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Abstract: Porous (polyamide/hydroxyapatite) composites were manufactured via SLS (selective laser sintering) process. Specimens 
with different PA2200/HA contents (100/0; 95/5; 90/10 and 80/20) were sintered at relative low laser energy density. The porous 
composite specimens were characterized for dynamic-mechanical analysis. The dynamic-mechanical properties changed as a 
function of the composition of the composite materials. Storage and loss modulus vary from 1,050 to 215 MPa and 35 to 5 MPa, 
respectively. 
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1. Introduction 

SLS (selective laser sintering) is an additive 

manufacturing process that creates 3D parts by the 

sintering of powdered materials, layer-by-layer, using 

infrared laser beams [1]. The level of control over the 

microstructure and mechanical properties of SLS parts 

is dependent on the process parameters, particularly 

powder composition, laser power and scan speed [2, 

3]. Previous works have demonstrated that SLS has 

potential to construct custom-made implants and 

synthetic body’ parts like bones and organs [4-6]. 

However, the variety of commercial materials 

available for the SLS process is restricted and this 

reduces the options during the selection of material for 

the manufacturing of parts. The use of a 

non-commercially material can increase the range of 
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properties of the SLS parts. 

Bioceramics like HA (hydroxyapatite) have been 

given a lot of attention as candidate materials to be 

used in bone repair situations because they possess 

highly desirable characteristics like biocompatibility 

and osteoconductivity [7, 8]. PA (polyamide) also is 

biocompatible and can offer advantages related to the 

low processing temperatures and high corrosion 

resistance in comparison to other materials [9, 10]. So 

a composite material may be done in such a way that 

the final product may acquire some excellent 

properties that cannot be found individually in either 

material [11].  

In a previous work, Zhang and coauthors [12] 

provided comparative results between fully dense and 

SLS specimens. In this work, the recovery and fatigue 

properties of PA2200/HA composites manufactured 

by SLS were further investigated. The influence of 

material compositions on the mechanical properties of 

the manufactured specimens is discussed. 

D 
DAVID  PUBLISHING 



Viscoelastic Properties and Creep-Fatigue Behavior of PA2200/HA Composites Manufactured by 
Selective Laser Sintering 

  

26

2. Experimental 

2.1 Materials 

The polymeric powder used in this study was 

commercial polyamide PA2200 (EOSINT) with 

average particle size of 60 µm. The HA 

(FLUKA-Assay 90%) mean particle size used was 5 

µm. The HA contents in the composites were 0, 5, 10 

and 20 wt.%. The composites were prepared with a Y 

mixer for a period of 2 h. 

2.2 SLS 

Composite specimens with dimension of 35 mm 

long  5 mm wide  1.4 mm thick were manufactured. 

The PA2200/HA specimens consisted of nine 

selective laser sintered layers with 150 µm layer 

thickness of powder deposition. Using an RF-excited 

CO2 laser, with a wavelength of 10.6 µm, laser beam 

diameter of 250 µm, scan speed of 57 mms-1 and 

chamber temperature of 140 °C, the initial properties 

of the specimens manufactured are listed in Table 1. 

These parameters were selected in a previous work 

[13] with the target to obtain samples with an 

adequate degree of sintering for our applications. 

2.3 SEM (Scanning Electron Microscopy) 

The composite specimens were observed under a 

Phillips XL30 SEM in order to investigate the fracture 

surface, particle aspects and microstructure. The 

specimens were coated with gold in a Bal-Tec Sputter 

Coater SCD005. 

2.4 Mechanical Tests 

Dynamic-mechanical analysis was performed (TA 

Instruments, model Q800) with single cantilever mode. 

Stress-strain curves were obtained at a strain rate of 2 

mmmin-1 and 30 °C. The storage modulus (E’) and 

the loss modulus (tanδ = E’/E”) at a fixed frequency 

of 1 Hz were determined in a temperature range of -10 

to 200 °C with a heating rate of 3 °Cmin-1. 

Creep-recovery data were obtained at 30 °C by 

applying the equivalent of 50% of the maximum strain 

amplitude of the previously obtained stress-strain 

curves for each specimen for 20 min. The recovery 

was then evaluated for 35 min. Fatigue experiments 

were conducted at 30 °C and 1 Hz by applying 50% of 

the maximum strain amplitude determined in the 

stress versus strain curves for each specimen.  

3. Results and Discussion 

Fig. 1 shows representative images of the fractured 

surface of PA2200/HA specimens with compositions 

of 95/5, 90/10 and 80/20 after the SLS process. The 

PA particles were observed to have good interparticle 

bonding and the HA particles are heterogeneously 

distributed between the PA matrix. In addition, a low 

chemical affinity was observed between the PA and 

HA phases. Higher weight percentage of HA means 

less binder and consequently less material to fuse and 

facilitate composite particulate bonding [10, 14]. 

Fig. 2 shows the behavior of the storage modulus 

(E’), as a function of temperature for PA2200 and 

PA2200/HA specimens. Pure PA2200 initially 

showed a slight decrease in the E’ values up to 20 °C 

followed by a sharper decrease up to 62 °C. Above 

62 °C, E’ presented a smaller decrease with an 

increase in temperature until its melting point 181 °C. 

The E’ values for the PA2200/HA specimens were 

lower than those for the pure PA2200. The E’ value 

for the 80/20 samples was the lowest (215 MPa at 0 °C) 
 

Table 1  Processing parameters and properties of PA/HA composites manufactured by SLS. 

PA2200/HA (w/w) 100/0 95/5 90/10 80/20 

Energy density (W mm-2) 0.281              0.281 0.351              0.351 

Porosity (%) 47 51 45 41 

Elastic modulus (GPa) 0.38 ± 0.05 0.31 ± 0.08 0.17 ± 0.03 0.12 ± 0.01 

Ultimate strength (MPa) 55.7 ± 10 22.2 ± 9 17.7 ± 3 5.2 ± 1 
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Fig. 3  Loss Modulus (E”) of pure components and PA2200/HA composites as a function of temperature. 
 

 
Fig. 4  Creep test curves showing values for strain (%) versus time for the PA2200/HA specimens. 
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with lower amount of HA had greater plastic 

deformation. In the fatigue test, all composite 

specimens presented no changes in their behavior and 

the 90/10 and 80/20 samples presented low fatigue 

strength under the test conditions. 
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