at 43.9 (see Fig. 2a) whereas at 0 23.i  , 

the peak jumps to 34.7 (see Fig. 2c). 

We make the conjecture that this is a transition 

between a normal state and an epileptic state. As a 

justification we mention that it is this i  that the 

normal state goes over to the epileptic state in a real 

system. 

We show next the results of considering a normal 

state which goes over to an epileptic state and returns 

after some time back to the normal one. We assume that 

when the percentage of inhibitory neurons is 19 percent 

we are in the epileptic state, and when there is 23 percent 

of inhibitory neurons we are in the normal state. So we 

calculate ρe vs. time when going from 0 23.i  to 
0 19.i  and back. To improve our figure, we added 

another feature. We assume that during the epileptic 

state we have a certain amount of oscillations in the 

O-neurons (see [13]). The amount we took in our figure 

was one percent. In Fig. 3a, we compare the electric 

excitation as a function of time to those obtained by 

EEG adopted from Ref. [14] (Fig. 3b). It is seen that 

even such a simple model can repeat the actual seizure 

behavior. 
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Fig. 1  Relative electric signal as a function of the inhibitory neurons fraction. (a) 120 × 120 grid; (b) 360 × 360 grid.  
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Fig. 2  Fourier power for: (a) 17%, (b) 19% and (c) 23% inhibitory neurons.  
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Fig. 3  (a) Relative electric signal for a passage from 23% to 19% and back to 23% of inhibitory neurons; (b) Actual EEG 
during an epileptic seizure (adapted from Ref. [14]). 
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