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Isogeometric Analysis for Linear and Nonlinear 

Cantilever in CAD 

Mian Zhou 
Department of Machine and Process Engineering, Technical University Kaiserslautern, Kaiserslautern 67655, Germany 
 
Abstract: A novel method for the mechanical simulation of linear and nonlinear Timoshenko-beams has been presented. The beam 
strains are based on a kinematic assumption where the shear deformation and rotational are considered. Applying the isoparametric 
concept the kinematic quantities are approximated using NURBS (non-uniform Rational B-spline) functions. This numerical 
simulation can be called as isogeometric analysis, which can improve the efficiency in CAD (computer aided design). Furthermore, 
an efficient Code has been developed and the results for two numerical applications are given in the end. 
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1. Introduction

Three-dimensional beam-like structures can be 
found frequently in man-made structures, like 
helicopter blades, robot arms or rotor blades. Due to 
the shear deformation and rotational bending effects, 
Stephen Timoshenko introduced the so-called 
Timoshenko-beam theory early in the 20th century to 
describe the behavior of this beams 

  

[1]. According to 
the Timoshenko-beam theory, several authors developed 
finite element formulations for three-dimensional 
beams using a Lagrangian formulation, see Bathe and 
Bolourchi [2]. The problem of this formulation is 
imprecise approaches of the geometry of the 
three-dimensional beam in CAD and analysis. 
Furthermore this kind of formulation increases the 
computational cost. 

Currently we can solve this problem with the help 
of the isogeometric analysis, which is developed by J. 
Austin Cottrell and Thomas J. R. Hughes in 2005. The 
isogeometric analysis is the bridge between 
integrating FEA (finite element analysis) and NURBS 
(non-uniform rational B-spline) based CAD (computer 
aided design). The basic idea of isogeometric analysis 
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is to use the same geometry description for design and 
analysis. Also there are many computational 
technologies that may be used in isogeometric 
analysis, e.g. NURBS or T-splines. Due to the 
convenience of the free form surface modeling the 
NURBS-functions are chosen as usual. The 
isogeometric analysis has been provided by many 
authors (e.g. Morganti [3]), that the isogeometric 
analysis can increase the accuracy and reduce the 
computational cost. 

In this paper the isogeometric analysis for linear 
and nonlinear cantilever is discussed. A cantilever is a 
basic structural element in industrial design, e.g. beam 
or plate, which can be considered as three-dimensional 
beam. Furthermore the author developed an efficient 
Code in order to calculate the deflection of the 
cantilever under different loads. 

2. Isogeometric Parameterization of the 
Beam Model 

2.1 NURBS Basis Functions and Curves 

In Computational Engineering B-spline and 
NURBS are commonly used for describing curves and 
surfaces because of its great flexibility and precision. 
Here we briefly discuss the definitions and properties 
of NURBS, which can be found in Refs. [4, 5]. 

D 
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Before talking about the B-spline we define a knot 
vector Ξ = {𝜉𝜉1, 𝜉𝜉2, … , 𝜉𝜉𝑛𝑛+𝑝𝑝+1}, which is non-decreasing 
sequence of knots 𝜉𝜉𝑖𝑖 ∈ ℝ on the parameter space. 𝑖𝑖 is 
the knot index from 1 to 𝑛𝑛 + 𝑝𝑝 + 1, where 𝑝𝑝 is the 
polynomial order and 𝑛𝑛  is the number of basis 
functions. If the knots are divided equidistantly 
( 𝜉𝜉𝑖𝑖 − 𝜉𝜉𝑖𝑖+1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ) into parameter space, the  
knot vector is defined as uniform, otherwise it is 
called non-uniform. Usually we discuss the open knot 
vector, which the first and last knot values repeat 
𝑝𝑝 + 1 times 

( Ξ =
{𝜉𝜉1, 𝜉𝜉2, … , 𝜉𝜉𝑝𝑝+1���������

𝑝𝑝+1

, … , 𝜉𝜉𝑛𝑛−1, 𝜉𝜉𝑛𝑛 , 𝜉𝜉𝑛𝑛+1, 𝜉𝜉𝑛𝑛+2, … , 𝜉𝜉𝑛𝑛+𝑝𝑝+1�������������
𝑝𝑝+1

} ). 

The B-spline basis functions 𝑁𝑁𝑖𝑖 ,𝑝𝑝(𝜉𝜉) are defined 
by the Cox-de Boor recursion formula (Cox, 1971; de 
Boor, 1972). If  𝑝𝑝 = 0: 

𝑁𝑁𝑖𝑖 ,0(𝜉𝜉) = �1, 𝜉𝜉𝑖𝑖 ≤ 𝜉𝜉 < 𝜉𝜉𝑖𝑖+1
0, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

� (1) 

If  𝑝𝑝 > 0: 

𝑁𝑁𝑖𝑖,𝑝𝑝(𝜉𝜉) =
𝜉𝜉 − 𝜉𝜉𝑖𝑖
𝜉𝜉𝑖𝑖+𝑝𝑝 − 𝜉𝜉𝑖𝑖

𝑁𝑁𝑖𝑖 ,𝑝𝑝−1(𝜉𝜉)

+
𝜉𝜉𝑖𝑖+𝑝𝑝+1 − 𝜉𝜉
𝜉𝜉𝑖𝑖+𝑝𝑝+1 − 𝜉𝜉𝑖𝑖+1

𝑁𝑁𝑖𝑖+1,𝑝𝑝−1 
(2) 

Caution: The quotient 0
0�  is defined to be 0. 

Furthermore we introduce some important 
properties for B-spline, which are usually used. 

Partition of unity: ∑ 𝑁𝑁𝑖𝑖 ,𝑝𝑝(𝜉𝜉) = 1𝑛𝑛
𝑖𝑖=0 ，for all ξ; 

Nonnegativity: 𝑁𝑁𝑖𝑖 ,𝑝𝑝(𝜉𝜉) ≥ 0,∀𝜉𝜉; 
Derivatives: Each 𝑝𝑝𝑡𝑡ℎ order function has p −

1 continuous derivatives across the boundaries. 
Next we introduce vector-valued coefficients  𝐵𝐵𝑖𝑖 , 

which are called control points. With help of those we 
can build a B-spline curve easily. 

C(ξ) = �𝑁𝑁𝑖𝑖 ,𝑝𝑝(𝜉𝜉)𝐵𝐵𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (3) 

The difference between B-spline basis 
functions  𝑁𝑁𝑖𝑖 ,𝑝𝑝  and NURBS basis functions 𝑅𝑅𝑖𝑖 ,𝑝𝑝  is 
additional weight s𝜔𝜔𝑖𝑖 , which is ever positive. 

𝑅𝑅𝑖𝑖 ,𝑝𝑝 =
𝑁𝑁𝑖𝑖 ,𝑝𝑝(𝜉𝜉)𝜔𝜔𝑖𝑖

∑ 𝑁𝑁𝑗𝑗 ,𝑝𝑝(𝜉𝜉)𝜔𝜔𝑗𝑗𝑛𝑛
𝑗𝑗=1

 (4) 

Analog a NURBS curve can be written as 

C(ξ) = �𝑅𝑅𝑖𝑖 ,𝑝𝑝(𝜉𝜉)𝐵𝐵𝑖𝑖

𝑛𝑛

𝑖𝑖=1

. (5) 

In the end some important properties of spline 
curves on open knot vectors will be mentioned. 

Convex hull property: The curve is completely 
contained in its control polygon. 

Locality: 𝑁𝑁𝑖𝑖 ,𝑝𝑝(𝜉𝜉) = 0, 𝑖𝑖𝑖𝑖 𝜉𝜉 ∉ [𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖+𝑝𝑝+1); 
Interpolation of start and end points: C(𝜉𝜉1) = 𝐶𝐶1, 

C(𝜉𝜉𝑚𝑚) = 𝐶𝐶𝑛𝑛 . 
Affine transformations of the curve can be 

performed directly on its control points. 

2.2 Parameterization of Linear Timoshenko-Beam 

One of the simplest and most important design 
elements is the beam, which has a ready application in 
engineering work. There are two assumptions of beam, 
which should be mentioned. The one is “plane 
sections remain plane”, which means, the plane 
cross-sections of the undeformed beam remain plane 
to the deflection curve of the deformed beam. Another 
is that, the deformation of the beam in the vertical 
direction should be neglected. In this paper we discuss 
the Timoshenko-beams, which occur in different areas 
of engineering practice. 

According to the technical mechanics [6] we can 
write the following basic equations easily. 

ω = ω(𝑥𝑥)𝑢𝑢(𝑥𝑥, 𝑧𝑧) = −𝑧𝑧𝑧𝑧(𝑥𝑥)𝛾𝛾𝑥𝑥𝑥𝑥 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜖𝜖

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝑧𝑧𝛽𝛽′𝛾𝛾 = 𝜔𝜔′ − 𝛽𝛽 
(6) 

For linear Timoshenko-beam the transverse   
force 𝑄𝑄 and the bending moment 𝑀𝑀 can be written 
as: 

𝑄𝑄 = �𝜏𝜏𝜏𝜏𝜏𝜏 = 𝐺𝐺𝐴̅𝐴𝛾𝛾𝛾𝛾 = �𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 = −𝐸𝐸𝐸𝐸𝛽𝛽′. (7) 

Here 𝐴𝐴�  is the cross-section due to the shear stress. 
Furthermore the deflection and the Twist can be 
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written as 𝜔𝜔 and 𝛽𝛽. Now the potential of internal and 
external forces can be presented as following: 

∏𝑖𝑖[𝜔𝜔,𝛽𝛽] =
1
2
� (𝑀𝑀𝛽𝛽′ + 𝑄𝑄𝑄𝑄)𝑑𝑑𝑑𝑑
𝑙𝑙

0
∏𝑒𝑒[𝜔𝜔,𝛽𝛽]

= −� 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞
𝑙𝑙

0
 

(8) 

According to the principle of virtual work the total 
potential is zero. 
𝛿𝛿(∏𝑖𝑖[𝜔𝜔,𝛽𝛽] +∏𝑎𝑎 [𝜔𝜔,𝛽𝛽])

= � 𝐸𝐸𝐸𝐸𝛽𝛽′𝛿𝛿𝛽𝛽′𝑑𝑑𝑑𝑑
𝑙𝑙

0

+ � 𝐺𝐺𝐴̅𝐴(𝜔𝜔′ − 𝛽𝛽)(𝛿𝛿𝜔𝜔′ − 𝛿𝛿𝛿𝛿)𝑑𝑑𝑑𝑑
𝑙𝑙

0

−� 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞
𝑙𝑙

0
= 0 

(9) 

Next we can approximate Eq. (9) with finite 
element. According to the isoparametric concept, the 
following kinematic variables are interpolated with 
NURBS shape functions 𝑁𝑁𝐼𝐼(𝜉𝜉). 

𝜔𝜔𝑒𝑒 = [𝑁𝑁1
𝑒𝑒 0 𝑁𝑁2

3 0 … 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒 0]𝒖𝒖𝑒𝑒   (2) 
𝛽𝛽𝑒𝑒 = [0 𝑁𝑁1

𝑒𝑒 0 𝑁𝑁2
𝑒𝑒 … 0 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒 ]𝒖𝒖𝑒𝑒   (3) 

𝛿𝛿𝛿𝛿𝑒𝑒 = [𝑁𝑁1
𝑒𝑒 0 𝑁𝑁2

3 0 … 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒 0]𝛿𝛿𝒖𝒖𝑒𝑒   (4) 
𝛿𝛿𝛿𝛿𝑒𝑒 = [0 𝑁𝑁1

𝑒𝑒 0 𝑁𝑁2
𝑒𝑒 … 0 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒 ]𝛿𝛿𝒖𝒖𝑒𝑒   (5) 

Hereby the number of the element in the columns 
matrix  
𝒖𝒖𝑒𝑒 = [𝜔𝜔1

𝑒𝑒 𝛽𝛽1
𝑒𝑒 𝜔𝜔2

𝑒𝑒 𝛽𝛽2
𝑒𝑒 … 𝜔𝜔𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒 𝛽𝛽𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒 ] is 

dependent on the control points of NURBS-functions. 
Furthermore, 𝜔𝜔𝑒𝑒′ , 𝛽𝛽𝑒𝑒′ , 𝛿𝛿𝛿𝛿𝑒𝑒′  and 𝛿𝛿𝛿𝛿𝑒𝑒′ are given 
replacing 𝑁𝑁𝐼𝐼 by 𝑁𝑁𝐼𝐼′ in Eqs. (10)-(13). Thus, Eq. (9) 
can be expressed as follows 

 

𝛿𝛿∏𝑒𝑒 = (𝛿𝛿𝒖𝒖𝑒𝑒)𝑇𝑇 ��∫ 𝑩𝑩𝛽𝛽
𝑒𝑒𝑒𝑒𝐸𝐸𝐸𝐸𝑩𝑩𝛽𝛽

𝑒𝑒 𝑑𝑑𝑥𝑥𝑒𝑒𝑙𝑙𝑙𝑙
0 + ∫ (𝑩𝑩𝜔𝜔

𝑒𝑒𝑒𝑒 − 𝑵𝑵𝛽𝛽
𝑒𝑒𝑒𝑒)𝐺𝐺𝐴𝐴𝑠𝑠(𝑩𝑩𝜔𝜔

𝑒𝑒 − 𝑵𝑵𝛽𝛽
𝑒𝑒 )𝑑𝑑𝑥𝑥𝑒𝑒𝑙𝑙𝑙𝑙

0�����������������������������������
𝑲𝑲𝑒𝑒

�𝒖𝒖𝑒𝑒 − ∫ 𝑵𝑵𝜔𝜔
𝑒𝑒𝑒𝑒𝒒𝒒𝑑𝑑𝑥𝑥𝑒𝑒𝑙𝑙𝑙𝑙

0���������
𝒇𝒇𝑒𝑒

�     (6) 

 

Beside, the matrix 𝑲𝑲𝑒𝑒  and the vector 𝒇𝒇𝑒𝑒  denote 
the tangential stiffness matrix and sum of the internal 
and external forces. 

𝑲𝑲𝑒𝑒𝒖𝒖𝑒𝑒 = 𝒇𝒇𝑒𝑒               (7) 

2.3 Parameterization of Nonlinear Timoshenko-Beam 

The finite element formulation of nonlinear 
Timoshenko-beam is different from the linear 
situation. First of all we introduce an orthogonal basis 
system 𝑨𝑨𝑖𝑖  of reference configuration and 𝒂𝒂𝑖𝑖 of 
current configuration. Therefore we can describe the 
axis of the beam along 𝑨𝑨1 with the arc-length 
parameter 𝑆𝑆 = 𝜉𝜉1 ∈ [0,𝐿𝐿]. The cross-sections of the 
beam are described by the local coordinates {𝜉𝜉2, 𝜉𝜉3}, 
which is shown in Fig. 1. 

Hence, the position vectors of the undeformed and 
deformed cross-sections can be expressed as 
𝑿𝑿(𝜉𝜉2, 𝜉𝜉3, 𝑆𝑆) = 𝑿𝑿0(𝑆𝑆) + 𝜉𝜉2𝑨𝑨2(𝑆𝑆) + 𝜉𝜉3𝑨𝑨3(𝑆𝑆)    (8) 
𝒙𝒙(𝜉𝜉2, 𝜉𝜉3, 𝑆𝑆, 𝑡𝑡) = 𝒙𝒙0(𝑆𝑆, 𝑡𝑡) + 𝜉𝜉2𝒂𝒂2(𝑆𝑆, 𝑡𝑡) + 𝜉𝜉3𝒂𝒂3(𝑆𝑆, 𝑡𝑡) 

(17) 
𝑨𝑨𝑖𝑖  and 𝒂𝒂𝑖𝑖  are the vectors, which follow from the 

orthogonal transformations (𝑨𝑨𝑖𝑖 = 𝑹𝑹0𝒆𝒆𝑖𝑖 , 𝒂𝒂𝑖𝑖 = 𝑹𝑹𝒆𝒆𝑖𝑖 ). 
The matrix 𝑹𝑹  follows from the so-called Rodrigues 
formula. Applying the following well-known 
Euler-Lagrange equilibrium equations of a 
three-dimensional beam 

𝒇𝒇′ + 𝒏𝒏� = 0              (9) 
𝒎𝒎′ + 𝒙𝒙0

′ × 𝒇𝒇 + 𝒎𝒎� = 0          (10) 
We obtain the virtual work that can be expressed as 

follows 

𝒢𝒢(𝒗𝒗,𝛿𝛿𝒗𝒗) = −∫ �(𝒇𝒇′ + 𝒏𝒏�) ∙ 𝛿𝛿𝒙𝒙0 + �𝒎𝒎′ + 𝒙𝒙0
′ × 𝒇𝒇 +𝑠𝑠

𝒎𝒎∙𝛿𝛿𝒘𝒘𝑑𝑑𝑆𝑆=0.  (11) 
Now we introduce two strain measures 𝜀𝜀 and 𝜅𝜅, 

which have been proposed by Reissner [7]. 
𝜺𝜺 = 𝑹𝑹𝑇𝑇𝒙𝒙0

′ −𝑹𝑹0
𝑇𝑇𝑿𝑿𝑜𝑜′ 𝜿𝜿 = 𝑹𝑹𝑇𝑇𝜽𝜽 − 𝑹𝑹0

𝑇𝑇𝜽𝜽0    (12) 
The variations of those strain measures are given as 

follows: 
𝛿𝛿𝜺𝜺 = 𝑹𝑹𝑇𝑇𝛿𝛿𝒙𝒙0

′ + 𝛿𝛿𝑹𝑹𝑇𝑇𝒙𝒙0
′ = 𝑹𝑹𝑇𝑇�𝛿𝛿𝒙𝒙0

′ − 𝛿𝛿𝒘𝒘 × 𝒙𝒙0
′ �  (13) 

𝛿𝛿𝜿𝜿 = 𝑹𝑹𝑇𝑇𝛿𝛿𝜽𝜽+ 𝛿𝛿𝑹𝑹𝑇𝑇𝜽𝜽 = 𝑹𝑹𝑇𝑇𝛿𝛿𝒘𝒘′      (14) 
A proof of Eq. (23) is given in Ref. [8]. With 

𝐟𝐟 = 𝐑𝐑𝐑𝐑 and 𝐦𝐦= 𝐑𝐑𝐑𝐑 the virtual work can be  
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Fig. 1  Reference and current configuration of the Timoshenko-beam. 
 

reformulated using the relationship d𝑉𝑉 = d𝐴𝐴d𝑆𝑆. This 
yields 

𝒢𝒢(𝒗𝒗,𝛿𝛿𝒗𝒗) = ��𝛿𝛿𝑬𝑬�𝑇𝑇𝑺𝑺� − 𝒏𝒏� ∙ 𝛿𝛿𝒙𝒙𝑞𝑞�
𝑠𝑠

𝑑𝑑𝑑𝑑

= � 𝑺𝑺 ∙ 𝛿𝛿𝑬𝑬𝑑𝑑𝑑𝑑
Ω0

− � 𝜌𝜌0𝒃𝒃� ∙ 𝛿𝛿𝒖𝒖𝑑𝑑𝑑𝑑
Ω0

− � 𝒕̅𝒕 ∙ 𝛿𝛿𝒖𝒖𝑑𝑑Γ
𝜕𝜕Ω0

 

(24) 

with 𝒙𝒙𝑞𝑞 = 𝒙𝒙0 + 𝒂𝒂𝑞𝑞 . The load 𝒏𝒏 �  in this paper is the 
sum of the volume forces 𝜌𝜌0𝒃𝒃� and the surface loads 
𝒕̅𝒕. The vector of stress resultants 𝑺𝑺� can be expressed 
as following: 

𝑺𝑺� = �𝐅𝐅𝐌𝐌� =

⎣
⎢
⎢
⎢
⎢
⎡𝐹𝐹

1

𝐹𝐹2

𝐹𝐹3

𝑀𝑀1

𝑀𝑀2

𝑀𝑀3⎦
⎥
⎥
⎥
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𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

.    (15) 

By using the directional derivative we can easily 
linearize the weak form of Eq. (24). This yields 

𝐷𝐷𝒢𝒢(𝒗𝒗,𝛿𝛿𝒗𝒗) ∙ Δ𝒗𝒗 = ��𝛿𝛿𝑬𝑬�𝑇𝑇𝑫𝑫�Δ𝑬𝑬� + Δ𝛿𝛿𝑬𝑬�𝑇𝑇𝑺𝑺��
𝑠𝑠

𝑑𝑑𝑑𝑑

− � 𝒒𝒒� ∙ Δ𝛿𝛿𝒙𝒙𝑞𝑞𝑑𝑑𝑑𝑑
𝑠𝑠

 

(26) 

where, 𝒗𝒗 = [𝒖𝒖 𝑹𝑹]𝑇𝑇 describes the independent 

kinematic quantities of the beam. In parallel with 
linear situation we can derive the discretization of the 
following kinematic variables by using the NURBS 
shape functions. 

𝑿𝑿0 = �𝑁𝑁𝐼𝐼(𝜉𝜉)𝑿𝑿𝐼𝐼

𝑛𝑛𝑛𝑛𝑛𝑛

𝐼𝐼=1

𝒙𝒙0 = �𝑁𝑁𝐼𝐼(𝜉𝜉)(𝑿𝑿𝐼𝐼 + 𝒖𝒖𝐼𝐼)
𝑛𝑛𝑛𝑛𝑛𝑛

𝐼𝐼=1

 (27) 

Thus, the virtual beam strains δ𝐸𝐸� can be written as 
follows: 

δ𝑬𝑬� = �𝑩𝑩𝐼𝐼𝛿𝛿𝒗𝒗𝐼𝐼

𝑛𝑛𝑛𝑛𝑛𝑛

𝐼𝐼=1

𝑩𝑩𝐼𝐼

= �
𝑁𝑁𝐼𝐼′𝑹𝑹𝐼𝐼𝑇𝑇 𝑁𝑁𝐼𝐼𝑩𝑩𝜀𝜀𝜀𝜀

𝑇𝑇

𝟎𝟎 𝑁𝑁𝐼𝐼′𝑩𝑩𝜅𝜅𝜅𝜅
𝑇𝑇 ´ + 𝑁𝑁𝐼𝐼𝑩𝑩𝜅𝜅𝜅𝜅

′𝑇𝑇 � 

(28) 

where, the matrix 𝑩𝑩𝜀𝜀𝜀𝜀 ,𝑩𝑩𝜅𝜅𝜅𝜅 ,𝑩𝑩𝜅𝜅𝜅𝜅
′  are defined as follows: 

𝑩𝑩𝜅𝜅𝜅𝜅 ∶= [𝑶𝑶2𝐼𝐼(𝒂𝒂3) 𝑶𝑶3𝐼𝐼(𝑎𝑎1) 𝑶𝑶1𝐼𝐼(𝒂𝒂2)]𝑩𝑩𝜀𝜀𝜀𝜀

∶= �𝑶𝑶1𝐼𝐼�𝒙𝒙0
′ � 𝑶𝑶2𝐼𝐼�𝒙𝒙0

′ � 𝑶𝑶3𝐼𝐼�𝒙𝒙0
′ �� 

(29) 

𝑩𝑩𝜅𝜅𝜅𝜅
′ ∶= �𝑶𝑶3𝐼𝐼�𝒂𝒂2

′ � 𝑶𝑶1𝐼𝐼�𝒂𝒂3
′ � 𝑶𝑶2𝐼𝐼�𝒂𝒂1

′ �� 
with 𝑶𝑶𝑚𝑚𝑚𝑚 (∙) = 𝒂𝒂𝑚𝑚𝑚𝑚 × (∙). 

Subsequently we insert the finite element 
interpolation into the linearized form (26) and we 
obtain 

ℒ[𝒢𝒢(𝒗𝒗,𝛿𝛿𝒗𝒗)] = � ��𝛿𝛿𝒗𝒗𝐼𝐼𝑇𝑇(𝒇𝒇𝐼𝐼𝑒𝑒
𝑛𝑛𝑛𝑛𝑛𝑛

𝐾𝐾=1

𝑛𝑛𝑛𝑛𝑛𝑛

𝐼𝐼=1

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑒𝑒=1

+ 𝑲𝑲𝐼𝐼𝐼𝐼
𝑒𝑒 Δ𝒗𝒗𝐾𝐾) 

(30) 

Hence the matrix 𝑲𝑲𝐼𝐼𝐼𝐼
𝑒𝑒 describes the tangential 

stiffness matrix of element 𝑒𝑒 of the nodes 𝐼𝐼 and 𝑲𝑲. 
The vector 𝒇𝒇𝐼𝐼𝑒𝑒  is the sum of the internal and external 
nodal forces of the node 𝐼𝐼. Considering Eqs. (26)-(29) 
we obtain 
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𝑲𝑲𝐼𝐼𝐼𝐼
𝑒𝑒 = ��𝑩𝑩𝐼𝐼

𝑇𝑇𝑫𝑫�𝑩𝑩𝐾𝐾 + 𝑮𝑮𝐼𝐼𝐼𝐼 + 𝑷𝑷𝐼𝐼𝐼𝐼�𝑑𝑑𝑑𝑑
𝑠𝑠

𝒇𝒇𝐼𝐼

= �(𝑩𝑩𝐼𝐼
𝑇𝑇𝑺𝑺� − 𝑁𝑁𝐼𝐼𝒒𝒒�)𝑑𝑑𝑑𝑑

𝑠𝑠

 

(31) 

with 𝒒𝒒� = [𝒏𝒏�,𝒎𝒎� 𝐼𝐼]𝑇𝑇 . In this paper the matrix 𝑫𝑫�  
denotes the elasticity matrix, which can be described 
as follows: 

𝑫𝑫� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑[𝐸𝐸𝐸𝐸,𝐺𝐺𝐺𝐺,𝐺𝐺𝐺𝐺,𝐺𝐺𝐼𝐼𝑇𝑇 ,𝐸𝐸𝐼𝐼33,𝐸𝐸𝐼𝐼22].    (16) 
The matrix 𝑮𝑮𝐼𝐼𝐼𝐼  and 𝑷𝑷𝐼𝐼𝐼𝐼 come from the linearized 

virtual strains and external loading. The detail of those 
matrixes can be found in Ref. [9]. 

3. Numerical Applications 

3.1 Cantilever Timoshenko Beam 

In order to test the reliability of the Code we present 
two examples with finite deformations and elastic 
material behavior in this section. The first example is 

a cantilever Timoshenko-beam with a concentrated 
load acting downward at the free end, which is 
illustrated in Fig. 2. 

The geometrical and material data of this 
Timoshenko-beam are given as follows: 

ℓ = 20𝓉𝓉 = 1𝒷𝒷 = 1E = 1 ∙ 107𝓋𝓋 = 0    (17) 
The maximal deflection of this beam can be 

expressed as follow: 

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 =
𝐹𝐹𝑙𝑙3

3𝐸𝐸𝐸𝐸�
𝜔𝜔𝑏𝑏

+
𝐹𝐹𝐹𝐹
𝐺𝐺𝐴𝐴𝑠𝑠�
𝜔𝜔𝑠𝑠

 (34) 

Now, we simulate the cantilever beam in linear and 
nonlinear situation with increasing load, respectively. 
The results are presented in Table 1. 

The differences between the both beams are 
illustrated in Fig. 3. The deflections of nonlinear  
beam are always smaller than the deflections of  
linear beam. Those results match with our common 
sense. 

 

 
Fig. 2  Cantilever Timoshenko-beam. 
 

Table 1  Results: deflections of linear and nonlinear Timoshenko-beam. 

Force Linear beam Nonlinear beam Difference 
100 3.21E-1 3.20E-1 1.00E-3 
150 4.82E-1 4.80E-1 1.90E-3 
200 6.42E-1 6.39E-1 3.40E-3 
250 8.03E-1 7.97E-1 5.70E-3 
300 9.64E-1 9.55E-1 8.90E-3 
350 1.12E+0 1.11E+0 1.32E-2 
400 1.28E+0 1.27E+0 1.87E-2 
450 1.45E+0 1.42E+0 2.56E-2 
500 1.61E+0 1.57E+0 3.40E-2 
550 1.77E+0 1.72E+0 4.41E-2 
600 1.93E+0 1.87E+0 5.60E-2 
650 2.09E+0 2.02E+0 6.99E-2 
700 2.25E+0 2.16E+0 8.57E-2 
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Fig. 3  Deflection between linear and nonlinear Timoshenko-beam. 
 

 
Fig. 4  Cantilever subjected to end moment. 
 

Table 2  Result: deflection of cantilever. 
Grad M Analytical Numerical 
6.88 1 11.94 11.94 
10.32 1.5 11.87 11.87 
13.76 2 11.78 11.78 
17.2 2.5 11.66 11.66 
20.64 3 11.52 11.52 
27.5 4 11.19 11.19 
34.4 5 10.81 10.81 
41.3 6 10.41 10.41 
48.2 7 9.989 9.989 
55 8 9.572 9.572 

3.2 Cantilever Subjected to End Moment 

With the second example we investigate the roll-up 
of a cantilevered flat plate strip, which is illustrated in 
Fig. 4. The plate strip has a wall thickness 𝓉𝓉 =
0.1 with the length ℓ = 12 and width 𝒷𝒷 = 1. The 
Young’s modulus 𝐸𝐸 is 1.2 ∙ 106. Hence, we set the 
Poisson ratio to zero in order to make a beam-like 
behavior. 

The deflection of the plate strip can be expressed as 
𝑢𝑢(𝑀𝑀) = [𝑠𝑠𝑠𝑠𝑠𝑠(𝑀𝑀 𝑀𝑀0⁄ ) ∙ 𝑀𝑀0 𝑀𝑀⁄ − 1] ∙ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑀𝑀0

= 𝐸𝐸𝐸𝐸 𝐿𝐿⁄  
(35) 

Eq. (35) can be found in Ref. [10]. The numerical 
solutions are reported in Table 2, which have no 
difference from the analytical solutions. 

4. Conclusions 

In this paper an efficient and robust isogeometric 
linear and nonlinear cantilever formulation has been 
presented. The main contribution of this work is 
programing an efficient code in order to analyze the 
deflection of the cantilever. Two numerical examples 
by using the isogeometric analysis have been 
discussed. The results have been calculated by 
computer and presented in the end. Because of the 
distinguished characters of the NURBS functions the 
accurate results can be obtained. In comparison with 
the standard lagrange shape function the NURBS 
functions have distinct advantages. The computational 
cost and the time of work can be spared by using 
isogeometric analysis. This shows high significance 
for complex finite element analysis in CAD. 
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