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Abstract: Using thermal barriers at the melting point Hm and RTm, it is shown that the latter directly reflects the chaotic process, 

since it is equal to the kinetic energy reserve of chaotic (thermal) particle motions, and the first additionally takes into account the 
energy expenditure for overcoming the potential energy of the interconnection of particles, which is typical for inorganic compounds. 
Therefore, to determine the share of crystal-mobile particles responsible for the viscosity of the melt, the chaotization barrier of RTm 
should be used, since in the virtual clusters the potential binding energy is conserved, thereby compensating for the heat expense of 
breaking these bonds upon melting. Therefore, to analyze the share of crystal-mobile particles, it is necessary to use the formula of 

their share in the form: ௖ܲ௥௠ ൌ 1 െ ݌ݔ݁ ቀെ ೘்

்
ቁ. On the basis of the distribution of clusters previously found by the authors in terms 

of the number of crystal-mobile particles included in them, it was shown that all non-single crystal-mobile particles are responsible 
for the viscosity, and for flowability all single particles, including crystal-mobile, liquid-mobile and vapor-mobile. This ensures the 
superiority of the share of single particles over the share of crystal-mobile particles arranged in non-single clusters at the melting 
point, and thereby the fluidity of the melt. Based on the share distribution of clusters in terms of the number of particles entering into 

them, the share of non-single clusters responsible for the viscosity of the melt is expressed as: ௖ܲ௟ ൌ ௖ܲ௥௠
ଶ ൌ ሾ1 െ ሺെ݌ݔ݁ ௠ܶ ܶ⁄ ሻሿଶ. 

The probabilistic meaning of the formation of clusters from non-single crystal-mobile particles is extended to the formation of 
associates, which made it possible to disclose the meaning of the second level of the exponential dependence of viscosity in the 

cluster and associate model:  ൌ ଵሺ ଵܶ ܶ⁄ ሻ௔మሺ మ் ்⁄ ሻ್
, where the first level is responsible for the formation of clusters, and the 

second—for associates. This form corresponds to the physical hierarchy when combining crystal-mobile particles. The previously 
proposed method for processing viscosity data for the cluster and associate model assumed the use of three reference points from the 
available experimental array of values of viscosity at different temperatures. This method is supplemented by using the entire set of 
data on the viscosity with the preservation of two reference points and processing the rest to determine the exponent b, which has the 

meaning of aggregation degree of associates, from the linearized dependence: ln
୪୬൫ భ⁄ ൯ ୪୬ሺ భ் మ்⁄ ሻ

୪୬ሺ భ் ்⁄ ሻ ୪୬൫మ భ⁄ ൯
ൌ ܾ lnሺ ଶܶ ܶ⁄ ሻ. The new method 

was tested on reference data and showed its high statistical adequacy. 
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1. Introduction 

The concept of randomized particles is based on the 

fact that to each substance in each aggregate state 

there is inherent not only structural certainty, but also 

chaotization of the structure due to the disordered 

thermal motion of the particles. Thus, a solid state is 

characterized not only by the crystalline form, but also 

by the plasticity, which can be considered as a 
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predisposition to a liquid state; solubility, that is, a 

tendency to destroy the crystal; equilibrium vapor 

pressure, and hence the presence of high-energy 

particles in the solid state. In the liquid state, 

dynamically unsustainable (virtual) fragments of the 

solid phase and equilibrium with the vapor are 

detected. The gaseous state contains virtual 

microdroplets and microcrystals of the solid phase. 

These features are considered in our works [1, 2]. 

The features noted allow us to state that at least 

three classes of energetically different particles are 

present in each aggregate state—those that are 
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responsible for maintaining the crystalline state; the 

second—for the realization of the liquid state, and the 

third—for the most free gaseous state. Since they are 

all part of the Boltzmann distribution, they can be 

distinguished with the help of suitable energy barriers. 

As such, in the first approximation we are 

recommended to use the heats of melting Hm and 

boiling Hb. 

2. Forms of Expression of the Concept of 
Randomized Particles 

Then, bearing in mind the equality of the sum of the 

shares of all three classes to unity and the attribution 

of particles sub-barrier to the heat of melting to those 

that are responsible for the least energy-intensive solid 

state and, by virtue of their virtuality, called 

crystal-mobile, their share will be expressed as  

௖ܲ௥௠ ൌ 1 െ ݌ݔ݁ ቀെ
∆ு೘

ோ்
ቁ   (1) 

The most high-energy particles, called 

vapor-mobile, are super-barrier with respect to the 

heat of boiling, and their share is 

௩ܲ௠ ൌ ݌ݔ݁ ቀെ
∆ு್

ோ்
ቁ   (2) 

The share of liquid-mobile particles has an energy 

interval between the heats of melting and boiling, that 

is, the share minus the share of crystal-mobile and 

vapor-mobile particles: 

௟ܲ௤௠ ൌ 1 െ ௖ܲ௥௠ െ ௩ܲ௠ ൌ ݌ݔ݁ ቀെ
∆ு೘

ோ்
ቁ െ

െ݁݌ݔ ቀെ
∆ு್

ோ்
ቁ  (3) 

All three energy shares are contained in all three 

aggregate states, changing with increasing temperature 

as follows: the share of crystal-mobile particles in the 

interval from absolute zero to infinity decreases from 

unity to zero; on the contrary, the relative content of 

the vapor-mobile particles increases from zero to unity, 

and consequently the share of the liquid-mobile 

particles passes through a maximum, first increasing 

from zero to the maximum value, then decreasing to 

zero. 

It should be borne in mind that energy barriers Hm 

and Hb are used in Eqs. (1)-(3), taking into account 

the sum of the kinetic energy of the thermal motion of 

particles and the potential energy of their attraction. 

The purely thermal characteristic of the phase 

transitions will be characterized by the thermal energy 

reserves RTm and RTb. Using these values as thermal 

barriers, the randomized component in the share of 

crystal-mobile, liquid-mobile and vapor-mobile 

particles will be more clearly identified: 

௖ܲ௥௠ ൌ 1 െ ݌ݔ݁ ቀെ ೘்

்
ቁ          (4) 

௩ܲ௠ ൌ ݌ݔ݁ ቀെ
்್

்
ቁ            (5) 

௟ܲ௤௠ ൌ ݌ݔ݁ ቀെ ೘்

்
ቁ െ ݌ݔ݁ ቀെ

்್

்
ቁ    (6) 

In this case, at the points of melting and boiling, the 

ratio of the proportions of these particles is found, 

which is close to the proportion of the golden section 

(0.618:0.382), which can serve as a theoretical system 

explanation of macrotransitions from one state to 

another, since the maximum possible equilibrium 

content of particles is responsible for the stability of the 

same macro state of the system. 

Thus, at the melting points the value of the share of 

crystal-mobile particles is:  

௖ܲ௥௠,௠ ൌ 1 െ ሺെ1ሻ݌ݔ݁ ൎ 0.632       (7) 

which, with a further increase in temperature, 

decreases, and the system loses its crystalline 

connection. 

At the boiling points, the share of particles that hold 

the system in the condensed state is: 

௖ܲ௢௡ௗ ൌ 1 െ ௩ܲ௠ ൌ 1 െ ሺെ1ሻ݌ݔ݁ ൎ 0,632  (8) 

is also close to the proportion of the golden section, 

and an increase in temperature leads to a loss of liquid 

macrostate. 

But this very state is far from homogeneous and 

includes virtually coexisting phases of three classes of 

particles. A new interpretation of viscosity requires 

the detailed liquid state in terms of the form of 
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existence of these particle classes. First of all, this 

refers to the crystal-mobile particles. 

3. Combinations of Crystal-Mobile Particles 
in a Liquid 

To the known general theoretical propositions on 

the formation of solid phase nuclei in a liquid [3-5], 

we can add a more detailed treatment of the fractional 

distribution of nuclei of the solid phase, according to 

what is now called clusters, depending on their size at 

any temperature, taking into account the nature of the 

substance. These clusters are formed from 

crystal-mobile particles as incapable of overcoming 

the energy barrier of melting, even in the liquid state 

of matter. Here they themselves form chaos from the 

virtual embryos of the solid phase, creating a viscous 

consistency by the presence, as it were, of the 

non-melted fragments of the crystal lattice. At the 

same time, knowledge of the general share of 

crystal-mobile particles, previously not known, on the 

basis of Eqs. (1) or (4) substantially facilitates the 

solution of the problem of the distribution of clusters 

as a function of the number of particles in them, and 

hence also their sizes. This solution was found by us 

in two ways [1]. 

The first method took into account the probability 

of direct formation of n-particle clusters, including 

single-particle clusters, from the original set of 

crystal-mobile Pcrm particles as a result of n-particle 

collisions: 
n

crmncrm PP , .   (9) 

To ensure the equality of the sum of the 

probabilities of the formation of all n-particle clusters 

to their total share Pcrm, it was required to use the 

well-known formula for expanding the suitable 

function (1 – х)-1 in a series and by transforming it 

identically to the corresponding expression Pcrm 

through Pcrm,п: 

௖ܲ௥௠ ൌ ሺ1 െ ௖ܲ௥௠ሻ ൈ 
ൈ ሺ ௖ܲ௥௠ ൅ ௖ܲ௥௠

ଶ ൅ ௖ܲ௥௠
ଷ ൅ ௖ܲ௥௠

ସ ൅ ڮ ൅ ௖ܲ௥௠
௡ ൅ ڮ ሻ 

(10) 

This follows the formula for the distribution of 

n-particle clusters within their general content Pcrm: 

  n
crmcrmncrm PPP  1, .  (11) 

We arrive at the same result in determining the 

probability of formation of the n-particle cluster Pcrm,п 

due to mutual transformations with the (n – 1)-particle 

cluster in the reaction 

  nn KnnK 11  ,  (12) 

where Kn-1—cluster of (n – 1) particles, Kn—cluster of 

n particles. 

Under equilibrium conditions, the collision 

probability n clusters of Kn-1 is equal to the collision 

probability (n – 1) of clusters Kn 

1
1




n
K

n
K nn

PP .  (13) 

As a result of sequential consideration of the 

formation of clusters, beginning with monomers, first 

without taking into account their transformation into a 

subsequent cluster, and then this account leads to the 

result, identical as Eq. (11) 

௖ܲ௥௠,௡ ൌ ௖ܲ௥௠
௡ ሺ1 െ ௖ܲ௥௠ሻ.  (14) 

Making sure that the share of n-particle clusters, 

starting with a single-particle cluster, can be fairly 

rigorously taken into account, one can proceed to the 

justification of viscosity and fluidity as caused by the 

content of bound (actually cluster) and free (single) 

particles. 

4. Viscosity and Fluidity as a Function of the 
Content of Virtually Bound and Free 
Particles in a Liquid 

The previously noted dominance of crystal-mobile 

particles at the crystallization point explains the 

predisposition and the transition to a solid state at this 

point due to the critical level of their dominance, close 

to the proportion of the golden section ( 0.62:0.38). 

As the temperature rises, the share of these particles, 

although decreasing, remains above the share of 

liquid-mobile and vapor-mobile particles, up to 
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equalization with them at the boiling point [1]. It turns 

out that the liquid in the entire range of the liquid state 

turns out to be largely crystal-like, despite the 

apparent expression of fluidity, starting from the 

melting point. This paradox is resolved due to the 

content of a certain share of mobile single (free) 

particles in the crystal-mobile particles, which 

according to Eqs. (11) and (14) is equal to 

௖ܲ௥௠,ଵ ൌ ሺ1 െ ௖ܲ௥௠ሻ ௖ܲ௥௠.   (15) 

Single crystal-mobile particles differ from other 

crystal-mobile particles, arranged in clusters in 

accordance with Eq. (11), with a greater energy 

intensity and serve as a transitional link to the 

above-barrier particles of the heat of melting, liquid- 

and vapor-mobile. 

Then the total share of virtually free particles in the 

liquid is expressed as 

௙ܲ௥ ൌ ௖ܲ௥௠,ଵ ൅ ൫ ௟ܲ௤௠ ൅ ௩ܲ௠൯ ൌ 

ൌ ௖ܲ௥௠ሺ1 െ ௖ܲ௥௠ሻ ൅ ሺ1 െ ௖ܲ௥௠ሻ ൌ 1 െ ௖ܲ௥௠
ଶ . (16) 

In this case, the share of bound (not free) 

crystal-mobile particles turns out to be equal to 1 – Pfr 

= ௖ܲ௥௠
ଶ , and it is this, as shown in Ref. [1] with the 

example of simple substances, correlated with the 

viscosity of the melts. 

Thus, a certain set of free particles is contained in 

the liquid, which, in view of their non-association, 

must determine the free fluid’s proper behavior—its 

spreading and the ability to assume the shape of its 

enclosing vessel. 

In the variant of representing the share of 

randomized particles through the thermal barriers RTm 

and RTb (Eqs. (4)-(6)) for the share of free particles at 

the melting point, we obtain 

௙ܲ௥,௠ ൌ 1 െ ௖ܲ௥௠,௠
ଶ ൌ 

ൌ 1 െ ሾ1 െ ሺെ݌ݔ݁ ௠ܶ ௠ܶ⁄ ሻሿଶ ؆ 0.600! (17) 

The proximity to the proportion of the golden 

section means that even at the point of solidification 

of the liquid, it must maintain fluidity due to the 

prevailing share of free particles with all the 

predisposition of the substance to crystallization, in 

view of the same proximity to the critical invariant of 

stability for the total share of crystal-mobile particles 

(Eq. (7)). 

As we showed earlier in Ref. [1], the share of free 

particles at the melting point identical to Eq. (17) is 

obtained using Eq. (1) for the share of crystal-mobile 

particles with the thermal barrier expression as Hm 

and using the melting entropy equality Sm = Hm/Tm 

its positional component [6], which is close in 

magnitude to the universal gas constant R: 

௙ܲ௥,௠ ൌ 1 െ ൤1 െ ݌ݔ݁ ൬െ
௠ܪ∆

ܴ ௠ܶ
൰൨

ଶ

ൌ 

ൌ 1 െ ሾ1 െ ሺെܴ݌ݔ݁ ܴ⁄ ሻሿଶ ൌ 0.600. (18) 

This invariant was verified from the reference 

values of Hm and Tm for metals [1] and confirmed the 

idea that when melting the contribution of the 

chaotization of the structure is decisive in comparison 

with the vibrational and electronic components, since 

there is neither breaking of bonds, not loss electrical 

conductivity unlike most inorganic compounds, the 

melting of which requires not only overcoming the 

chaotization barrier of RTm, but also the potential 

energy of attraction or coupling of particles, which are 

summed up in the value of Hm. 

Probably, virtually existing clusters in the liquid 

state of matter due to excess energy of attraction form 

supercluster combinations—associates and 

aggregations of associates. The ratio Hm/(RTm) for 

simple substances and for their compounds is 

presented in Table 1 for the number of metals of the 

first group and their halides according to reference 

data [7]. 

It can be seen from the table that pure metals are 

characterized by a ratio Hm/(RTm) close to unity and 

not exceeding it in the range of 0.765-0.901 with an 

average value of 0.844. This indicates that the heat of 

melting is consumed only to overcome the 

chaotization barrier. For all halides of the main 

subgroup of the first group, this ratio significantly 

exceeds the value of the chaotic barrier RTm, which 

makes it possible to form supercluster associates   

and aggregates of associates. Thus, for the halides under 
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Table 1  Melting temperature (Tm, K), heat of fusion (Hm, J/mol), thermal chaotization barrier (RTm, J/mol) and their ratio 

Hm/(RTm) for simple substances and their compounds by the example of elements the first group of the periodic table and 

their halides. 

Substance Tm Hm RTm 
௠ܪ∆

ܴ ௠ܶ
 Substance Tm Hm RTm 

௠ܪ∆

ܴ ௠ܶ
 

Li 454 2,887 3,775 0.765 RbCl 988 18,400 8,215 2.240 

Na 371 2,690 3,085 0.872 CsCl 918 15,900 7,633 2.083 

K 337 2,325 2,802 0.830 LiBr 825 17,600 6,859 2.566 

Rb 313 2,344 2,602 0.901 NaBr 1,020 26,100 8,481 3.078 

Cs 302 2,133 2,511 0.850 KBr 1,007 25,500 8,373 3.046 

LiF 1,121.4 27,090 9,324 2.906 RbBr 955 15,500 7,940 1.952 

NaF 1,269 33,350 10,551 3.161 CsBr 909  7,558  
KF 1,131 27,020 9,404 2.873 LiI 742 14,600 6,169 2.367 

RbF 1,106 17,300 9,196 1.881 NaI 933 23,600 7,757 3.042 

CsF 976 21,700 8,115 2.674 KI 954 24,000 7,932 3.026 

LiCl 883 19,900 7,342 2.711 RbI 915 12,500 7,608 1.643 

NaCl 1,073.8 28,160 8,928 3.154 CsI 894  7,433  
KCl 1,044 26,530 8,680 3.056      
 

consideration, the excess of the heat of melting above 

the chaotization barrier is within the limits of their 

ratio from 1.643 to 3.161 with an average value of 

2.637 with the average values for fluorides close to 

2.699, chlorides—2.649, bromides—2.660 and 

iodides—2.520. Probably, this should determine the 

degree of association of clusters, which is directly 

related to the viscosity of the fluid in its new 

representation on the basis of the concept of 

randomized particles [1]. 

Thus, the problem reduces to the creation of such a 

mathematical model of the temperature dependence of 

viscosity, in which, on the one hand, a fundamental 

connection with the Boltzmann distribution through 

the concept of randomized particles would be taken 

into account and, on the other hand, the shape of the 

model could be directly expressed in terms of the 

degree of cluster association, which destruction would 

correspond to an activation barrier, usually found by 

the Frenkel equation. 

Since it is viscosity, rather than fluidity, that is 

directly experimental determination, it is expedient to 

make a direct comparison of the experimental 

temperature dependence of viscosity and the share of 

crystal-mobile particles (Eq. (4)), which reflects the 

influence of the thermal barrier of chaotization of RTm 

on the formation of virtual structural forms in 

liquids—clusters, associates and aggregations. 

5. Development of Cluster and Associate 
Model of Viscosity 

Since the temperature dependences of certain 

structural and chaosensitive characteristics of matter 

in various aggregate states are in the Boltzmann 

distribution, it is possible to directly compare these 

dependences when they are presented in a normalized 

form and provide single numerical limits of variation 

over a wide temperature interval. Conceptually, this 

corresponds to the comparative methods of calculating 

the physicochemical properties developed in the 

works of M. Kh. Karapetyants [8, 9]. This allows us to 

exclude from consideration the very fundamental 

temperature dependence of a property having a 

complex and not fully disclosed expression. 

Thus, the viscosity of the liquid substance with 

increasing temperature decreases from a certain value 

of 1 near the melting point at Т1 < Tm to a value 

tending to zero for T  . At the same time, the share 

of virtually-connected (not free) crystal-mobile 

particles, determined by the chaotization barrier Eq. (4) 

and equal to ௖ܲ௥௠
ଶ , decreases from the value 

ሾ1 െ ሺെ݌ݔ݁ ௠ܶ ଵܶ⁄ ሻሿଶ to zero. This initial position for 
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comparing the viscosity and the share of 

crystal-mobile particles can be expressed in the form 

of inequalities as follows: 

ଵܶ ൑ ܶ ൑ ∞ ,  (19) 

ଵ ൒  ൒ 0 ,  (20) 

ሾ1 െ ሺെ݌ݔ݁ ௠ܶ ଵܶ⁄ ሻሿଶ ൒ ሾ1 െ ሺെ݌ݔ݁ ௠ܶ ܶ⁄ ሻሿଶ ൒ 0

 (21) 

The dependence Eq. (20), normalized with respect 

to the initial conditions, looks like 

1 ൒  ଵ⁄ ൒ 0.   (22) 

To normalize the dependence Eq. (21), it is 

necessary to carry out some identical transformations. 

The extraction of the square root does not change 

the direction of the inequality 

ሾ1 െ ሺെ݌ݔ݁ ௠ܶ ଵܶ⁄ ሻሿ ൒ ሾ1 െ ሺെ݌ݔ݁ ௠ܶ ܶ⁄ ሻሿ ൒ 0.

 (23) 

Subtracting a unit from each part, and then 

multiplying by ( 1), taking into account the change in 

the direction of the inequality we obtain: 

ሺെ݌ݔ݁ ௠ܶ ଵܶ⁄ ሻ ൑ ሺെ݌ݔ݁ ௠ܶ ܶ⁄ ሻ ൑ 1.  (24) 

After logarithm and multiplication by ( 1), we 

arrive at expression 

௠ܶ ଵܶ⁄ ൒ ௠ܶ ܶ⁄ ൒ 0,   (25) 

in which one can normalize on the left-hand side of 

the inequality: 

1 ൒ భ்

்
൒ 0.    (26) 

Here, agreement is already reached with inequality 

Eq. (22) both with respect to the numerical limits and 

the direction of the inequalities. Moreover, the 

inequality Eq. (26) is not distorted and will assume a 

more general form if all its parts are raised to an 

arbitrary real number а: 

1 ൒ ቀ భ்

்
ቁ

௔
൒ 0.   (27) 

In this form, we can equate the internal parts of 

inequalities Eqs. (22) and (27), noting that they are 

subject to the fundamental Boltzmann distribution: 


భ

ൌ ቀ భ்

்
ቁ

௔
,    (28) 

from which we obtain the temperature dependence of 

the viscosity 

 ൌ ଵ ቀ భ்

்
ቁ

௔
.   (29) 

As it turned out when processing reference data for 

simple substances [1], the exponent a is 

temperature-dependent and has the meaning of the 

degree of association of clusters, since the assignment 

of the activation energy of the viscous flow of melts 

determined by the Frenkel’s equation on the basis of 

experimental data to this value gives a constant value, 

commensurate with the binding energy of the 

van-der-Waals forces of attraction of the particles. On 

this basis, the authors put forward the hypothesis that 

the viscous flow occurs due to the destruction of 

cluster associates with the preservation of the clusters 

themselves. 

At the same time, it was suggested that the very 

dependence of the degree of association of clusters on 

temperature obeys the Boltzmann distribution, and 

therefore it is expressed similarly to Eq. (29) with its 

reference point а2 at Т2 

ܽ ൌ ܽଶ ቀ మ்

்
ቁ

௕
,   (30) 

where b gets the meaning of the degree of aggregation 

of associates. 

As a result, a hierarchical viscous model was 

constructed: 

 ൌ ଵሺ ଵܶ ܶ⁄ ሻ௔మሺ మ் ்⁄ ሻ್
,  (31) 

which is adequate hierarchical subordination of 

clusters, associates and aggregations of associates and 

in general the complex nature of viscous flow. 

In this case, the postulated expression Eq. (30) can 

be obtained from the comparison in the general form 

of the temperature dependences of the degree of 

association of clusters and the share of underbarrier 

particles of the viscous flow the activation energy U, 

since this energy is expended on the destruction of 

associates within the cluster and associate model of 

viscosity. 

Initial inequalities: 

ଶܶ ൑ ܶ ൑ ∞ ,   (32) 
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ܽଶ ൒ ܽ ൒ 0,    (33) 

ቂ1 െ ݌ݔ݁ ቀെ
௎

ோ మ்
ቁቃ ൒ ቂ1 െ ݌ݔ݁ ቀെ

௎

ோ்
ቁቃ ൒ 0. (34) 

In the form normalized with respect to the initial 

conditions, Eq. (33) takes the form: 

1 ൒
௔

௔మ
൒ 0.    (35) 

To ensure comparability with this equation, 

inequality Eq. (34) must be brought to agreement on 

the numerical expressions for the limits and on the 

direction of the inequalities, for which it is necessary 

to carry out the identical transformations Eq. (34), 

similar to the above for comparing the temperature 

dependences of viscosity and the share of bound 

crystal-mobile particles. 

Subtracting the unit from Eq. (34) and then 

multiplying by ( 1), we obtain 

݌ݔ݁ ቀെ
௎

ோ మ்
ቁ ൑ ݌ݔ݁ ቀെ

௎

ோ்
ቁ ൑ 1.  (36) 

Logarithm and multiplying by ( 1), we find 

௎

ோ మ்
൒

௎

ோ்
൒ 0.   (37) 

By normalization on the left-hand side of the 

inequality we arrive at the inequality 

1 ൒ మ்

்
൒ 0,    (38) 

which in form already corresponds to Eq. (35), but 

preserves this correspondence in a more general form 

when raising to power b related to any real number: 

1 ൒ ቀ మ்

்
ቁ

௕
൒ 0.   (39) 

Equating the internal parts of the comparable 

inequalities Eqs. (35) and (39), we find their 

interrelation in the form 

௔

௔మ
ൌ ቀ మ்

்
ቁ

௕
,    (40) 

which after the disclosure 

ܽ ൌ ܽଶሺ ଶܶ ܶ⁄ ሻ௕   (41) 

turns out to be identical to the one contained in the 

hierarchical model Eq. (31), which was required to 

prove and show. 

In order to adapt the cluster and associate model to 

experimental data in order to adequately describe 

them and extrapolate to unexplored temperature 

regions, as a rule, high and super high, approaching 

not only the boiling point but also the critical 

temperature, it is required to develop certain data 

processing techniques to identify unknown parameters 

models а2 and b. 

6. Methods for Determining the Parameters 
of the Cluster and Associate Model of 
Viscosity 

As follows from the structure of the hierarchical 

model Eq. (31), its first level in the form Eq. (29) for 

the disclosure of the second level Eq. (30) requires the 

determination of the degree of association а2 at some 

second reference point 2 at Т2. Substituting this point 

into Eq. (29), 

ଶ ൌ ଵሺ ଵܶ ଶܶ⁄ ሻ௔మ,   (42) 

we find the value а2: 

ܽଶ ൌ
୪୬൫మ భ⁄ ൯

୪୬ሺ భ் మ்⁄ ሻ
.   (43) 

To identify the exponent b in the hierarchical model 

Eq. (31), it is necessary to have a third reference point 

3 at Т3, first defining a3 over the first level Eq. (31): 

ଷ ൌ ଵሺ ଵܶ ଷܶ⁄ ሻ௔య,   (44) 

ܽଷ ൌ
୪୬൫య భ⁄ ൯

୪୬ሺ భ் య்⁄ ሻ
,   (45) 

and then finding b using Eq. (41): 

ܽଷ ൌ ܽଶሺ ଶܶ ଷܶ⁄ ሻ௕,   (46) 

ܾ ൌ
୪୬ሺ௔య ௔మ⁄ ሻ

୪୬ሺ మ் య்⁄ ሻ
,   (47) 

or in the expanded form 

ܾ ൌ
୪୬

ౢ౤൫య భ⁄ ൯ ౢ౤ሺ೅భ ೅మ⁄ ሻ

ౢ౤ሺ೅భ ೅య⁄ ሻ ౢ౤൫మ భ⁄ ൯

୪୬ሺ మ் య்⁄ ሻ
.   (48) 

It is recommended to select the reference points (1, 

Т1), (2, Т2) and (3, Т3) at the beginning, middle and 

end of the temperature array of the experimental data, 

thus, if possible, covering the entire range of the set to 

be approximated. However, it is possible to process 
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the entire experimental array, thereby eliminating the 

lack of data processing at the selected three points, 

describing the remaining identified cluster and 

associate model and checking the adequacy using the 

correlation coefficient. To realize the complete 

approximation of the experimental data by the 

developed model, we proposed that instead of 

choosing the third point for determining the exponent 

b, linearize the exponential-power hierarchical model 

of viscosity with finding the value of the sought-for 

index by the method of least squares [10]. 

In principle, it is also possible to search through a 

variety of combinations of three arbitrary reference 

points with the exhaustion of all data, for example, 

using the combination formula for n points: 

௡ܥ
ଷ ൌ

௡!

ଷ!ሺ௡ିଷሻ!
.   (49) 

As can be seen from the formula, with increasing 

volume of the set, the number of combinations of the 

three reference points (and the corresponding 

calculations of the parameters and the objective 

function Eq. (31) itself) increases sharply. So for п = 

10 we get 

ଵ଴ܥ
ଷ ൌ 120.    (50) 

There is a possibility of a compromise solution of 

the problem, when only two reference points 1, Т1 

and 2, Т2, are chosen arbitrarily (taking into account 

recommendations in place in the array), and all others 

are used to determine the exponent b by linearizing 

the cluster and associate model Eq. (31) and finding 

this index as a proportionality coefficient by the 

method of least squares. 

The linearization of Eq. (31) can be carried out by 

double logarithm. The first leads to expression 

ln൫ ଵ⁄ ൯ ൌ ܽଶሺ ଶܶ ܶ⁄ ሻ௕ lnሺ ଵܶ ܶ⁄ ሻ. 

By grouping it in the form 

ln൫ ଵ⁄ ൯

lnሺ ଵܶ ܶ⁄ ሻ
ൌ ܽଶሺ ଶܶ ܶ⁄ ሻ௕, 

it goes to the second logarithm: 

ln
୪୬൫ భ⁄ ൯

୪୬ሺ భ் ்⁄ ሻ
ൌ ln ܽଶ ൅ ܾ lnሺ ଶܶ ܶ⁄ ሻ.  (51) 

Taking into account the expression for a2 in Eq. (43) 

and the transfer of lna2 to the left-hand side of Eq. 

(51), we obtain the equation 

ln
୪୬൫ భ⁄ ൯

୪୬ሺ భ் ்⁄ ሻ
െ ln

୪୬൫మ భ⁄ ൯

୪୬ሺ భ் మ்⁄ ሻ
ൌ ܾ lnሺ ଶܶ ܶ⁄ ሻ, 

or in the final form 

ln
୪୬൫ భ⁄ ൯ ୪୬ሺ భ் మ்⁄ ሻ

୪୬ሺ భ் ்⁄ ሻ ୪୬൫మ భ⁄ ൯
ൌ ܾ lnሺ ଶܶ ܶ⁄ ሻ, (52) 

which can be identified with the equation of a straight 

line emerging from the origin, y = bx, (without a free 

term) if we denote the left-hand side as y, and in the 

right-hand side the equality x = ln(T2/T). 

For such an equation, the direct least-squares 

method is reduced to form 

ܾ ൌ
∑ ௬೔

೙
೔సభ

∑ ௫೔
೙
೔సభ

,    (53) 

where xi, yi—the coordinates of the experimental 

points calculated by Eq. (52). 

It should be taken into account that when 

processing the experimental data, the two reference 

points 1, Т1 and 2, Т2, should be excluded not only 

as already used to identify the model Eq. (31), but also 

as leading to uncertainty when substituted in Eq. (52). 

This is all the more necessary if the coefficient b (it is 

also an indicator of the degree of aggregation of 

associates) is calculated for each experimental point 

and then the mean value 

തܾ ൌ
ଵ

௡
∑ ௬೔

௫೔

௡
௡ୀଵ .   (54) 

In the case of the most adequate subordination of 

the experimental data of the tested model Eq. (31), 

both values in Eqs. (53) and (54) should practically 

coincide, since by the method Eq. (54) the presence of 

a free term in the equation of the line is allowed, 

which would affect the difference between b and തܾ. 

Only a coincidence will indicate the natural character 

of this model. In addition, using equality Eq. (54), one 

can verify that the resulting set bi is homogeneous on 

the basis of known statistical criteria and estimate the 

accuracy of the averaged value. 

To illustrate the effectiveness of the proposed 
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method of processing and describe the experimental 

data on the temperature dependence (31), the values of 

 obtained over a wide range of temperatures, for 

example, relating to liquid lithium [7], should be used 

as a standard. 

Earlier [1] they were processed at three reference 

points Т1 = 523 K, 1 = 0.503 mPa·s; Т2 = 1,073 K, 2 

= 0.208 mPa·s; Т3 = 1,923 K, 3 = 0.145 mPa·s and are 

represented by the cluster and associate model Eq. 

(31): 

 ൌ 0.503ሺ523 ܶ⁄ ሻଵ.଴ସଵଷሺଵ଴଻ଷ ்⁄ ሻబ.భరళఴ
.    (55) 

which was characterized by an ideal adequacy, with 

the nonlinear multiple correlation coefficient R  1 

within eight significant digits. In the same place, the 

approximating equation from the monograph [11] is: 

ln ൌ 1.7563 െ 0.659 ln ܶ ൅ 304.248ܶ,  (56) 

where the viscosity is given in g/(cm·s)—Poise (1 Pa·s 

= 10 P). Here the correlation coefficient turned out to 

be high (R = 0.99811), but worse than the model Eq. 

(55), and the calculated data were systematically 

underestimated against reference experimental data. 

These data, as compared to all the others, are given in 

Table 2. 

To identify the cluster and associate model using 

the proposed method, only the first two experimental 

points mentioned above were used as references, and 

therefore the linearized Eq. (52) assumed the 

calculated form 

ln ቂ0.9603
୪୬ሺ ଴.ହ଴ଷ⁄ ሻ

୪୬ሺହଷଶ ்⁄ ሻ
ቃ ൌ ܾ lnሺ1,073 ܶ⁄ ሻ, (57) 

with ݕ ൌ ln ቈ0.9603
୪୬ ሺ 

బ.ఱబయ
ሻ

୪୬ ሺఱయమ
೅

ሻ
቉ and ݔ ൌ ln

ଵ଴଻ଷ

்
. 

The results of calculations of y and x from the 

reference data for the viscosity of liquid lithium [7] 

are given in Table 2. According to this data, by Eq. 

(53), the calculated value b = 0.1451 is obtained, and 

then Eq. (55) takes a somewhat modified form 

 ൌ 0.503ሺ523 ܶ⁄ ሻଵ,଴ସଵଷሺଵ଴଻ଷ ்⁄ ሻబ,భరఱభ
.    (58) 

The indices b in Eqs. (55) and (58) are practically 

the same, differing by 1.9%, which led to an equally 

adequate description of the experimental data set 

(Table 2), as well as Eq. (55), with the coefficient of 

nonlinear multiple correlation R = 0.99988, close to 

unity, with the high significance of this coefficient, tR 

= 24648  2, respectively, with R = 0.999996 and tR 

= 73959  2 for Eq. (55). 

It should be noted that in order to calculate the 

coefficient of nonlinear multiple correlation and its 

significance, the formulas given in the monographs 

[12, 13] were used to estimate the adequacy of 

complex dependencies: 

ܴ ൌ ඨ1 െ
ሺ௡ିଵሻ ∑ ൫௬೐೔ି௬೛,೔൯

మ೙
೔సభ

ሺ௡ି௞ିଵሻ ∑ ሺ௬೐೔ି௬೐തതതሻమ೙
೔సభ

,  (59) 

where ye,i, yp,i, ݕ௘ഥ —respectively, experimental 

(reference), calculated and average experimental 

values of the functions being compared, k—the 

number of operating factors (in this case k = 1, since 

the dependence is only on temperature); n—the 

number of points to be checked;   

ோݐ ൌ
ோ√௡ି௞ିଵ

ଵିோమ ൐ 2,  (60) 

where tR—Student’s test for a 95% confidence level 

(for higher confidence levels, the critical value of tR 

increases). 

It is also necessary to take into account that the 

value D = R2 determines the degree of determination 

(functionality) of the tested dependence [14]. 

According to this index, Eqs. (55) and (58) with their 

values R2  1 and R2 = 0.99976 can be assigned to 

functional ones. 

The results of calculating the exponent b by the 

method Eq. (54) are presented in the same table. They 

differ in some scatter characteristic for the calculation 

of yi/xi from the experimental data, although the 

average value b = 0.14772 again turns out to be very 

close to that obtained by the method of three reference 

points in Eq. (55). Nevertheless, it is expedient to 

verify the statistical homogeneity of the obtained set b, 

for example, according to Nalimov’s criterion [15, 

16]: 
 



The Concept of Randomized Particles as the Basis of Cluster and Associate Theory Viscosity and Flow 

  

182

 

Table 2  Ref. [7] and calculated data on the dynamic viscosity of lithium.  

Т, K  [7], mPas yi xi 
 (58), 
mPas 

bi 
 (65), 
mPas 

 (55), 
mPas 

 (56), 
mPas 

а (58) а (65) а (55) 

Тт = 453.7    0.595 - 0.595 0.595 0.599 1.180 1.182 1.183 

473 0.566 0.120 0.819 0.566 0.1468 0.566 0.566 0.567 1.173 1.175 1.175 

523 0.503  - 0.503 - 0.503 0.503 0.499 1.156 1.157 1.160 

573 0.453 9.36×10-2 0.627 0.453 0.1537 0.453 0.453 0.447 1.141 1.142 1.143 

623 0.412 9.11×10-2 0.544 0.413 0.1675 0.413 0.413 0.405 1.127 1.128 1.128 

673 0.379 7.5×10-2 0.466 0.380 0.1610 0.380 0.380 0.371 1.114 1.115 1.116 

723 0.352 5.69×10-2 0.395 0.352 0.1442 0.352 0.352 0.343 1.103 1.104 1.110 

773 0.328 4.97×10-2 0.328 0.328 0.1516 0.328 0.328 0.320 1.092 1.093 1.093 

823 0.308 3.82×10-2 0.265 0.308 0.1440 0.308 0.308 0.300 1.082 1.083 1.083 

873 0.290 3.17×10-2 0.206 0.290 0.1537 0.290 0.290 0.282 1.073 1.073 1.074 

923 0.275 2.06×10-2 0.151 0.275 0.1367 0.275 0.275 0.267 1.064 1.065 1.065 

973 0.261 1.47×10-2 9.78×10-2 0.261 0.1510 0.261 0.261 0.253 1.056 1.056 1.057 

1,023 0.249 6.40×10-3 4.77×10-2 0.249 0.1348 0.249 0.249 0.242 1.049 1.049 1.049 

1,073 0.238 - - 0.238 - 0.238 0.238 0.231 1.041 1.041 1.041 

1,123 0.228 -5.70×10-3 -4.55×10-2 0.228 0.1246 0.228 0.228 0.221 1.035 1.034 1.034 

1,173 0.219 -1.15×10-2 -8.91×10-2 0.219 0.1287 0.219 0.219 0.212 1.028 1.028 1.028 

1,223 0.211 -1.8×10-2 -0.131 0.211 0.1381 0.211 0.211 0.205 1.022 1.021 1.021 

1,273 0.204 -2.61×10-2 -0.171 0.204 0.1525 0.204 0.204 0.197 1.016 1.015 1.015 

1,323 0.197 -3.05×10-2 -0.209 0.197 0.1456 0.197 0.197 0.191 1.010 1.010 1.010 

1,373 0.191 -3.73×10-2 -0.247 0.191 0.1510 0.191 0.191 0.184 1.005 1.004 1.004 

1,423 0.185 -4.12×10-2 -0.282 0.185 0.1459 0.185 0.185 0.179 0.100 0.999 0.999 

1,473 0.180 -4.8×10-2 -0.317 0.180 0.1518 0.180 0.180 0.173 0.995 0.994 0.994 

1,523 0.175 -5.28×10-2 -0.350 0.175 0.1507 0.175 0.175 0.169 0.990 0.989 0.989 

1,573 0.170 -5.55×10-2 -0.383 0.170 0.1450 0.170 0.170 0.164 0.985 0.984 0.984 

Tb = 1,615  - - 0.166 - 0.167 0.167 0.160 0.981 0.980 0.980 

1,623 0.166 -6.18×10-2 -0.414 0.166 0.1493 0.166 0.166 0.156 0.981 0.980 0.980 

1,673 0.162 -6.64×10-2 -0.444 0.162 0.1496 0.162 0.162 0.152 0.976 0.975 0.975 

1,723 0.158 -6.97×10-2 -0.474 0.158 0.1470 0.158 0.158 0.148 0.972 0.971 0.971 

1,773 0.155 -7.70×10-2 -0.502 0.154 0.1532 0.155 0.155 0.145 0.968 0.967 0.967 

1,823 0.151 -7.75×10-2 -0.530 0.151 0.1462 0.151 0.151 0.142 0.964 0.963 0.963 

1,873 0.148 -8.24×10-2 -0.557 0.148 0.1479 0.148 0.148 0.139 0.961 0.959 0.959 

1,923 0.145 -8.62×10-2 -0.583 0.145 0.1478 0.145 0.145 0.136 0.957 0.956 0.955 

1,973 0.142 -8.9×10-2 -0.609 0.142 0.1462 0.142 0.142 0.133 0.953 0.952 0.952 

2,023 0.139 -9.10×10-2 -0.634 0.139 0.1435 0.139 0.140 0.130 0.950 0.949 0.948 

2,073 0.137 -9.77×10-2 -0.659 0.137 0.1483 0.137 0.137 0.128 0.947 0.945 0.945 

2,123 0.135 -0.104 -0.682 0.134 0.1518 0.134 0.135 0.126 0.943 0.942 0.941 

2,173 0.132 -0.103 -0.706 0.132 0.1461 0.132 0.132 0.123 0.940 0.939 0.938 

2,223 0.130 -0.108 -0.728 0.130 0.1478 0.130 0.130 0.121 0.937 0.935 0.935 

2,273 0.128 -0.112 -0.751 0.128 0.1485 0.128 0.128 0.121 0.934 0.932 0.932 

Tcr = (3,223)  - - (0.100) - (0.101) (0.101) - 0.888 0.886 (0.885) 

 - -0.9508 -6.5505 - 5.153 - - - - -  
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௠௔௫ݔ
௠௜௡

ൌ
ฬ௫ҧି௫೘ೌೣ

೘೔೙
ฬ

ௌሺ௫ሻට೙షభ
೙

൑  ௖௥,  (61)ݎ

ܵሺݔሻ ൌ ට∑ ሺ௫೔ି௫ҧሻమ೙
೔సభ

௡ିଵ
 ,   (62) 

where ݔ௠௔௫
௠௜௡

—minimax set; ݔҧ —average value; 

S(x)—standard error; n—volume of the set. 

The normative tabular values of the Nalimov’s 

criterion for the 5% significance level are given in Ref. 

[15], which were approximated in Ref. [17] within 5% 

of the equation. 

௖௥ݎ ൌ 1,483݂଴,ଵ଼଻,    (63) 

where f = n-2—number of degrees of freedom of the 

Nalimov’s criterion in Eq. (63). 

According to the data in Table 2, the value S(x) = 

7.836×10-3 was found for b. The largest deviation 

from the average value of b yields the value bmin = 

0.1252 at T = 1, 123 K. By Eq. (63) for n = 35 rcr = 

2.852. Hence the equality-inequality Eq. (61) is 

expressed as 

௠௔௫ݎ 
௠௜௡

ൌ
|଴,ଵସ଻ଶି଴,ଵଶହଶ|

଻,଼ଷ଺·ଵ଴షయඥଷସ/ଷହ
ൌ 2,849 ൏ ௖௥ݎ ൌ 2,852, (64) 

that is, the homogeneity condition is satisfied and the 

average value of the exponent b = 0.14772 is 

representative for the whole set bi. This allows us to 

introduce it into the computational form of the cluster 

and associate model Eq. (31): 

 ൌ 0,503ሺ523/Тሻଵ,଴ସଵଷሺభబళయ
Т

ሻబ,భరళమ
   (65) 

The results of the calculation are shown in Table 2. 

Here, an ideal agreement is again observed with the 

reference data on the correlation coefficient R = 

0.999996 for tR = 73959  2 and D = R2 = 0.999992. 

As noted above, the indicator b has the meaning of 

the degree of aggregation of the associates, or the 

average number of associates in aggregation. For b < 

1, some of the associates are not aggregated, and this 

part is larger, the smaller b. Thus, for b  0, the 

degree of association of clusters loses its dependence 

on temperature and tends to the value a = 1.0413 in 

this case, close to unity, that is, to the absence of 

associate formation, more precisely, to the 

identification of associates and clusters, since the 

association contains only one cluster. This is typical 

for metallic liquids due to the non-localized nature of 

the electronic connection. Probably, for complex 

inorganic substances, while maintaining the same 

form of the cluster and associate model, the indicators 

a and b will have higher numerical values. 

Thus, on the latest reference data on the dynamic 

viscosity of liquid lithium, it is established that the 

cluster and associate model of the temperature 

dependence of this characteristic is fully adequate 

according to the three methods of adaptation of this 

model: three reference points and two reference points 

with additional consideration of all other points in the 

linearization versions of the model with a free member 

and without it. This indicates the functional nature of 

the cluster and associate model that reveals the virtual 

nature of the formation of clusters from crystal-mobile 

particles, associates from clusters and aggregations 

from associates equally subordinate to the Boltzmann 

energy spectrum. It means a decreasing degree of 

association from temperature, practically 

indistinguishable in all variants of adaptation of this 

model. And the closeness of the degree of association 

of clusters to unity for a typical lithium metal in the 

entire temperature range means practical identification 

of associates with clusters and follows directly from 

the metallic nonlocalized nature of the bond of atoms, 

unlike the one localized for elements with a covalent 

bond nature, as established in our book [1]. Therefore, 

the proposed methods for processing experimental 

data for temperature dependences of viscosity can be 

applied to complex substances. 

In addition to the applicability of the basic data 

processing methods to the model Eq. (31), additional 

ones should be used, taking into account the 

mathematical extreme nature of the given model and 

revealed analytically by the conditions of its 

extrapolation to the critical temperature region for the 
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liquid state of matter [1]. According to reference data 

for inorganic and organic substances, a correlation 

was found between the boiling point and the critical 

temperature [18], close to the proportion of the golden 

section:  

௖ܶ௥ ൌ 1,603 ௕ܶ.     (66) 

In this case, the minimum point of the model Eq. 

(31), is manifested under condition that 

ܶ,௠௜௡ ൌ ଵܶ݁ଵ/௕,    (67) 

if it turns out that T,min  Tcr, it should be attributed to 

the value of the exponent b, equal to 

ܾ ൌ 1 lnሺ ௖ܶ௥ ଵܶ⁄ ሻ⁄ ,    (68) 

than provide decreasing character pattern Eq. (31) up 

to the critical point (after the viscosity will have to 

treat gaseous state indistinguishable from liquid). 
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