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We consider some of the aspects of metacognition as potential teaching tools for computational science. We present 

definitions within metacognition, along with SMART goals and the concept of a growth mindset. A project is 

produced for consideration. This project involves learning such varied computational tools as R, Fortran, the 

Message Passing Interface (MPI), and OpenACC. A test over the material is produced, along with a website for the 

students’ use for reflection. Using the test and the website as a guideline, we look at a simulation study to determine 

possible recall. We find that the highest grades show significant decline in recall, while the remaining grades stay 

fairly consistent. Finally, we discuss the implications of the study results and future research. 
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Introduction 

Metacognition is being used through all topics of learning. The concept of knowing about knowing helps 

students process their strengths and weaknesses for any subject. While there is a wealth of knowledge in 

artificial intelligence, there are not typically many applications for teaching in the STEM disciplines. An 

interesting exception to this for teaching physics is found in Mazur (1997). We will present a potential project 

for use in computational science. This would typically represent a half or an entire semester of material for an 

undergraduate program. If students have NVIDIA cards in their laptops, it will be possible to complete the 

entire set of work on those. If not, instructors could obtain educational accounts through XSEDE. 

In Section 2, we will present some basic definitions of metacognition, along with SMART goals, and a 

growth mindset. Section 3 contains the construction of the potential project, with its tools, testing, and websites. 

The simulation study is described in the following section. The results of the study are discussed in Section 5, 

and we provide a brief conclusion in Section 6. We present the exam and the website in the Appendix. 

Overall Definitions of Learning 

Metacognition 

The definition of metacognition is “the set of capacities through which an operative cognitive subsystem is 

evaluated or represented by another subsystem in a context-sensitive way” (Proust, 2013, p. 32). A system will 

operate when there is a task which appears wrong, or a task which has great meaning. Metacognition is part of 

mental agency, by being aware of one’s actions through self-probing and post-evaluation (Proust, 2013). We can 

think of mental agency as being the processor or controller of one’s actions. Part of these processes involves a 

mental feedback loop, known as “test-operate-test-exit” or TOTE loops (Miller, Galanter, & Pribham, 1960). 
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The first test indicates the presence of an error, or a possible difficult test. We can think of this as viewing a 

difficult exam problem. The operate step involves the actions necessary to stabilize the situation. The next test 

step will be to review the progress made. If the overall goal has been met, then the user exits. Otherwise the 

process is repeated. This has been demonstrated with programmers and programming languages with 

read-eval-print loops (REPL) (Larson, 2019). Larson states that “the quality of feedback loops decreases 

inversely with the amount of effort or time required to receive feedback”. This can be said of the entire 

programming process as well. The faster and more abundant the feedback from the program itself is, the more 

efficient the programmer becomes. Obviously, we strive for correctness during this process, particularly in 

programming. There are two types of measurable correctness: resolution and calibration (Proust, 2013). 

Resolution is a condition in which a person uses his or her judgement of knowledge to identify an item. 

Calibration reflects a prediction of average correctness in an overall test. Resolution is important in such items 

as multiple choice or matching questions. Calibration tends to be more of the big picture approach. Both impact 

study habits. However, resolution may propel a student to sheer memorization, rather than the full 

understanding of concepts. 

A discussion is presented on the feeling of knowledge (FOK), when a target is not recalled from memory, 

but a monitoring of the basic knowledge takes place (Koriat-Laughlin). The two main concepts here are 

monitoring and retrieval. The recall process is quite similar to the search for a file on a computer (see Figure 1). 

There is an abstraction called the tip of the tongue state, in which the name or idea is on the tip of the tongue. 

In terms of computation, this may be searching for a file using patterns rather than an exact name. This 

knowledge is useful because it gives the agent a frame of reference to locate the missing image. For instance, a 

person may not remember the exact form of a theorem, but he or she may know that the theorem is found in a 

certain textbook. The trace access model is considered thoroughly as well. The trace is the memory segment, 

while the access is the memory retrieval process. This model provides an excellent structure for testing the 

validity and accuracy of the FOK concept. There is a correlation between the information available at time 1 

and the accuracy of recognition at time 2. Naturally, the time lag is critical in this process. These can be 

somewhat difficult to record, as are most longitudinal studies. There are references to several empirical studies 

that indicate that both ease of access and the amount of available knowledge support the FOK validity (Koriat, 

1994). 
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Figure 1. Computing Process. 

 

SMART Goals 

SMART goals have become quite popular in current literature, in business, learning, and personal growth. 

The SMART stands for specific, measurable, achievable, relevant, and time-bound. We will consider one of the 

examples given in Bardowell (2018), which is designed specifically for college students. The goal is that of “I want 

to get better grades in my courses”. 

 Specific: I want to get an A- in each course. 

 Measurable: Over the next week, I will make appointments with each of my instructors to get study 

strategies. 

 Achievable: On the day after tomorrow, I will create a time schedule for this semester. 

 Relevant: I want to realize my full potential as a student. 

 Time-Bound: By the next major exams, I will be scoring A- or higher grades in my courses. 

We can approach this in terms of the goal of learning R for our course. 

 Specific: I want to have a thorough knowledge of the R programming language, both theoretical and 

practical. 

 Measurable: I will join some of the online R help lists in order to learn what tasks people are performing. I 

will spend at least an hour per day either reading or programming. 

 Achievable: I will create a list of tasks and homework problems to complete before the exam. 

 Relevant: I want to learn this as part of my student career, as well as potential future employment. 
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 Time-Bound: I will be performing at a high level on my course and next exam. 

Growth Mindset 

Mindset, in particular growth mindset, is another popular concept. Essentially, there are two particular 

mindsets: fixed and growth. According to Dweck (2010), a person with a fixed mindset believes that talent 

alone defines success, while a person with a growth mindset believes that hard work can supplement talent in 

order to improve a situation. Fixed mindset people are often afraid to answer questions in class and are worried 

about making mistakes. Growth mindset people know that mistakes are part of the learning process and can 

lead to greater success while gaining more knowledge. Some people embrace the hard work associated with 

difficult projects, while others tend to avoid it. In an interview with Carol Dweck (Gross-Loh, 2016), she noted 

that while praise for process is admirable, it cannot be given at every turn. Strategies must be in place to help 

students in order to avoid ineffective efforts. However, learners of any age and discipline can benefit from the 

effective use of the growth mindset. Computational science is ideal for the growth mindset, due to the intense 

and iterative process involved. Mistakes in programming, problem definition, and application are quite 

common. But obtaining the solutions can be quite exciting and lead to further growth. 

Naturally, even typically growth mindset people cannot always be “on”. There is a new strategy of “yet”, 

as seen in Back (2018). When learners say that they don’t understand an idea, the response is, “you don’t 

understand it YET”. This is a much more supportive process for the learners. The yet concept can be 

particularly effective for adult learners, since many of them have a time gap in their educational attempts. For 

computational science, mathematics, and indeed any sort of STEM discipline, the yet idea is revolutionary. Not 

every program compiles on the first attempt, nor the first proof does not always support the support the 

empirical results. But it may yet. 

A Description of the Project 

In this experiment, students will learn such topics as the statistical language R, the Fortran programming 

language, along with the directives of the Message Passing Interface (MPI) and OpenACC (R Core Team, 2018; 

Markus, 2012; Pacheco, 1997; Chandrasek & Jukeland, 2018). As previously mentioned, students may either use 

their own computers or supercomputers. Actually, many gaming computers have NVIDIA graphics cards, so 

many students can produce the work on their computers. We have created an R package to supplement the MPI 

and OpenACC directives. 

These packages, language, and directives are useful both in the classroom and in the work force. R is one 

of the most popular statistics packages, not only because it is free, but because of the incredible number of 

contributed packages. As of January 2019, there are 13,683 contributed packages on all kinds of statistical ideas. 

Some people have wondered why we are using Fortran, rather than C or C++. In a 2018 paper, Hodgess and 

Mhoon discovered the amazing speed of Fortran when combined with the other tools. They initially started with 

C but found that Fortran was significantly faster. We use the Portland Group Inc. (PGI) Fortran compiler. That 

is free and easy to download. Next, we obtain the MPICH version of MPI. There are two versions of MPI: 

OpenMPI and MPICH. We found that the MPICH works better with the Windows laptop. Both versions are 

free and can be easily installed. Finally, the OpenACC directives are used with the PGI compiler. If a user 

would prefer the GNU tools, the latest versions will support OpenACC directives, for C, C++, and Fortran. 
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Students will be encouraged to work together on projects, as well as explaining concepts to each other, as 

described in Mazur (1997). Explanations to others indicate how well a person actually understands the concept. 

The effectiveness of peer learning significantly increases the mean scores of exams, as noted in Mazur (1997). 

We developed an eight question, 60 point exam to be used as the midterm, or possibly the final, depending 

on the pace of the course. There are programming questions, a pseudocode questions, and a few multiple choice 

questions. We modified the Exam Wrappers mathematics found at Lovett (2018) to construct our website for 

the students to enter their post-test reflections. There are various sections for basic test issues and software 

issues. The responses are recorded and stored in a text file for easy processing. 

The Simulation Study 

For our simulation study, we used 1,000 computer generated sets of responses. There were 10,000 

replications of the entire process. We used the values from the software sections as our combinations; easy or 

difficult for R, Fortran, MPI, and OpenACC. We randomly generated exam scores for each response, based on 

our 60 point exam. For the initial scores, we utilized a standard normal distribution. We also wanted to consider 

learning recall over time. We simulated two sets of time lags, using exponential distributions with different rates. 

The first had a rate of 2, while the second had a rate of 5. The study was run on R and took 5.3 minutes. 

Discussion of the Study 

We grouped our results by letter grade. We let 90 percent and above represent an A, 80 through 89 percent 

as a B, 70 through 79 percent as a C, 60 through 69 percent as a D, and anything less as an F. Hence, we had 

three groups per grade, normal, exponential with the rate of 2, and exponential with the rate of 5. 

We used Fisher’s test to compare the results by grade. We obtained the p values for each test. We calculated 

the mean p value for each grade, along with the standard error. We found that there is a significant difference in 

recall for A grades. There are no significant results for the remaining grades. The standard errors for each level 

are quite stable (see Table 1). Not surprisingly, the recall impacts the highest grade most strongly. This supports 

the discussion of the impact of a time lag on FOK (Koriat, 1994). Using the different distributions also impacts 

the ease of access. Presumably, as the distributions tail off, the higher grades will fall accordingly. 
 

Table 1   

Simulation P Values by Grade 

 A B C D F 

Mean 0.058 0.393 0.500 0.501 0.500 

SE 0.002 0.003 0.003 0.003 0.003 
 

Conclusion 

We would like to teach a class using these methods. This is an interesting thought experiment, but having 

students test out the methods, particularly with some recall, peer interaction, and instructor re-evaluation would 

be most gratifying. If that is not the case, more simulation studies which take student-to-student interaction into 

account, would be enlightening. 
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Appendix 

Exam 1 

(10 points) 1. Write an R function for the Fibonacci series. 

(5 points) 2. Write the pseudocode for a “Hello World” program with MPI.  

(5 points) 3. Which of the following constants has the value 5000.0? 

a. 0.5e-4   b. 5.0e-4   c. 5.0e4   d. 5.0e-3   e. 5.0e3 

(5 points) 4. Write a logical assignment statement to carry out the following operation (not an if statement). Assign a value 

of true to an even number if M is an even number, otherwise assign a value of false. Hint: use the Mod function. 

You may use either R or Fortran. 

(5 points) 5. Which group of statements uses OpenACC to perform the following operation correctly: find esin(a(i)) for i = 1, n. 

a. do i=1,n 

b(i)=exp(sin(a(i)))  

enddo 

b. b=exp(sin(a)) 

c. call MPI_COMM_RANK( MPI_COMM_WORLD, myid, ierr )  

do i=myid+1,n,nprocs 

b(i)=exp(sin(a(i)))  

enddo 

d. !$acc parallel loop  

do i=1,n 

b(i)=exp(sin(a(i)))  

enddo 

!$acc end parallel loop 

(5 points) 6. Which of the following statement corrects brings a Fortran program “test.o” into R? 

a. library(test.o)   b. dyn.load(“test.o”) 

c. load(“test.o”)   d. read.table(“test.o”) 

(5 points) 7. What is the difference between an interpreted language and a compiled language? 

(20 points) 8. This is complicated, so read the directions thoroughly. Write an R function which calls a Fortran program. That 

program uses OpenACC to sum the numbers from 1 to 10,000. Return the total to R. 
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