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Abstract: A numerical method using weak formulation is proposed to solve singularly perturbed differential equations. The 

numerical method is applied to both linear and nonlinear perturbation problems. A linear differential equation is solved using its 

weak formulation with a test space composed of exponential functions matching boundary layers. A nonlinear singular perturbation 

problem is converted into a system of linear differentiation equations. Then each linear differential equation is solved iteratively. The 

uniform convergence, which is independent of the singular perturbation parameter, is numerically verified. 
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1. Introduction

 

We consider a singularly perturbed differential 

equation in its quasi-linear form: 
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where      is a positive singular perturbation 

parameter and        . It is also assumed 

),( uxf and ),( uxg are continuously differentiable 

and         . It is shown in Chang and Howes [1] 

the solution of such a singular perturbation problem is 

bounded. The a’priori bounds are further developed 

and improved by Zhang [2]. Thus boundary layers are 

detected via the a’priori bounds. For all    , a 

solution of the quasilinear singular perturbation 

problem has an exponential layer at the left boundary 

if            , or at the right boundary if 

           for all    , where   is a positive 

constant. Moreover, either of the boundary layer 

length is proportional to the singular perturbation 

parameter  . Because of the presence of boundary 
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layers, it requires special treatment in solving  

singular perturbation problems numerically. In general, 

there are two types of numerical methods to 

accommodate the boundary layers. One method is 

based on a non uniform mesh with common finite 

difference schemes, Linss et al. [3], Miller et al. [4], 

and Lin et al. [5]. Specifically, the non uniform mesh 

is adapted to the singular perturbation parameter such 

that it is dense on the layer and sparse elsewhere. The 

other is based on a uniform mesh, with adapted finite 

differences, Choudhury [6], Ilicasu and Schultz [7], 

and Segal [8]. In this paper, we will explore to solve 

the singular perturbation problem with the latter 

approach. First, a quasi-linear singular perturbation 

problem is converted into a system of linear 

differential equations. Then each linear differential 

equation is solved using its weak formulation with the 

test space chosen as exponential functions matching 

boundary layers. 

2. The Conversion from Quasilinear to 

Linear 

When applied with finite differences, a linear 

differential equation will turn into a system of linear 
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equations and a nonlinear differential equation will 

turn into a nonlinear system. A quasi-linear singular 

perturbation problem can be solved when turned into a 

nonlinear system. It can also be solved when a 

quasi-linear singular perturbation problem is 

converted into linear. For our consideration, we will 

convert a quasi-linear singular perturbation problem 

into a sequence of linear singular perturbation 

problems. Then each linear singular perturbation 

problem is solved numerically using the method 

proposed in the next section. The converged solution 

of the linear ones will be that of the quasilinear 

singular perturbation problem.  

Let ,...}2 ,1 ,0|{ ][ Iu I  be a sequence of 

functions such that , bI vbu )(][ , and 

)(]0[ xu
 be the initial guess and )(]1[ xu I   satisfy 
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Let  be the solution of the singular 

perturbation (1) and )(]0[ xu
 be the initial guess 

which is sufficiently close to . Then the 

sequence  

,...}2 ,1 ,0|)({ ][ Ixu I  converges to . And 

it converges at the quadratic rate, i.e., 

2

][]1[ ))()(()()( xuxuOxuxu II   [9]. 

Note that Eq. (2) represents a sequence of linear 

differential equations. In the next section, we turn  

our attention to the singular perturbation in its linear 

form. 
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3. The Construction of a Uniformly 

Convergent Numerical Method 

From now on, we arrange the linear singular 

perturbation problem (3) in a new form: 

,for    )(')("  xxguxfu  

where     is a positive singular perturbation 

parameter and        . Without loss of generality, 

assume the linear singular perturbation problem has 

the homogeneous boundary conditions, i.e.    

     and         , where   is a positive 

constant. Combining the derivative terms in the 

problem, define the linear differential operator   

           . 

So the singular perturbation problem is now in the 

form of 

                    (4) 

Let   
     be the Sobolev space. For any 

      
     and we use the    scalar product 

         
 

  . 

Accordingly, the singular perturbation problem is 

transformed in term of weak formulation, which is to 

find     
     such that for all     

    ,  

                         (5) 

where   is the continuous bilinear form for all 

      
    . By choosing     on the boundary 

and integrating by parts, we get 

                       . 

It can be shown that the bilinear form        is 

bounded and coercive. Hence, there is a unique 

solution for the singular perturbation problem in its 

weak formulation (5) [10]. 

The continuous singular perturbation problem (4) is 

now discretized using its weak formulation (5). The 

mesh is the uniform mesh         
  with   

 

 
. 

For the coefficient function   of the first derivative 

term   , a piecewise constant approximation   on   , 

is defined, for each  ,      , 
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         , for all            , 

where the constants     
             

 
. Later on, we 

will denote    an approximation to the right hand side 

     in the linear singular perturbation problem (4), 

where    will be defined in the same fashion. 

The test space is defined to be the space of 

piecewise exponential functions spanned by      
   . 

Specifically, for        , we define 

      

 
 
 

 
 

                

      
               

  
                

        
               

           

  

where    
    

 
. 

Accordingly, the derivatives of above functions can 

be easily found, 

  
     

 
 
 

 
 
  
 

              

      
               

 
    
 

  
          

 

        
               

           

  

For the purpose of integrals in the weak formulation, 

we also calculate the following limits: 

         
   

        

and 

         
   

     
  

      
 . 

Here we let 

      

 

    
         

          

  

So the above right sided limit can be written as 

         
   

     
 

 
      . 

Similarly,  

       
   

     
 

 
     , 

       
   

      
 

 
        , 

         
   

      
 

 
       , and 

         
   

      . 

We also have, for all   satisfying        , 

       
   

            
   

      . 

The discrete bilinear form   , corresponding to the 

bilinear form   in the weak formulation (5), is now 

defined by 

                         . 

From now on, we use    to denote the solution of 

the singular perturbation problem in the discrete 

bilinear form. Integrating by parts, it is clear that, for 

all  ,        , the bilinear forms are given by  

             
     

        

    
 

    

    

       
             

     
              

       
            

     

       
    

 
  

               

      
    

 
  

               
    

 
  

                   

      
      

 
  

              

 

 

 
                                          

               . 

For the right hand side of the weak formulation of 

the singular perturbation problems is discretized as 

follows. 

             

     
    
    

          . 

Note            is a constant, we have 

              
  
    

 
    

  
          , 

              
    
  

 
    

    
           . 

Finally, the linear singular perturbation problems in 
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its weak formulation (5) are discretized into a system 

of linear equations. 

    
  

 
  

where         is a tridiagonal matrix of order 

   , with the non-zero elements of   satisfying 

                    ,         ,         , 

       is a column vector and 

   
     

   
          +

   

   
          +

   

     
   

         + 

     

     
            . 

It is clear that   is an M-matriax, thus   is 

invertible. Hence the linear system has a unique 

solution. The above consideration was first introduced 

by El-Mistikawy and Werle [11]. 

In this paper, we extend the scheme to quasi-linear 

singular perturbation problems. As outlined in the 

previous sections, a quasi-linear singular perturbation 

problem is first linearized into a system of linear 

differential equations. Each linear differential equation 

is solved numerically using the proposed scheme. 

Also it is worth to mention the test vectors are 

constructed to match the exponential boundary layers. 

The uniform convergence is verified with a numerical 

example in the next section. 

4. A Numerical Example 

First, we apply the new method to solve the linear 

problem 
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with the exact solution 
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, which is 

used for numerical verification purpose. 

The numerical solution of the singular perturbation 

problem (6) is compared with that of other methods. 

To demonstrate the stability of the new method, a 

uniform mesh with weak formulation in this paper, we 

listed the maximal errors with different values of the 

singular perturbation parameter (Table 1). As 

expected and shown from the table, the new method is 

convergent and stable. 

Finally, we solve the nonlinear singular 

perturbation problem,  
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with the asymptotic expansion 
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[12], which is used numerical verification purpose 

only.  

We expect a left boundary layer since 

0),(  ueuxf .  

The linearized systems corresponding to the 

singular perturbation problem (7) are 
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For each of the linear singular perturbation 

problems, we use its discretized weak formulation 

with the same test functions. The linear system of 

differential equations converges within dozens of 

iterations. 

The numerical solution of the singular perturbation 

problem (7) is compared with that of other methods. 

To demonstrate the stability of the new method, a 

uniform mesh with weak formulation in this paper, we 
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Table 1  Maximal error comparison among different methods. 

Method 
Maximal error 

 = 10-1  = 10-2  = 10-4  = 10-8  = 10-10 

Choo and Schultz [13], 4th order  1.13*10-6 7.72*10-5 N.A. N.A. N.A. 

Lin et al. [5], the central differences 6.70*10-5 5.66*10-5 5.66*10-5 5.66*10-5 5.65*10-5 

Zhang [13], the 4th order differences 1.13*10-6 3.22*10-6 3.22*10-6 3.22*10-6 3.22*10-6 

Uniform mesh using weak formulation 4.80*10-6 4.81*10-6 4.81*10-6 4.81*10-6 4.81*10-6 

 

Table 2  Maximal error comparison among different methods. 

Method 
Maximal error 

 = 10-4  = 10-6  = 10-8  = 10-10 

Lin et al. [5] 1,024 
9.26*10-6 

2.22*10-4 

9.57*10-6 

3.97*10-5 

9.57*10-6 

 
9.57*10-6 

Zhang [2] Nb = 600 
5.17*10-5 

2.22*10-4 

3.76*10-5 

2.22*10-4 
3.74*10-5 3.76*10-5 

Uniform Mesh using Weak Form N = 400 
4.33*10-5 

 

3.73*10-5 

2.22*10-4 
3.72*10-5 3.73*10-5 

Nb is the number of points on the boundary layer. 
 

Table 3  Maximal error comparison among different methods with ε = 10-10. 

Method Number of points Max error 

Standard Shishkin mesh, Linss et al. [3] 1,024 1.21*10-1 

Bakhvalov-Shishkinmesh, Linss et al. [3] 1,024 2.63*10-3 

Nonuniform mesh, Lin et al. [5] 400 (Non layer 100 + Layer 300) 3.82*10-5 

Uniform mesh, Zhang [2] 400 3.43*10-5 

Uniform mesh using weak formulation 400 3.73*10-5 

 

also listed the maximal errors with different values of 

the singular perturbation parameter (Table 2). As 

expected and shown from the table, the new method is 

convergent and stable. Moreover, we used less 

number of mesh points for different levels of the 

singular perturbation and the numerical error is 

controlled at the same level. 

We also compare the new method, a uniform mesh 

with weak formulation, with the methods using 

Shishkin type meshes from Linss et al. [3], in Table 3. 

Our numerical results are better with less number of 

mesh points. We achieved the error at 10
-5

 level   

with 400 mesh points while the methods with 

Shishkin type meshes gave an error at 10
-3

 level with 

1,024 points. 
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