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Abstract: This work is related to bounding the effective conductivity of an isotropic two-phase fibrous periodical composite. These 
well known bounds are classically obtained for any inclusion shape by the fourier method. So, they can be expressed only in the 
Fourier space. A real formulation of the solution of the periodical conductivity problem based on the discrete Radon transform has 
been recently proposed. The use of this framework leads us here to a simple and explicit real bounds for effective properties. The 
effect of the microstructure is hence more evidenced. It is also shown here that the obtained bounds coincide with the classical 
Hashin Shtrikmann bounds when the microstructure has some specific symmetry. 
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1. Introduction 

Analyzing the effective behavior of heterogeneous 

structure is a difficult task. This is due to the 

numerical and mathematical difficulties to be tackled 

by Bensoussan [1], Nemat-Nasser [2], Milton [3], 

Suquet [4]. However, bounding this effective behavior 

appeared from the work of Hashin-Shtrikman [5], 

Wiener bounds (1912) to be more interesting than 

giving some empirical formula. Also bounding the 

effective properties in some exact ways is used to 

validate the obtained numerical solutions. On the 

other hand and for periodical structures the bounds 

proposed in the literature are based on the Fourier 

formalism. So the influence of the microstructure is 

not explicit because of the writing in the Fourier space. 

We purpose here to formulate the classical variational 

upper and lower bounds in a real space by using the 

expression proposed by Boukour and EL Omri (BE). 

The numerical calculus is based on the DRT (discrete 
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radon transform) and Matus and Flusser [6]. This is 

the analogous discrete formulation of the solution 

obtained by Boukour and EL Omri (BE) [7] for the 

continuous case. The later is based on the Hill 

projectors [8] and the DRT proposed by Gelfand [9]. 

In Section 2 and after having presented the problem of 

a heterogeneous conductivity fibrous structure, the 

solution given by Boukour and EL Omri [7] is 

recalled for a two-phase composite. The case of 

symmetrical structure is then depicted to compare the 

bound hence obtained with the (HS) bounds. The third 

section is dedicated to the numerical algorithm used 

for the calculation of the finite radon transform. At 

last and in the fourth section, an illustration of this 

formalism is given for a hexagonal repartition of 

square fiber to check the validity of the analytical 

results here obtained. 

2. Problem Position 

2.1 Equations 

Let us consider a periodical heterogeneous medium 

consisting in different phases with different 
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conductivities. In this case the problem to solve on 

some RVEs (representative volume elements) is: 

div j = 0              (1) 

j = C e               (2) 

rot e = 0  e = - gradT       (3) 

<e> =E               (4) 

T ൌ  െ۳. ܠ  T෩            (5) 

where T, e and j denote subsequently the field soft 

temperature, gradient temperature and heat current. 

C(x) denotes the conductivity tensor of the material 

occupying the position. <f> is the mean of fover the 

RVE Ω and the tilde means: 

fሚ ൌ  fെ ൏ ݂  

2.2 The General Solution 

Different propositions to solve this problem could 

be used. For complex microstructures, the Fourier 

method is well known to be simple in its numerical 

implementation. It leads to an iterative algorithm as 

insuquet [4] or to the inversion of a system of 

equations using FFTW (Fastest Fourier Transform in 

the West) performed by Frigo [10]. The solution 

proposed by Boukour and El Omri was based on the 

Hill projectors and the discrete Fourier transform is 

formulated in the real space. It is an analogous 

discrete form which has been proposed by (BE): 

܍  ൌ ۳ െ ∑ ડ୬ . δ۱.୬ࣨא χ܍୬
       (6) 

with 

ડ୬ ൌ ሺ . C୰. ሻିଵ; ൌ n ٔ n;δC ൌ Cሺxሻ െ C୭  (7) 

where ٔ denotes a tensorial product, C(x) and CO 

denote the conductivity tensor in the RVE and in a 

reference medium. 

Xഥ୬  is the DRT (Appendix) in a direction n 

belonging to the set : 

ࣨ ൌ ሼܖ ൌ cos θ ܍  sin θ ;܍ tan θ א Էሽ 

 .,, are a unit vector܍

When considering a heterogeneous medium 

consisting two isotropic phases material, Φχ and Φ୰, 

the relative conductivities are Cχ ൌ cχ. ॴ  and 

C୰ ൌ c୰. ॴ . These two phases occupy the volumic 

fractions fχ  and fr = 1- fχ . By taking Φ୰  as the 

reference media and the characteristic function of the 

Φχ phase, 

χሺxሻ ൌ ൜
1 ; if x א  Φχ

0 ;  if not
           (8) 

The general solution Eq. (6) writes: 

e ൌ E െ ξ∑ G୬χeഥ ୬
୬ࣨא         (9) 

where ξ ൌ
ୡχି ୡ౨

ୡ౨
 and  

G୬ ൌ ሺሻିଵ ൌ ൭
cosଶθ୬

cosθ୬sinθ୬
0

cosθ୬sinθ୬

sinଶθ୬
0

0
0
1

൱  (10) 

Dual form of Solution: 

By putting mχ ൌ
ଵ

ୡχ 
 and m୰ ൌ

ଵ

ୡ౨ 
 and following 

the same steps before we find: 

ܒ ൌ ۸ െ ζ∑ K୬χഥ୬
୬ࣨא        (11) 

where  

K୬ ൌ ሺॴ െ ሻିଵ ൌ ൭
sinଶθ୬

െcosθ୬sinθ୬
0

െcosθ୬sinθ୬

cosଶθ୬
0

0
0
1

൱(12) 

and  

ζ ൌ
୫χି୫౨

୫౨
             (13) 

2.3 DRT-Based Variational Bounds of First Order 

Following the variational theorem of Hashin [11] an 

upper bound is obtained when the most conducting 

phase as reference medium and when the energy is 

uniform in this phase. The lower bound of 

complementary energy is obtained by taking as the 

most resistive phase. This theorem is universal and 

also valid in periodic homogenization, Huet [12]. 

χ܍ ൌ χ܍ ൌ χ۳χ            (14) 

୰܍ ൌ ሺ1 െ χሻ(15)            ܍ 

Using Eq. (9), a kinematic solution writes: 

܍ ൌ ۳ െ ξ∑ G୬χത୬
୬ࣨא ۳χ        (16) 

Multiplying by χ and averaging, the last equation 

becomes: 

൏ χ܍ ൌ൏ χ  ۳ െ ξ∑ G୬ ൏ ߯χത୬ ୬ࣨא ۳χ  (17) 

The constant field in the Φχ is then: 

۳ ൌ ሺfχ. ॴ െ ξ∑ G୬ ൏ ߯χത୬ ୬ࣨא ሻିଵfχ. ۳ (18) 

۳ ൌ ८. ۳              (19) 
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So, the homogenized law is: 

۸ ൌ ሺfχ. cχ۳ െ c୰ ൏ ሺ1 െ χሻe୰      (20) 

With  

J=<j>; ൏ ሺ െ χሻe୰ ൌ ൫ ॴ െ fχ८൯. ۳   (21) 

The homogenized conductivity CH୭୫ , is finally 

given by  

CH୭୫ ൌ c୰ ॴ  fχ ൫cχ െ c୰൯. ८      (22) 

2.4 Lower Bounding  

Following the same procedure by evaluating the 

current J, we obtain the homogenized resistivity 

ॸH୭୫ 

ॸH୭୫ ൌ m୰. ॴ   fχ ൫mχ െ m୰൯. ९    (23) 

where ॸ ൌ Cିଵ, the concentration tensor ९ is given 

by: 

९ ൌ ሺfχ. ॴ െ ζ∑ K୬ ൏ ߯χത୬ ୬ࣨא ሻିଵfχ.  (24) 

2.5 Symmetrical Isotropic Inclusion 

For fibrous microstructures with isotropic as shown 

in Fig. 1, constituent has the following symmetry:  

χሺx, yሻ ൌ χሺെx, yሻ ൌ χሺx, െyሻ ൌ χሺെx, െyሻ 

Using the fact that: 

 ൏ ߯χത୬

୬

 ൌ   ൏ ሺχത୬

୬

ሻଶ ൌ  fχ ሺ1 െ fχሻ 

It can be shown that: 

ξ∑ G୬δc ൏ χχത୬
୬ ൌ  ξ∑ G୬δc ൏ ሺχത୬

୬ ሻଶ   (25) 

The expression Eq. (23) becomes, putting 

δc ൌ  cχ െ c୰  and c ൌ  
ୡχ
ୡ౨

. 

 

 
Fig. 1  Symmetrical microstructure example.  
 

cRD
ି ൌ

ଶχ δୡ

ଶାሺୡିଵሻሺଵିχሻ
 c୰       (26) 

To apply the same assumption to Φ୰ we find 

cRD
ା ൌ

ିଶM δୡ

ଶାሺభ
ౙ

ିଵሻሺଵି౨ሻ
 cχ       (27) 

which are nothing else than the classical 

Hashin-Shtrikman bounds. 

3. Numerical Algorithm 

To deal with the numerical evaluation of Eqs. (15) 

and (16), let recall the finite radon transform by 

Mattus-Flusser [6] of a matrix f(pxp) representing a 

sampling form of a real function f(x). 

fሺxሻ ൌ f୭  ∑ fҧ ୫୮
୫ୀ ሺxሻ       (28) 

With  

fҧ ୫ሺi, jሻ ൌ

ቐ

ଵ

୮
∑ f൫ሾi  kሿ୮, ሾj  mkሿ୮൯ െ  f୭ሺi, jሻ୮ିଵ

୩ୀ ,  0  ݉ ൏  
ଵ

୮
∑ f൫i, ሾj  kሿ୮൯ െ  f୭ሺi, jሻ୮ିଵ

୩ୀ , m ൌ p

(29) 

and 

fሺi, jሻ ൌ
1

pଶ  fሺk, lሻ
୩,୪ ୀ ଵ..୮

 

where, p is prime and [x]p denotes x mod p. 

Numerically this calculus could be performed more 

rapidly by Chandra [13] by using the relationship 

between the FRT and the discrete Fourier transform: 

For m = 0..p-1 

f 
୫

ሺkଵ, kଶሻ  ൌ

ቊp ∑ fሺ0, rሻe
షమπ I ౨ ౡమ

౦  if ሾkଵ  m kଶሿ୮ ൌ 0୮ିଵ
୰ୀ

0 if not
     (30) 

For m = p 

f 
୮

ሺkଵ, kଶሻ ൌ  ቊp ∑ fሺr, 0ሻ୮ିଵ
୩ୀ e

షమπ I ౨ ౡభ
౦  if kଶ ൌ 0

0 if not
 (31) 

By defining a new operator ۽୧,  

For i = 0..p-1. 

,୧ሺkଵ۽ kଶሻ  ൌ  ൜
1  if ሾkଵ  ikଶሿ୮ ൌ 0
0 if not

     (32) 

For i = p 
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,୮ሺkଵ۽ kଶሻ  ൌ  ൜
1  if ሾkଶሿ୮ ൌ 0
0 if not

     (33) 

On other side we have: 

A
న ሺkଵ, kଶሻ ൌ αො୧ሺkଵሻO୧ሺkଵ, kଶሻ     (34) 

With  

αො୧ሺkଵሻ ൌ ∑ aሺr, 0ሻ. e
షమπ I ౨ ౡభ

౦୮ିଵ
୰ୀ      (35) 

By using the linearity of the DFT in Eqs. (21) and 

(27) it gives  

Aሺkଵ , kଶሻ ൌ  ∑ α୧ሺkଵሻܑ۽ሺkଵ, kଶሻ        (36) 

It can also be shown using the fact that p is prime: 

,୧ሺkଵ۽ kଶሻ۽୨ሺkଵ, kଶሻ ൌ δ,۽୨ሺkଵ, kଶሻ     (37) 

δ, is the Kronecker symbol. 

It comes  

A
న ሺkଵ, kଶሻ ൌ ,୧ሺkଵ۽  kଶሻA  ሺkଵ, kଶሻ     (38) 

So the FRT of A in the direction i: 

A
୧

ൌ ࣠ିଵ ቀ۽୧ሺkଵ, kଶሻAሺkଵ, kଶሻቁ     (39) 

where, ࣠ିଵ is the Fourier transform inverse. 

Remarking that Gሺ݇ଵ, ݇ଶሻ ൌ  Gሺ݇ଵ, ݇ଶሻ۽ሺ݇ଵ, ݇ଶሻ 

and using the linearity of the DFT let Eqs. (31) and 

(32), it gives us an interesting relationship: 

∑ G୧A
୧

୧ ൌ  ࣠ିଵሺ G. A  ሺkଵ, kଶሻ ሻ     (40) 

and  

Gሺkଵ, kଶሻ ൌ ∑ G୧۽୧୮
୧ୀ ሺkଵ, kଶሻ      (41) 

The solution Eq. (6) can then be used in a more 

useful form: 

,ොሺkଵ܍ kଶሻ ൌ ۳ሺkଵ, kଶሻ െ G . δc. χ܍ෞሺkଵ, kଶሻ     (42) 

where, ۳ሺkଵ, kଶሻ ൌ ,ሺkଵߜ kଶሻ. ۳ 

The general continuous solution Eq. (9) reads now: 

,ොሺkଵ܍ kଶሻ ൌ ۳ሺkଵ, kଶሻ െ G . δc. χො۳χ     (43) 

4. Results and Validation 

To illustrate the formalism presented here, we will 

present here an evaluation of the homogenized 

properties and also the bounds obtained by 

considering a uniform fields in the phase Φఞ. The 

example considered here consists in a two-phase 

isotropic material compositing with a hexagonal 

repartition of square fibers in Fig. 2. The RVE could 

be taken as in Fig. 3. The corresponding 

conductivities are denoted by cχ and c୰. 

It can be seen from tables that the bounds obtained 

numerically and those obtained by (HS) are the same 

as expected by the present formalism. 

Tables 1 and 2 summarize the result obtained for 

two different values of the contraste c ൌ  
ୡχ
ୡ౨

.  

 

 
Fig. 2  Periodical and symmetrical hexagonal fiber 
structure. 
 

 
Fig. 3  Unit cell microstructure. 
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Table 1  Upper and lower bounds given by Hashin-Schtrickman method an Radon Method for a contraste c = 5. 

f1 Contraste c = 5 

 HS- HS+ RD- RD+ EXACT 

0.1 1.142 1.249 1.147 1.275 1.153 

0.2 1.307 1.521 1.311 1.527 1.327 

0.3 1.500 1.818 1.510 1.834 1.548 

0.4 1.727 2.142 1.739 2.159 1.825 

0.5 2.000 2.500 2.000 2.500 2.236 

0.6 2.333 2.894 2.315 2.874 2.739 

0.7 2.750 3.333 2.725 3.309 3.228 

0.8 3.285 3.823 3.273 3.813 3.766 

0.9 4.000 4.375 3.977 4.358 4.335 
 

Table 2  Upper and lower bounds given by Hashin-Schtrickman method an Radon Method for a contraste c = 20. 

f1 Contraste c = 20 

 HS- HS+ RD- RD+ EXACT 

0.1 1.198 2.047 1.204 2.077 1.224 

0.2 1.441 3.204 1.447 3.228 1.501 

0.3 1.745 4.489 1.763 4.561 1.898 

0.4 2.134 5.925 2.155 5.99 2.534 

0.5 2.652 7.540 2.652 7.541 4.610 

0.6 3.375 9.277 3.333 9.277 7.964 

0.7 4.454 11.46 4.384 11.343 10.557 

0.8 6.241  13.87 6.195 13.82 13.336 

0.9 9.769 16.681 9.627 16.597 16.348 
 

5. Conclusion  

In this work, the conductivity bounds for a 

two-phase fibrous material are presented. The 

analytical form, here obtained, is the analogous real 

form of those obtained by Fourier method. Its 

simplicity leads us to deal some special symmetrical 

cases. In fact, and for the symmetry (cf 2.5) the 

obtained bounds are shown to be the same as the HS 

classically known as the optimal bounds [5]. Using the 

relation with the DFT, the complexity of the presented 

algorithm is also the same as the algorithm using 

Fourier method. All this encourages the use of the 

presented algorithm to deal with other situations as the 

non-linear cases or the systematic theory of Kröner 

[14] related to statistical description of heterogeneous 

structures. 
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Appendix 

DRT (Discrete Radon Transform) 

Theorem: if a function ݂ሺݔଵ, ଶሻ is supported on the unit square 0ݔ ൏ ,ଵݔ ଶݔ ൏ 1 then: 

݂ሺݔଵ, ଶሻݔ ൌ  ݂    ݂ҧሺݔଵ, ଶሻݔ


 

With  

݂ҧሺ࢞ሻ ൌ   ඵ ሚ݂൫࢞′൯ߜሺ࢞′.  െ ߩ݇ െ ݉ሻ݀࢞′
Ω

ା∞

ୀି∞

 

ߩ ൌ .࢞ ݂ ; ൌ൏ ݂ Ω; Ω denotes the RVE 

 ൌ  
݇ଵࢋ  ݇ଶࢋ

ඥ݇ଵ
ଶ  ݇ଶ

ଶ
ൌ  


݇

 

Let us remind that k1 and k2 are coprime. 

 

 


