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Abstract 

The main objective of this paper is to propose a two-phase solution algorithm for solving the Inventory Routing Problem with 

Time Windows (IRPTW), which has not been excessively researched in the literature. The solution approach is based on (a) a 

simple simulation for the planning phase (Phase I) and (b) the Variable Neighborhood Search Algorithm (VNS) for the 

routing phase (Phase II). Testing instances are established to investigate algorithmic performance, and the computational 

results are then reported. The computational study underscores the importance of integrating the inventory and vehicle 

routing decisions. Graphical presentation formats are provided to convey meaningful insights into the problem. 
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1. Introduction 

In recent years, the Inventory Routing Problem (IRP) has received a great deal of attention from academics, 

consultants and practitioners. The IRP arises from the application of the Vendor Managed Inventory (VMI) 

concept, where the supplier (vendor) has to make inventory and routing decisions simultaneously for a 

given planning horizon. Analytically, the supplier monitors the inventory levels of the customers and 

determines (a) the delivery times (i.e., when to visit his customers), (b) the quantities (i.e., how much to 

deliver to each of them when they are served), so that stock-outs are avoided, and (c) the set of routes used 

by a fleet of vehicles to serve a given set of customers (i.e., how to integrate the customers into the vehicle 

routes). 

The Inventory Routing Problem with Time Windows (IRPTW) is a generalization of the standard IRP 

involving the added complexity that every customer should be served within a given time window. The 

IRPTW reflects a multi-functional problem that attempts to integrate two different functions within the 

supply chain network, i.e., planning and routing. In particular, planning is associated with the Inventory 

Control Problem (ICP), while routing is related to the Vehicle Routing Problem with Time Windows 

(VRPTW). The integration of ICP-VRPTW problems has scarcely been studied in the literature. Liu and 

Lee [1] proposed a two-phase heuristic method for solving the Inventory Routing Problem with Soft Time 

Windows (IRPSTW). The first phase of the heuristic algorithm finds an initial solution based on a 

construction approach, while the second phase improves the initial solution by adopting a variable 

neighborhood tabu search algorithm. In addition, Zeng and Zhao [2] represented the stochastic IRPSTW as 

a discrete time Markov decision process model and solved it by using dynamic programming 

approximations. Some applications in the context of IRPTW were presented by Zhang et al. [3], Li et al. [4] 

and Zhang et al. [5]. 

Generally, IRPs can be categorized into three levels [6,7]. The first categorization is based on the structural 

variants  presented in IRPs, namely, product, time horizon, network topology, routing, inventory policy, 

inventory decisions, fleet composition and fleet size. The second categorization is related to the availability 

of information on the demand, reflecting several types of IRPs, for example, deterministic, stochastic, and 

dynamic and stochastic IRPs. Furthermore, the third categorization is associated with the chosen solution 

approach. According to Ballou [8] the modeling of supply chain and logistics problems has traditionally 

relied on three primary methods, i.e., simulation, optimization (exact algorithm) and heuristics, which can 

be divided into two categories [9]: classic heuristics and meta-heuristics. The recent literature has shown an 

increased interest in so-called matheuristics, methods that combine exact and heuristic approaches [10]. 
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Bertazzi and Speranza [11] classified IRP decisions into two classes: (a) decisions over time only, in which 

the delivery times and the quantities have to be determined at the same time, while the routes are given, and 

(b) decisions over time and space, where delivery times, quantities and routes have to be determined 

simultaneously. In addition, the optimal solution of an IRP depends on the objective function that has been 

chosen. As a result, an objective function can be (a) the sum of transportation costs only, (b) the sum of 

transportation and inventory holding costs of the customers or (c) the sum of transportation and inventory 

holding costs of the supplier and the customers. 

In this paper, the main objective is to propose an approach for solving the IRPTW with the following 

characteristics. A single-product type has to be delivered by a fleet of capacitated homogenous vehicles 

(multiple vehicles) housed at a depot over a finite and discrete planning horizon. The network topology 

taken into account by the IRPTW model is one-to-many; that is, one supplier serves many geographically 

dispersed customers. A vehicle can visit more than one customer (multiple routing), while a vehicle’s trip 

starts and ends at the depot (supplier). As far as the replenishment policy is concerned, an Order-up-to 

Level (OU) policy is considered, in which any customer has defined a maximum inventory level and every 

time a customer is served, the delivered quantity is such that the maximum inventory level at the customer 

is reached. It is assumed that the depot has a sufficient supply of products that can cover all customers’ 

demands throughout the planning horizon. Moreover, the inventory is not allowed to become negative 

(fixed inventory) since the lowest inventory level is either fixed or equal to zero. With respect to the 

availability of information on customer demand, the proposed IRPTW model is deterministic since the 

demand is fully available to the supplier at the beginning of the planning horizon. Regarding the solution 

approach, a two-phase solution algorithm that combines a simple simulation and a Variable Neighborhood 

Search Algorithm (VNS) (i.e., a single-point search meta-heuristic) is presented to handle the IRPTW. The 

simple simulation is associated with the inventory allocation decisions (planning phase), while VNS is 

related to the routing decisions (routing phase). In addition, IRPTW decisions are decisions over time and 

space, while the objective function represents the sum of transportation costs only. This case corresponds to 

an environment in which the transportation cost represents the major cost component (e.g., the supplier and 

the customers represent entities of one and the same company). 

The remainder of the paper is organized as follows. A problem description and mathematical formulation 

are presented in Section 2. The proposed solution approach is described and analyzed in detail in Section 3. 

Section 4 presents computational results, while in Section 5, conclusions and future research are given. 

2. Problem Description and Mathematical Formulation 

The IRPTW is a variation of the classical VRPTW formulation. Whereas the VRPTW focuses on a single 

period, the IRPTW considers a multi-period time horizon, typically measured in terms of days. The IRPTW 

can be defined on a complete directed graph G = (N, A) where N =  0, n + 1 ∪ {1, … , n} is the set of 

nodes and A =   i, j : i, j ∈ N, i ≠ j  is the set of arcs. Nodes 1, … , n correspond to the customers, whereas 0 

and n + 1  represent the single depot (origin-depot and destination-depot). The set of arcs represents 

connections between the depot and the customers and among customers. No arc terminates in node 0, and 

no arc originates from node n + 1. The proposed model deals with the repeated distribution of a single 

product from a single supplier to a set of geographically dispersed customers C = {1, … , n} over a given 

time horizon of length H. The set of time horizons is denoted by T = {1, … , H}. Each customer i ∈ C faces a 

different demand di
t  per time period t ∈ T. It is assumed that the depot has a sufficient supply of items that 

can cover all customers’ demands throughout the planning horizon. To each arc (i, j) ∈ A, where i ≠ j, a 

travel cost cij  and a travel time tij  are associated. The cost and travel time matrices satisfy the triangle 

inequality. Nodes are associated with points of the plane having the given coordinates (xi , yi)∀i ∈ N, and 

the travel cost cij  for each arc (i, j) ∈ A is defined as the Euclidean distance between the two nodes i, j ∈ N. 

A fleet of m homogenous vehicles, with capacity Q, is available for the distribution of the product. The 

fleet of vehicles is denoted by K = {1, … , m}. Each customer i ∈ C is associated with a time interval  ei , li , 
called a time window and a service time si, where ei ≤ li   ∀i ∈ C. The service of each customer must start 

within the associated time window, and the vehicle must stop at the customer location for si time instants, 

where 0 ≤ si ≤ li − ei  ∀i ∈ C. Moreover, in case of early arrival at the location of customer i ∈ C, the 

vehicle generally is allowed to wait until time instant ei , i.e., until the service may start. Therefore, a 
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vehicle must arrive at the customer i ∈ C before li. It can arrive before ei but the customer i ∈ C will not be 

serviced before. The depot has also time windows  e0, l0  and  en+1, ln+1  where e0 = en+1 and l0 = ln+1. 

The time windows associated with the depot represent the earliest possible departure from the depot as well 

as the latest possible return time at the depot, respectively. As a result, vehicles may not leave the depot 

before e0 and must be back before or at time ln+1. In addition, s0 = sn+1 = 0. Each customer maintains his 

own inventory up to capacity Ui  ∀i ∈ C. At the beginning of the planning horizon each customer i ∈ C has 

an initial inventory level of Ii
0 = Ui of product. Furthermore, the formulation uses the following decision 

variables: 

 wik
t : the amount of delivery to customer i ∈ C in period t ∈ T by vehicle k ∈ K. 

 xijk
t : a binary variable that is equal to 1 if vehicle k ∈ K drives from node i to node j ∀ (i, j) ∈ A where 

i ≠ j, j ≠ n + 1, j ≠ 0, and 0 otherwise. 

 aik
t : the time vehicle k ∈ K starts to service customer i ∈ C. 

 yik
t : a binary variable that is equal to 1 if customer i ∈ C is visited by vehicle k ∈ K in period t ∈ T, and 

0 otherwise. 

 zk
t : a binary variable that is equal to 1 if vehicle k ∈ K is used in period t ∈ T, and 0 otherwise. 

 Ii
t: a nonnegative variable indicating the inventory level at customer i ∈ C at the end of period t ∈ T. 

Moreover, stock-outs are not allowed at the customers, while the quantities delivered by each vehicle in 

each route cannot exceed the vehicle capacity. As far as the replenishment policy is concerned, an Order-

up-to Level (OL) policy is considered, in which any customer has defined a maximum inventory level and 

every time a customer is served, the delivered quantity is such that the maximum inventory level at the 

customer is reached. After defining the necessary parameters and decision variables, the IRPTW can be 

formulated as shown below: 

min   cij

j∈Ni∈N

  xijk
t

t∈Tk∈K

 (1) 

Subject to:  

Ii
0 = Ui , ∀i ∈ C (2) 

Ii
t−1 − Ii

t +  wik
t

k∈K

= di
t , ∀i ∈ C, ∀t ∈ T (3) 

Ii
t ≤ Ui , ∀i ∈ C, ∀t ∈ T (4) 

 wik
t

i∈C

≤ Qzk
t , ∀k ∈ K, ∀t ∈ T (5) 

 yik
t

k∈K

≤ 1, ∀i ∈ C, ∀t ∈ T (6) 

 y0k
t

k∈K

= m, ∀t ∈ T (7) 

 yn+1,k
t

k∈K

= m, ∀t ∈ T (8) 

 xjik
t

j∈N

= yik
t , ∀i ∈ N\{0}, ∀k ∈ K, ∀t ∈ T (9) 
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 xijk
t

j∈N

= yik
t , ∀i ∈ N\ n + 1 , ∀k ∈ K, ∀t ∈ T (10) 

aik
t + si + tij ≤ ajk

t + M 1 − xijk
t  , ∀i, j ∈ N, ∀k ∈ K, ∀t ∈ T (11) 

aik
t ≥ eiyik

t , ∀i ∈ N, ∀k ∈ K, ∀t ∈ T (12) 

aik
t ≤ liyik

t , ∀i ∈ N, ∀k ∈ K, ∀t ∈ T (13) 

xijk
t ∈  0,1 , ∀i, j ∈ N, ∀k ∈ K, ∀t ∈ T (14) 

yik
t ∈  0,1 , ∀i ∈ N, ∀k ∈ K, ∀t ∈ T (15) 

Ii
t ≥ 0, ∀i ∈ C, ∀t ∈ T (16) 

wik
t ≥ 0, ∀i ∈ C, ∀k ∈ K, ∀t ∈ T (17) 

aik
t ≥ 0, ∀i ∈ C, ∀k ∈ K, ∀t ∈ T (18) 

zk
t ≤  yik

t

i∈C

 ∀k ∈ K, ∀t ∈ T (19) 

zk
t n ≥  yik

t

i∈C

 ∀k ∈ K, ∀t ∈ T (20) 

 

The total cost includes only the transportation costs as depicted in the objective function (1). Constraints (2) 

indicate that each customer i ∈ C has an initial inventory level equal to his maximum inventory level. 

Constraints (3) are the inventory balance equations for the customers. Constraints (4) limit the total amount 

of inventory to Ui , ∀i ∈ C. Constraints (5), (19) and (20) ensure that the vehicle capacities are not exceeded 

on any day t ∈ T during the planning horizon. Constraints (6)-(10) impose that each customer is visited 

exactly once, m  vehicles leave the depot, and the same vehicle enters and leaves a given customer. 

Constraints (11) ensure feasibility in terms of the time necessary when traveling from node i to node 

j ∀i, j ∈ N. In addition, ensure simultaneously the elimination of subtours where M is a large constant. 

Constraints (12) and (13) impose that service may only start within the given interval  ei , li ∀i ∈ N . 

Constraints (14)-(18) are the domain constraints. 

3. Solution Approach for the IRPTW 

Due to the NP-hard nature of the IRPTW, a two-phase solution algorithm based on (a) a simple simulation 

and (b) the Variable Neighborhood Search Algorithm (VNS) is proposed to handle the problem. The first 

phase (Phase I) is related to the planning phase of the IRPTW, in which delivery times and quantities are 

determined by implementing the well-known inventory policy (s,S) for inventory management using a 

simple simulation. In the second phase (Phase II), the VNS is applied to combine the customers into the 

vehicle routes by solving a VRPTW for a specific time period during the planning horizon. 

3.1. Phase I: Simple Simulation (planning phase) 

In particular, (s,S) inventory policy reflects the OU policy, where s and S correspond to a minimum and a 

maximum inventory level, respectively. An order for S-s units is placed immediately when the inventory 

level is reduced to s. Since stock-outs are not allowed, inventory policy  si , Si  is applied to each customer 

i ∈ C setting si = 0 ∀i ∈ C. In addition, each customer has an initial inventory level equal to his maximum 

inventory capacity Ui  ∀i ∈ C. At the end of the planning horizon, each customer should have an inventory 

level equal to his initial inventory level. 
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Since the demands are fully available to the supplier at the beginning of the planning horizon, by applying 

an (s,S) inventory policy to each customer, Phase I of the algorithm enables the supplier to run an inventory 

simulation to determine delivery times and quantities, so that stock-outs are avoided. A sample problem of 

a distribution system that comprises a single supplier and three customers can be considered to explain the 

inventory simulation algorithm (Fig. 1). In addition, Fig. 2 illustrates for each customer the relative 

inventory levels during the planning horizon and the delivery times. 

 

 

 

Fig. 1. Illustrative Example Fig. 2. Inventory Simulation 

 

Below, an algorithm (Algorithm 1) is presented that applies the (s,S) policy to customers. Initially, based 

on a specific test problem (IRPTWdata), the number of customers (NC) as well as the length of the 

planning horizon (H) are defined. Then, for each customer i, his (si , Si) inventory policy and demands 

during the planning horizon (d) are taken into account to determine the delivery quantities and times 

(deliveries) as well as the inventory levels (inventories). It is worth noting that the time starts from zero, 

where customer demand is equal to zero and an initial inventory level exists for each customer. To define 

the delivery quantities the (s,S) policy is applied to each customer. Analytically, for each time period of the 

planning horizon, if the inventory level (IL) is less than si, a delivered quantity (OQ) is defined such that 

the maximum inventory level at the customer is reached. To define the inventory levels, the inventory 

balance equation is applied. Namely, the amount of inventory in the next time period must be equal to the 

current inventory plus the amount of delivered quantity minus the demand in the next time period. 

 

Algorithm 1. Simple simulation (Phase I) 

Inputs: 𝐼𝑅𝑃𝑇𝑊𝑑𝑎𝑡𝑎  

𝑁𝐶 ← 𝑔𝑒𝑡𝑁𝑜𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝐼𝑅𝑃𝑇𝑊𝑑𝑎𝑡𝑎 , 𝐻 ← 𝑔𝑒𝑡𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝐻𝑜𝑟𝑖𝑧𝑜𝑛 𝐼𝑅𝑃𝑇𝑊𝑑𝑎𝑡𝑎 , 
𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑖𝑒𝑠 ← [], 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠 ← [] 
𝒇𝒐𝒓 𝑖 = 1: 𝑁𝐶 𝒅𝒐 

𝑠𝑖 ← 𝑔𝑒𝑡𝑠𝑖 𝐼𝑅𝑃𝑇𝑊𝑑𝑎𝑡𝑎 , 𝑆𝑖 ← 𝑔𝑒𝑡𝑆𝑖 𝐼𝑅𝑃𝑇𝑊𝑑𝑎𝑡𝑎 , 𝑑 ←  0, 𝑑𝑖
1, 𝑑𝑖

2, … , 𝑑𝑖
𝐻 , 𝐼𝐿 1 ← 𝑆𝑖 , 

𝑗 ← 1 

𝒘𝒉𝒊𝒍𝒆 𝑗 ≤ 𝐻 𝒅𝒐 

𝑗 ← 𝑗 + 1 

𝒊𝒇 𝐼𝐿 𝑗 − 1 < 𝑠𝑖  𝒕𝒉𝒆𝒏 

𝑂𝑄 𝑗 − 1 ← 𝑆𝑖 − 𝐼𝐿(𝑗 − 1) 

𝒆𝒍𝒔𝒆 
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𝑂𝑄(𝑗 − 1) ← 0 

𝒆𝒏𝒅 − 𝒊𝒇 

𝐼𝐿 𝑗 ← 𝐼𝐿 𝑗 − 1 + 𝑂𝑄 𝑗 − 1 − 𝑑(𝑗) 

𝒆𝒏𝒅 − 𝒘𝒉𝒊𝒍𝒆 

𝑛 ← 𝑗, 𝑂𝑄 𝑛 ← 𝑆𝑖 − 𝐼𝐿 𝑛 , 𝐼𝐿 𝑛 ← 𝑆𝑖 , 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠 ←  𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠; 𝑂𝑄 , 
𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑖𝑒𝑠 ←  𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑖𝑒𝑠; 𝐼𝐿  

𝒆𝒏𝒅 − 𝒇𝒐𝒓 

Output: 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠, 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑖𝑒𝑠 
 

3.2. Phase II: Variable Neighborhood Search Algorithm (routing phase) 

Since the simple simulation focuses only on the planning phase by determining the delivery times and 

quantities, the vehicle routes should be constructed. The routing phase (Phase II) is related to the usage of a 

VNS algorithm for solving a VRPTW for each time period of the planning horizon where delivery 

quantities have been scheduled. The VNS is a single-point search meta-heuristic introduced by Mladenović 

and Hansen [12]. A set of neighborhood structures Nk  where k = 1, . . , n  are defined. The algorithm 

successively explores the set of pre-defined neighborhoods to provide a better solution. Each iteration of 

the algorithm includes three steps: shaking, local search and move. At each iteration, an initial solution is 

shaked from the current neighborhood Nk . For example, a solution x′  is generated randomly in the current 

neighborhood Nk(x). Path representation is the most natural way of representing the routes of a VRPTW. 

Since a VRPTW consists of one or more routes, the length of each path is variable. On account of this, a 

dynamic variable, 𝑥, can be used to represent the solution of the VRPTW. For instance, 𝑥 =  𝑥. 𝑅1, 𝑥. 𝑅2  
where 𝑥. 𝑅1 = [0,2,0] is the first route and 𝑥. 𝑅2 = [0,1,3,0] is the second route. The zero value in each row 

vector represents the supplier, while the other numbers represent the customers. A local search procedure is 

applied to the solution x′  to generate the solution x′′ . The objective of the VNS is to minimize the cost 

associated with all proposed routes of a specific time period of the planning horizon. If a solution 𝑥 consists 

of   routes, the cost function is equal to 𝑓 𝑥 =  𝐶𝑜𝑠𝑡(𝑥. 𝑅𝑗 )
𝑗 =
𝑗 =1 . Therefore, the current solution is 

replaced by the new local optima x′′  if and only if a better solution has been found (i.e., f x′′  < 𝑓(𝑥)). The 

same search procedure is thus restarted from the solution x′′  in the first neighborhood Nk . If no better 

solution is found, the algorithm moves to the next neighborhood Nk+1, randomly generates a new solution 

in this neighborhood, and attempts to improve it. 

The generation of the initial solution is based on the Push Forward Insertion Heuristic (PFIH) [13]. The 

method tries to insert the customer between all the arcs in the current route. It selects the arc that has the 

lowest additional insertion cost. In addition, the feasibility check tests all the constraints related to time 

windows and vehicle capacity. When the current route is full of feasible insertions, PFIH will start a new 

route and repeat the procedure until all the customers are routed. As far as the first step of the VNS 

(shaking) is concerned, the 2-interchange neighborhood operator of Osman [14] as well as the CROSS-

exchange neighborhood operator of Taillard et al. [15] are used randomly (rand2interchange and 

randCrossExchange). Regarding the second step of the VNS (local search), nested neighborhoods are used 

based on the 2-interchange and CROSS-exchange mechanisms. These mechanisms (twoInterchange and 

crossExchange) are used systematically (not randomly). In general terms, the 2-interchange mechanism is 

based on customer interchange between sets of vehicles routes. The 2 means that maximum two customer 

nodes may be interchanged between routes. The CROSS-exchange mechanism swaps sequences of 

consecutive customers between two routes. The detail information about PFIH, 2-interchange and CROSS-

exchange can be obtained from papers of Solomon [13], Osman [14] and Taillard et al. [15], respectively. 

Algorithm 2 presents the template of the proposed VNS algorithm.  

 

Algorithm 2. Variable neighborhood search algorithm (Phase II) 

Input: 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠, 𝐼𝑅𝑃𝑇𝑊𝑑𝑎𝑡𝑎 

[𝐻, 𝑣𝑒𝑖𝑐𝑙𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦] ← 𝑔𝑒𝑡𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝐴𝑛𝑑𝑉𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐼𝑅𝑃𝑇𝑊𝑑𝑎𝑡𝑎 , 𝑖 ← 1 

𝒘𝒉𝒊𝒍𝒆 𝑖 ≤ 𝐻 𝒅𝒐 

𝑉𝑅𝑃𝑇𝑊 ← 𝑐𝑟𝑒𝑎𝑡𝑒𝑉𝑅𝑃𝑇𝑊𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑖𝑒𝑠, 𝑖 , 
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𝑥 ← 𝑃𝐹𝐼𝐻(𝑉𝑅𝑃𝑇𝑊, 𝑣𝑒𝑖𝑐𝑙𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦) 

𝑹𝒆𝒑𝒆𝒂𝒕 

𝑘 ← 1 

𝒘𝒉𝒊𝒍𝒆 𝑘 ≤ 2 𝒅𝒐 

𝒊𝒇 𝑘 = 1 𝒕𝒉𝒆𝒏,  
𝑥 ′ ← 𝑟𝑎𝑛𝑑2𝑖𝑛𝑡𝑒𝑟𝑐𝑎𝑛𝑔𝑒 𝑥, 𝑣𝑒𝑖𝑐𝑙𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 , 𝒆𝒏𝒅 − 𝒊𝒇 

𝒊𝒇 𝑘 = 2 𝒕𝒉𝒆𝒏,  
𝑥 ′ ← 𝑟𝑎𝑛𝑑𝐶𝑟𝑜𝑠𝑠𝐸𝑥𝑐𝑎𝑛𝑔𝑒 𝑥, 𝑣𝑒𝑖𝑐𝑙𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 , 𝒆𝒏𝒅 − 𝒊𝒇 

𝑙 ← 1, 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ← 𝑓𝑎𝑙𝑠𝑒 

𝒘𝒉𝒊𝒍𝒆 𝑙 ≤ 2 𝒅𝒐 

𝒊𝒇 𝑙 = 1 𝒕𝒉𝒆𝒏, 
𝑥 ′′ ← 𝑡𝑤𝑜𝐼𝑛𝑡𝑒𝑟𝑐𝑎𝑛𝑔𝑒 𝑥′ , 𝑣𝑒𝑖𝑐𝑙𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 , 𝒆𝒏𝒅 − 𝒊𝒇 

𝒊𝒇 𝑙 = 2 𝒕𝒉𝒆𝒏, 
 𝑥 ′′ ← 𝑐𝑟𝑜𝑠𝑠𝐸𝑥𝑐𝑎𝑛𝑔𝑒 𝑥′ , 𝑣𝑒𝑖𝑐𝑙𝑒𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 , 𝒆𝒏𝒅 − 𝒊𝒇 

𝒊𝒇 𝑓 𝑥′′  < 𝑓 𝑥′  𝒕𝒉𝒆𝒏 

𝑥 ′ ← 𝑥 ′′ , 𝑙 ← 1, 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ← 𝑡𝑟𝑢𝑒 

𝒆𝒍𝒔𝒆 

𝑙 ← 𝑙 + 1 

𝒆𝒏𝒅 − 𝒊𝒇 

𝒆𝒏𝒅 − 𝒘𝒉𝒊𝒍𝒆 

𝒊𝒇 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 𝑡𝑟𝑢𝑒 𝒕𝒉𝒆𝒏 

𝑥 ← 𝑥 ′′ , 𝑘 ← 1 

𝒆𝒍𝒔𝒆 

𝑘 ← 𝑘 + 1 

𝒆𝒏𝒅 − 𝒊𝒇 

𝒆𝒏𝒅 − 𝒘𝒉𝒊𝒍𝒆 

𝑼𝒏𝒕𝒊𝒍 𝑠𝑡𝑜𝑝𝑖𝑛𝑔 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 

𝑖 ← 𝑖 + 1 

𝒆𝒏𝒅 − 𝒘𝒉𝒊𝒍𝒆 

Output: 𝑏𝑒𝑠𝑡 𝑓𝑜𝑢𝑛𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 

 

In addition, based on a sample problem of one supplier and twenty-five customers, Fig.3 illustrates the 

IRPTW solution. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. IRPTW solution for the (1-25) IRPTW model 
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Table 1 presents the routes that take place in each time period of the planning horizon. 
 

Table 1 

Cost information and routes for the IRPTW sample problem 

IRPTW Solution 

Routes of Period 1 Routes of Period 2 Routes of Period 3 

 Route 1: 0-24-25-19-10-0 

Route 2: 0-5-3-7-9-4-1-0 

Route 3: 0-23-21-0 

Route 1: 0-13-17-18-0 

Route 2: 0-16-14-0 

Route 3: 0-20-15-12-0 

Route 4: 0-6-2-0 

Route 5: 0-8-11-22-0 

VRPTW Cost = 0 VRPTW Cost = 163.4705 VRPTW Cost = 338.1404 

Routes of Period 4 Routes of Period 5 Routes of Period 6 

Route 1: 0-24-25-23-21-0 Route 1: 0-7-0 

Route 2: 0-10-16-14-12-0 

Route 3: 0-20-18-19-9-0 

Route 4: 0-5-3-4-2-1-0 

Route 1: 0-13-17-18-10-0 

Route 2: 0-20-24-25-19-16-14-12-0 

Route 3: 0-8-15-11-0 

Route 4: 0-5-3-7-9-6-4-2-1-0 

Route 5: 0-23-22-21-0 

VRPTW Cost = 35.0462 VRPTW Cost = 247.8036 VRPTW Cost = 330.9369 

Total VRPTW Cost 

1115.3975 

 

 

4. Computational Experiments and Results 

This section presents the computational results of the proposed two-phase solution algorithm. The 

algorithm was developed in the MATLAB programming language and executed on a DELL personal 

computer with an Intel® Core™ i3-2120, clocked at 3.30 GHz, a microprocessor with 4 GB of RAM 

memory under the operating system Microsoft Windows 7 Professional. Since new benchmark instances 

were designed, the efficiency and the effectiveness of the proposed algorithm cannot be compared to other 

published IRPTW studies using benchmark instances previously introduced. This is due to the 

differentiated manner in which the proposed algorithm operates based on the assumptions presented in 

Section 2. However, this section validates the two-phase solution algorithm and then evaluates its 

performance by comparing the algorithm’s solutions with solutions obtained by solving a VRPTW for each 

time period of the planning horizon based on the known demands (the planning phase is ignored). The 

algorithm has been tested on a newly introduced set of 18 IRPTW benchmark instances described in the 

following. All benchmark instances and their computational results are available at 

http://www.msl.aueb.gr/files/SimVnsIRPTW.zip. 

The new datasets have been developed by generalizing the well-known datasets C101, C201, R101, R201, 

RC101 and RC201 of Solomon [13]. As a result, these datasets are divided into six classes. The datasets are 

named in the form of “IRPTW_Z_nX_pY” strings, where “Z” stands for the class related to a specific 

dataset of Solomon [13], i.e., C101, C201, R101, R201, RC101 and RC201, “X” stands for the number of 

customers and “Y” stands for the number of time periods. For instance, the problem IRPTW_C101_n25_p6 

represents a test problem of the first class (i.e., dataset that was generated by the dataset C101 of Solomon 

[13]) with 25 customers and a planning horizon of 6 days. Different problem sizes, based on the total 

number of customers, were designed, in each class. Specifically, each class contains problems with 25, 50 

and 100 customers. Nodes coordinates are modified in such a way that the depot is located at the origin (i.e., 

coordinates (0,0)). The distance matrix is obtained by calculating the Euclidean distances. Time windows 

related to customers as well as the maximum operation time for each vehicle are kept the same as in the 

Solomon’s datasets [13]. 

Demand exists for each customer at each time period of the planning horizon. Customer demand at each 

time period was generated according to the Poisson distribution, Poisson λ , where λ is the rate parameter. 

For each customer, the rate parameter is equal to his demand in the single-period VRPTW of Solomon [13]. 
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In addition, for each customer i ∈ C, his maximum inventory capacity is defined as Ui = 2λi. As it usually 

happens in real life, customers with higher expected demands will have higher inventory capacities. 

Therefore, for each customer i ∈ C, inventory policy (si , Si) is equal to (0, Ui) . An unlimited fleet of 

identical vehicles with capacity Q is available for the distribution of the product. The vehicle capacity is 

kept the same as in the Solomon’s datasets. At the beginning of the planning horizon, each customer i ∈ C 

has an initial inventory level up to his maximum inventory capacity, i.e., Ui. Finally, the supplier has a 

sufficient supply of products that can cover customers’ demands throughout the planning horizon. 

Since the algorithm cannot be compared to other published IRPTW studies, the best solution obtained from 

the proposed algorithm (IRPTW) is compared to the best solution obtained if the planning phase is ignored 

(p − VRPTW). In the aftermath of ignoring the planning phase, a VRPTW needs to be solved for each day 

of the planning horizon according to daily demand. The proposed VNS for the routing phase is then used to 

solve a daily VRPTW through the planning horizon. To compare the results, the following gap percentage 

formula is used: Gap  % = (SolIRPTW − Solp−VRPTW ) ×
1

Sol p−VRPTW
× 100. The Solp−VRPTW  corresponds 

to the solution obtained by solving the daily VRPTWs according to the known daily demands, while the 

SolIRPTW  determines the solution obtained by applying the proposed two-phase solution algorithm. Since 

the SolIRPTW  is compared with the Solp−VRPTW , a positive gap means that the Solp−VRPTW  is outperformed. 

The computational results obtained are summarized in Table 2. For the p − VRPTW and IRPTW problems, 

the respective total vehicle routing cost is presented. In addition, for each IRPTW the computation time (in 

seconds) needed to obtain a solution is presented, while the last column of the table shows the gap between 

the two problems reflecting the respective relative error.  

Table 2 

Experimental results 

Instance 

p-VRPTW IRPTW p-VRPTW – IRPTW  

Vehicle Routing Cost Vehicle Routing Cost 
Computation 

Time (seconds) 
Gap (%) 

IRPTW_C101_n25_p6 1150.8817 1115.3975 142.5091 -3.0832 

IRPTW_C101_n50_p6 2559.8361 2077.3767 1.0827e+03 -18.8473 

IRPTW_C101_n100_p6 5685.3165 5067.128 7.6578e+03 -10.8734 

IRPTW_C201_n25_p6 1293.2554 883.8036 165.4300 -31.6606 

IRPTW_C201_n50_p6 2753.3707 1614.115 2.1193e+03 -41.3768 

IRPTW_C201_n100_p6 3883.0779 2812.4137 3.9252e+04 -27.5726 

IRPTW_R101_n25_p6 3804.3657 1880.0941 68.9572 -50.5806 

IRPTW_R101_n50_p6 6728.73 3462.5182 461.9215 -48.5413 

IRPTW_R101_n100_p6 10388.3709 5566.806 4.6026e+03 -46.4131 

IRPTW_R201_n25_p6 2795.4622 1629.6064 135.5557 -41.7053 

IRPTW_R201_n50_p6 5106.1462 2626.2472 1.5377e+03 -48.5669 

IRPTW_R201_n100_p6 7567.238 3837.7514 1.5402e+04 -49.2846 

IRPTW_RC101_n25_p6 3257.2105 1892.2402 82.0641 -41.9061 

IRPTW_RC101_n50_p6 5969.5287 3907.7457 556.1790 -34.5385 

IRPTW_RC101_n100_p6 10783.6372 6145.4136 5.2140e+03 -43.0117 

IRPTW_RC201_n25_p6 2549.0663 1521.4596 213.5986 -40.3131 

IRPTW_RC201_n50_p6 4548.0065 2878.2674 2.2410e+03 -36.7136 

IRPTW_RC201_n100_p6 8191.1021 5053.3035 1.2644e+04 -38.3074 

Based on Table 2, it can be concluded that better solutions are obtained when the planning phase is 

considered. The ability of each customer to have storage enables a significant decrease in the VRPTW cost, 

reducing the total number of routes during the planning horizon. As it can be observed, in all cases, the 

two-phase solution algorithm provides better solutions than the p − VRPTW, with gaps in the interval of 

−3.0832 percent to −50.5806 percent. The results indicate that if the inventory capacity of each customer 

is taken into account during the planning phase, better solutions can be obtained, significantly reducing the 

total transportation cost and designating the importance of integrating supply chain activities. To illustrate 

in more detail the behavior of the proposed algorithm, more information is presented about the vehicles 
(number of routes) used in each time period of the planning horizon in Table 3. 

 



A Two-phase Solution Algorithm for the Inventory Routing Problem with Time Windows 

 

Table 3 

Number of vehicles used during the planning horizon 

Instance 

p-VRPTW  IRPTW  

P1 P2 P3 P4 P5 P6 
No. of 

Routes 
P1 P2 P3 P4 P5 P6 

No. of 

Routes 

IRPTW_C101_n25_p6 3 3 3 3 3 3 18 0 3 5 1 4 5 18 

IRPTW_C101_n50_p6 7 6 5 6 6 6 36 0 7 6 4 6 9 32 

IRPTW_C101_n100_p6 11 12 12 12 12 12 71 0 11 17 7 13 20 68 

IRPTW_C201_n25_p6 2 2 2 2 2 2 12 0 1 2 1 1 2 7 

IRPTW_C201_n50_p6 4 4 4 3 3 4 22 0 3 4 2 3 5 17 

IRPTW_C201_n100_p6 5 5 4 5 4 6 29 0 5 4 3 5 7 24 

IRPTW_R101_n25_p6 9 9 9 9 9 9 54 0 4 6 3 4 10 27 

IRPTW_R101_n50_p6 14 14 13 14 14 14 83 1 8 7 5 9 13 43 

IRPTW_R101_n100_p6 23 23 23 23 23 23 138 0 12 13 10 15 24 74 

IRPTW_R201_n25_p6 4 4 4 4 4 4 24 0 3 2 2 4 4 15 

IRPTW_R201_n50_p6 6 6 6 6 6 6 36 0 3 5 3 4 6 21 

IRPTW_R201_n100_p6 9 9 8 10 9 9 54 1 6 6 3 4 9 29 

IRPTW_RC101_n25_p6 6 6 6 6 6 6 36 0 3 6 1 6 6 22 

IRPTW_RC101_n50_p6 10 10 10 10 10 10 60 0 7 10 5 8 12 42 

IRPTW_RC101_n100_p6 20 18 19 20 17 19 113 0 11 16 5 14 20 66 

IRPTW_RC201_n25_p6 4 4 4 4 4 4 24 0 3 2 2 2 4 13 

IRPTW_RC201_n50_p6 6 6 5 5 5 5 32 0 4 2 4 4 5 19 

IRPTW_RC201_n100_p6 10 10 11 10 11 10 62 0 7 7 4 6 9 33 

Due to the fact that each customer has an initial inventory level equal to his maximum inventory capacity, 

in most cases no routes occur in period 1. However, for test problems “IRPTW_R101_n50_p6” and 

“IRPTW_R201_n100_p6” a single route takes place to satisfy the daily demand of specific customers for 

whom their daily demands are greater than their maximum inventory capacity. Since stock-outs are not 

allowed, a route takes place to satisfy their demands. In addition, the number of routes is increased at the 

end of the planning horizon since the (s,S) inventory policy is applied for each customer. According to this 

policy, for each customer, the inventory level at the end of the planning horizon should be equal to the 

initial inventory level. On the other hand, in the context of the p-VRPTW, the number of vehicles is nearly 

the same, as a specific VRPTW problem should be solved on a daily basis. 

5. Conclusions and Future Work 

In this paper, a two-phase solution algorithm was introduced to handle the IRPTW, which has not been 

excessively researched in the literature. The paper gives more emphasis to how a simple simulation can be 

used in hybrid synthesis with a VNS (a single-point search meta-heuristic) for the solution of the IRPTW. 

Particularly, the simple simulation is related to the planning phase of the IRPTW to determine the delivery 

times and quantities, while the VNS is associated with the routing phase to determine the routes. The 

algorithm has been tested on a newly introduced set of 18 IRPTW benchmark instances by comparing the 

algorithm’s solutions with the solutions obtained by solving a VRPTW for each time period of the planning 

horizon based on known demand (the planning phase is ignored). The computational results show that the 

proposed algorithm is outperformed simultaneously verifying the benefits obtained by the integration of the 

inventory and the vehicle routing decisions. Due to the myopic nature of the proposed algorithm, it is worth 

noting that the two-phase solution algorithm should be even further improved. To begin with, both 

simulation and VNS should be dealt with in an iterative way to define a re-optimization phase. In this case, 

(s,S) inventory policy can be initialized randomly and recalculated at each iteration of the solution 

algorithm. This can be obtained by applying a Discrete Event Monte Carlo Simulation for the planning 

phase of the problem. In terms of future research, the goals are (a) to extend and improve the proposed 

algorithm, (b) to explore the algorithm behavior in other problems (instances), (c) to take into account 

inventory holding costs of customers in the objective function and (d) to focus on the development of other 
meta-heuristic approaches for the solution of the IRPTW. 
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