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Abstract: We start with a description of the statistical inferential framework and the duality between observed data and the true state of 

nature that underlies it. We demonstrate here that the usual testing of dueling hypotheses and the acceptance of one and the rejection of 

the other is a framework which can often be faulty when such inferences are applied to individual subjects. This follows from noting 

that the statistical inferential framework is predominantly based on conclusions drawn for aggregates and noting that what is true in the 

aggregate frequently does not hold for individuals, an ecological fallacy. Such a fallacy is usually seen as problematic when each data 

record represents aggregate statistics for counties or districts and not data for individuals. Here we demonstrate strong ecological 

fallacies even when using subject data. Inverted simulations, of trials rightly sized to detect meaningful differences, yielding a statistically 

significant p-value of 0.000001 (1 in a million) and associated with clinically meaningful differences between a hypothetical new 

therapy and a standard therapy, had a proportion of instances of subjects with standard therapy effect better than new therapy effects  

close to 30%. A ―winner take all‖ choice between two hypotheses may not be supported by statistically significant differences based on 

stochastic data. We also argue the incorrectness across many individuals of other summaries such as correlations, density estimates, 

standard deviations and predictions based on machine learning models. Despite artifacts we support the use of prospective clinical trials 

and careful unbiased model building as necessary first steps. In health care, high touch personalized care based on patient level data will 

remain relevant even as we adopt more high tech data-intensive personalized therapeutic strategies based on aggregates. 
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1. Introduction 

 

Much of statistics is built on a duality between a true 

state of nature and experiences deriving from it. Such 

dualities are not uncommon in the sciences. We are 

always presuming that something meaningful is behind 

what we experience, observe and measure. Statisticians, 

refer to this true state of nature as a parameter, typically 

unknown. Statisticians will go to great lengths 

distinguishing the average and the mean, the computed 

standard deviation from an underlying true standard 

deviation (usually denoted as sigma) and a proportion 

from a probability. The latter in each of these three 

tuples is the true state of nature and the former is a 

computed measure which attempts to get at the true 

state of nature. We have hypotheses, two, many or from 

a continuum, about the nature of this truth. These can 
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be invariant truths as in a frequentist statistical 

framework, or varying truths, having subjective 

probabilities, when we adopt the Bayesian framework. 

Data is deemed to devolve from these true states of 

nature. If we were looking at data on the trajectory over 

time of a free-falling apple on planet earth, this data 

derives from and supports Newtonian hypotheses about 

gravity as the true state behind this experience. The link 

here between the true state of nature and our trajectory 

data is deterministic. We come in as statisticians, when 

this link between what may be true and what we 

observe is probabilistic. 

2. The Statistical Hypothesis Testing 

Framework 

In the classical frequentist framework, we would 

start with a set of dueling hypotheses. For a new 

therapy versus a standard therapy for cancer, one 
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would start with the hypotheses that there is no 

difference between the standard therapy and the new 

therapy and pit this against the hypothesis of better 

survival outcome with the new therapy. The former is 

called the null hypothesis and reflects prevalent opinion, 

while the latter is called an alternate hypothesis and is 

something we hope to establish [1]. This framework is 

consistent with an early philosophy of science 

framework called falsification [2]—any explanation 

continues to be relevant till it is rejected by another 

which is better supported by the data. We spoke earlier 

about data on a falling object supporting a Newtonian 

world view as an example of the fact/explanation 

dichotomy in science and statistics. Let‘s look at how 

we moved from that, in order to explain falsification. 

During World War I, a team of European scientists 

took a long arduous trip fraught with risk to South 

America to record data during a solar eclipse. Their 

goal was to see if light was deflected by gravitational 

fields, in line with Einstein‘s theory of relativity or the 

more strongly supported Newtonian hypotheses of the 

time. Their data did support the theory of relativity. If 

the falsification framework is a right perspective, then 

we can note, that to date, we have been unable to reject 

Einstein‘s theory of relativity in favor of another such 

elegant alternate theory of all things—an alternate 

explanation as simple as Einstein‘s explanations using 

analogies of objects falling from a window of a train, 

relative to observers on the moving train and relative to 

those outside. See Einstein‘s explanations written for 

the lay person and for the story about the confirmation 

of his theory in Ref. [3]. 

There are various data schemas we can use to 

ascertain the merit of our hypotheses, tested using 

stochastic data, ranging from retrospective real-world 

data to controlled prospective designed studies. One 

may conduct a clinical study, with a sufficiently large 

number of patients randomly assigned to the two 

therapies, to assess which of the two hypotheses above 

are supported. There is usually some quibbling about 

how conclusions of such studies are expressed. 

Statisticians are usually taught to express one of two 

conclusions supported by the data. If the data indicate 

a lack of a difference between therapies we would say 

―We were unable to reject the null hypothesis of no 

difference between therapies‖ with the odd double 

negative suggesting that current available evidence 

does not support differences but perhaps we might 

with more evidence. If the data support a difference 

we would say ―We reject the null hypothesis of no 

difference in favor of the alternate hypothesis that the 

new therapy is superior to standard therapy.‖ 

3. The Decision Theoretic Framework 

A popular analogy used to explain how we 

statisticians choose between two hypotheses is based 

on the criminal justice system. There, we can err when 

we hold someone guilty when innocent and when we 

acquit someone when guilty. We are fine when we find 

someone guilty or innocent when they are. We would 

like to reduce the error rates. Analogously, in statistical 

inference, we want to control the error rate of 

concluding that the alternate hypothesis of effect is true 

when the null hypothesis of no difference is a better 

characterization. This is usually called a type I error 

rate. The error of concluding in favor of no difference 

when there is one called a type II error. We usually rule 

in favor of the alternate hypotheses (difference in 

therapies) when the possibility of being wrong (the 

type I error rate) is less than 5%. One would then call 

the result statistically significant. It is necessary to note 

that this conclusion, very much unlike the legal 

analogy, pertains to aggregates computed over 

individuals rather than to each individual. We conclude 

differences between therapies on aggregate 

characteristics such as medians and means which may 

not hold as convincingly, between two individuals with 

the differing interventions. The fallacy of presuming 

individual effect based on an effect in aggregates has 

been criticized for a while by epidemiologists as an 

―ecological fallacy‖ [4]. This had led to a movement 

away from analyses in epidemiology where the data 
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records were aggregates over large units such as 

counties or other sub-divisions such as median income, 

disease rates, racial or ethnic composition etc., towards 

case-control and cohort studies which have data on 

individual subjects. Here we will be demonstrating that 

these studies based on individual records (with 

simulations of Cohort studies) are infected with this 

fallacy as well. 

The general decision theoretic approach described 

above is not very different using Bayesian approaches 

applied to clinical trial data. The Bayesian approach 

has, over time, in the clinical trial context, been forced 

into a frequentist mold through the use of 

non-informative prior information (which is the same 

as not using any prior information) and adaptations of 

the frequentist decision theoretic framework. The 

general Bayesian framework may help by holding on 

to multiple hypotheses, with high or low probabilities, 

a ―this and this‖ framework rather than a ―this or this‖ 

framework. Frequently however, a hypothesis with a 

high Bayesian posterior probability (a revised 

probability of the hypothesis given observed data) is 

likely to lead to choices favoring it in just the same 

manner as those favoring a hypothesis retained by 

frequentist analysis. As with the frequentist approach 

we adopt the observation/parameter framework and 

conclusions tend to be based on aggregates and 

represent a first step to help in approaches customized 

to the individual. For instance, Thall et al. [5] support 

the use of a probability of a true proportion 

responding to therapy (an aggregate random parameter) 

in one group exceeding that in another to aid in the 

choice between therapies. It is important to understand 

inferences in the aggregate, drawn from statistical 

analyses, and see why these may not always hold for 

individuals. Let‘s look at a major innovation in 

statistical theory, used often in frequentist approaches, 

which drove statisticians into inferences about 

aggregates—unlike that legal framework discussed 

earlier which looks at individuals. 

4. The Central Limit Theorem 

This major result is often called the law of large 

numbers and features in most inferential analyses. It 

states that even when the distribution of data on 

individuals is erratic and non-standard, the distribution 

of aggregate statistics has a tractable form (usually the 

symmetric bell-shaped distribution or a related 

distribution) allowing us to read off probabilities. For 

instance, we might have a skewed distribution for the 

reduction in diastolic BP (blood pressure) under 

therapy for individual patients due to resistance to 

therapy. This might lead to a distribution with more 

likelihood of lower values to the left of the peak, 

reflecting some likelihood of a lack of response, rather 

than to the right. However, if we looked at the 

distribution of the average BP reduction of a 

sufficiently large number of patients, it would tend to 

have the symmetrical normal distribution. Let‘s look at 

the histograms in Fig. 1. An interactive version of the 

figure allowing user input is at the webpage in Ref. [6]. 

Note that this diastolic BP example here and in the 

rest of the manuscript is pedagogical and illustrative 

of the points made and likely not reflective of current 

recommendations for hypertension. In the figure, we 

have two groups randomized to two therapies capable 

of reducing blood pressure. We look at the reduction 

in BP in mmHg for the two groups using the two 

histograms. The distributions of the individual BP 

changes are the skewed wide distribution mentioned 

earlier—it is simulated data and you may not always 

see the skew in a given simulation at the webpage 

noted above. The distribution of the average is much 

skinnier and always peaked and symmetric as shown. 

The measure of the spread of the distribution of the 

average, the standard error, is lower than the 

corresponding measure, the standard deviation, for the 

parent distribution, by a factor given by the square 

root of the sample size. Statistical p-values and 

inferences are drawn based on the separation of the 

tighter known distributions of the average rather than 

the wider intractable parent distributions in the 
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histograms. Bayesian formulations in clinical trials, as 

noted earlier, also rely on a skinny distribution of the 

aggregate and draw conclusions about the aggregate. 

Bayesian approaches would look at the distribution of 

the mean (a random parameter), while the frequentist 

approach would consider the mean invariant and look 

at the distribution of the sample average—both are 

aggregates. 

Fig. 1 provides the separation between the distributions, 

both in the aggregate and in the individual, when you see 

5 zeroes in the p-value. This would usually be interpreted 

as a one in a million chance that the null hypothesis of no 

effect is supported as opposed to the alternate that the 

new therapy is superior to the standard therapy. Any 

statistician would label this ―significant‖ synonymous 

with something ―noteworthy‖, if you look it up in a 

dictionary. Further, a clinician would look at the 

differences in the average reductions in BP across the two 

therapy groups of much more than half the standard 

deviation and deem it clinically significant. Half a 

standard deviation is often used as a threshold to gauge if 

differences are meaningful [7]. The histograms however 

indicate considerable overlap in individual BP reductions. 

The distribution of the average we talk about in this 

section has no real existence unless we repeat the study 

100 times or so, and we usually do it only once. This 

notional distribution of the average allows us to assess 

differences in the aggregate and we clearly see 

fallacies when using these conclusion at the patient 

level. In our simulation we computed a proportion of 

the reductions in BP for someone in our ―standard‖ 

therapy arm exceeding that for someone receiving the 

―new‖ therapy at about 30%. The reduction of BP for 

individuals on new therapy exceed that for standard, 

despite the highly significant finding, at a rate of 

about 70%. Note that histograms, a somewhat crude 

presentation of something called a density estimate, is 

rarely presented even though considerable research 

has been conducted in this area. See, for instance, 

Terrell and Scott [8]. Lo, Mack and Wang [9] look at 

density estimation in the context of survival data with 

censoring. 

5. The Inverted Simulation and Calculator 

We look at three inverted simulations of two-arm 

clinical trials. The first in Fig. 1 is for continuous data 

such as the reduction in BP. The second in Fig. 2 has 

survival data looking at the time to an event such as a 

death or disease progression. The third in Fig. 3 has 

binomial data such as the achievement of a response 

threshold on therapy. The interactive versions of these 

figures at the web page noted earlier allow changes to 

the sample size per group (standard therapy or new 

therapy) and the number of zeroes in the p-value 

associated with the difference between the two 

therapies. The default sample sizes in the three 

interactive graphics of 85, 176 and 230 allow no more 

than the usual 5% two-sided type I error and a 10% 

type II errors (errors defined earlier). For details on 

calculating sample size in these contexts see Desu [10] 

and Cheng [11]. 

For the continuous calculator we can detect a 

meaningful difference of 3.5 (half a standard deviation 

is often considered meaningful as noted earlier) 

between a reduction of 5 for standard therapy 

(something like a diuretic) and a reduction of 8.5 for a 

new test therapy (something like a 

diuretic/beta-blocker combination) for a SD of 7 for 

BP reductions over time. For the other two default 

sample sizes we use a hazard ratio of 0.7 and a 

difference in proportion responding of 15%. Further 

details on the default sample sizes and the inverted 

simulation are in Appendix 1. Studies with sample 

sizes larger than these would be called over-powered 

and would tend to detect trivial differences smaller 

than those considered meaningful. Smaller studies 

would be under-powered and would tend to rule a new 

therapy ineffective even when it has that minimal 

amount of effectiveness in the aggregate. The default 

number of zeroes in the p-value is 5—only a 1 in a 

million-chance supporting the hypothesis of no 

difference between therapy groups. As noted earlier 
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these default values still leave considerable overlap on 

the individual data histograms across groups and 

about an estimated 30% of the standard therapy 

reductions in BP exceeding that for new 

therapy—despite that extreme p-value and a 

difference in reductions between groups of about 50% 

larger than the clinically meaningful difference of 3.5. 

When you increase the sample size for any fixed 

number of zeroes in the p-value, the skinny notional 

distributions of the average approach each other and 

get skinnier. The estimate of the percent chance of 

individual BP reductions for standard therapy exceeding 

individual BP reductions for new therapy gets in the 

35% to 40% range. So ―bigger data‖ help discriminate 

smaller differences in the aggregate but do not tell us 

any more about individual differences—it is likely 

that big data based ―significant‖ conclusions for 

stochastic data are no more predictive and often less 

predictive for the individual. Meta-analyses, 

combining data from multiple studies, are often 

considered even better than the constituent complete 

set of blinded randomized studies testing a hypothesis. 

They can resolve conclusions about the aggregate 

when some studies in the mix are considered neutral 

and some are negative. This however, has the same 

―bigger data‖ issue and does not help us any more in 

evaluating effect in individual subjects. In contrast, if 

we try the interactive calculator and reduce the sample 

size below the default value for any fixed number of 

zeroes in the p-value, you will see that ―small‖ data 

may actually be more useful. 

Fig. 1  Overlap of simulated data distributions corresponding to differences assessed as statistically and clinically significant – 

continuous data. 



Inverted Simulations Demonstrating Strong Ecological Fallacies in Cohort Studies 

  

124 

 

As with the continuous calculator you still have, in 

Fig. 2, individual survival times for the standard 

therapy better than those for new therapy more than 

35% of the time despite the very meaningful estimated 

ratio of hazards of death of new therapy to standard of 

less than 0.6, and that one in million p-value 

supporting the superiority of the new therapy (―in the 

aggregate‖—people sometimes leave that  part out). 

We collect all survivals beyond 7 years  into the last 

bar in the histogram in Fig. 2 revealing a more marked 

difference. One should consider this and the 65% 

estimated chance of the new therapy survival being 

larger than that for standard therapy when making 

choices. However, with the flip rate of 35% one might 

consider the standard therapy if it is more tolerable 

and/or if there are other indicators  that one would be 

in the 35%. The EQ-5D index [12], a quality of life 

indicator, has a zero score evaluated as a state 

equivalent to death and a 1 corresponds to good health. 

Cancer databases often have patients reporting negative 

indices, presumably a state worse than death. 

In the binary outcome graphic in Fig. 3, the percent 

of times we have the standard therapy individuals do 

as well or better than someone on new therapy higher 

than 60%. However, it is usually possible to break the 

―non-responder‖ and ―responder‖ labels into many 

ordinal grades and when you do that and reassess how 

often the standard therapy is as good or better you 

would get closer to the 30% number. 

 

Fig. 2  Overlap of simulated data distributions corresponding to differences assessed as statistically and clinically significant 

– survival data. 
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Fig. 3  Overlap of simulated data distributions corresponding to differences assessed as statistically and clinically significant – 

binary response data. 

6. Prospective Clinical Trials 

Randomized clinical trials comparing therapies 

usually involve an adequate amount of follow-up and 

an adequate number of subjects to uncover unusual 

and rare adverse events associated with the therapies 

studied, in addition to providing good estimates of 

rates for common side-effects. Studies typically have a 

large number of clinic and hospital sites participating 

across countries and continents and a large number of 

contracted organizations to create databases, verify the 

accuracy of data entered by the site, ensure 

randomization without bias, and any blinding of 

patients and site personnel to therapies. These sites 

and organizations are entities independent of sponsors 

and are subject to audits by both the regulatory agencies 

and the sponsor—the data is likely robust and reliable 

and inferences about aggregate effect are likely 

accurate. 

In Europe, North America and many other countries 
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there is a requirement that sponsors of clinical trials 

provide details such as the primary and key objectives, 

hypotheses and endpoints at or before the start of a 

trial to an online database. In the US such a database 

is at clinicaltrials.gov. Further regulators require 

sponsors to provide a study protocol before study 

starts enrolling and detailed statistical analysis plans 

shortly after, and before any unblinding and analysis 

is conducted. Study protocols are also shared with 

Institutional review Boards (IRBs) before trials are 

initiated. These commitments reduce publication bias 

as there is a requirement to report results to clinical 

trials.gov or a similar online database irrespective of 

whether results were negative or positive. The 

prospective statistical plan also helps prevent cherry 

picking among the many choices when carving out 

analysis populations, endpoints, data cuts, hypotheses 

and analysis methods. A statistical plan specifies and 

selects one from all these choices of data presentation. 

A statistician will tell you that this controls the type I 

error rate—the likelihood of falsely concluding a 

difference between therapies when there is none. A 

pre-specified analysis has a lot of credibility—it is 

like calling a shot before making it in billiards. 

Further, regulatory agencies usually require two 

successful well controlled studies before the approval 

of a therapy, thus adding to this credibility of 

inferences supporting a therapy. 

Though we make the case that most statistically 

significant results often represent some stochastic 

incrementalism in the aggregate, clinical trials are 

usually sized right to detect clinically meaningful 

differences in the aggregate—a chunky 

incrementalism. A statistician would size a study to 

detect reasonable improvements in the aggregate 

reducing the possibility of triggering a signal based on 

trivial differences. A series of such increments could 

add up to marked improvements in both efficacy and 

safety over time. Such an approach is a critical first 

step even if it may not help entirely in the choice of 

therapy by and for the individual patient. We will get 

to a discussion on that shortly. There can be long 

periods of stasis in drug development where new 

therapies continue to be compared on efficacy against 

old standards with little effect, or in trials establishing 

non-inferiority with a current effective standard. 

These can get approved based on improved and/or 

differing safety profiles, quality of life or economic 

benefit. Conclusions from well conducted clinical 

trials are likely to be far more reliable than those from 

data sources I describe below. 

7. Big and Easy Data 

Obamacare accelerated trends towards the use of 

electronic records and other uncontrolled prospective 

and retrospective data. Acquiring such data can cost a 

tenth or lesser than running a controlled clinical trial 

to obtain the data. Very large datasets can be obtained 

with the downside mentioned earlier of the triggering 

of trivial results as noteworthy. Further there can be 

substantive biases due to the uncontrolled nature of 

the data. There exist methods, using propensity scores, 

as described in Rubin and Rosenbaum [13], which can 

control for these biases when all likely confounding 

variables are available. It is noted that while 

statisticians can try to pre-specify analyses for such 

data, one is not required to publish either the analysis 

plan or any obtained negative results. 

Further the analyses can be overly managed at the 

institution conducting the research, resulting in 

multiple inferential analyses, population carve-outs, 

endpoints, hypotheses and analysis methods and 

subsequent choices amongst these on results worth 

publishing. Other reasons why results do not see the 

light of day are that they are negative or neutral, not in 

the best interest of the organization, inconsistent with 

other published results emanating from the institution 

and contrary to opinions of influential external 

opinion leaders. Conclusions in such contexts should 

note that results are exploratory or hypothesis 

generating and that multiple analyses in addition to 

the reported results were conducted without 
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adjustments for multiple testing to control the overall 

false positive rate. Such acknowledgements are 

necessary, unless all conducted analyses agreed 

substantially, as data presentation for such data often 

patterns presentations for prospective controlled 

clinical trials. 

8. Publication Bias Calculator 

In the last section we looked at a large number of 

reasons why results did not get published. We will 

look at the consequence of just two of the reasons I 

mentioned, negative or neutral results, on the validity 

of results that did get published. The calculator uses 

Bayes‘ Theorem and mathematical details are in 

Appendix 2. In a second calculator at our webpage 

mentioned earlier [6] you can enter information as 

shown in Fig. 4. 

Fig. 4 has the probabilities that analyses conducted 

at an institution will be published given a positive 

finding (a statistically significant result) and that for 

publishing given a negative finding. The results for 

values of 80% and 10% respectively are shown in Fig. 

4. The third entry is the nominal false positive rate 

used in the analysis—usually a two-sided 5%. The 

actual false positive rate corresponding to the nominal 

5% is actually close to 30%. We are still talking 

aggregates here and predictability in individuals is 

likely much lesser. Even with our p-values with 5 

zeroes, which needed no adjustment upwards, the 

patient level estimated rate of flipped efficacy was 

near 30%. Further adjustments for any of the multiple 

analyses mentioned above would make the results 

even less credible. Young and Karr [14] looked at 52 

claims from uncontrolled studies with significant 

results which were published in reputed journals   

like NEJM, JAMA and JNCI, and noted that none of 

these significant findings held up in randomized 

clinical trials—5 were supported in the opposite 

direction. 
 

 
Fig. 4  Publication bias estimator. 

9. Correlation Is Not Much Association 

Either 

A typical example on correlation starts with data on 

the number of sand castles built at a beach plotted on 

the Y-axis against ice-cream sales at the beach on the 

X-axis. Such a scatter plot would have a narrow cloud 

of data aligned with the lower end of the cloud at 

lower values of both the number of sand castles and 

the ice-cream sales and with upper end having both 

high. One may be lead to think, through this graphic, 

that the high ice-cream sales lead to increases in the 

number of sand castles built. This notion is then 

rejected by the presenter who will let you know that a 

third factor, the number of people at the beach, likely 

lead to highs or lows on both simultaneously. The 

conclusion drawn is that correlation is merely 

association and not necessarily causation. A p-value 

with the 5 zeroes when rejecting a null hypothesis of a 

zero correlation and 50 records of data would 

correspond to a calculated correlation coefficient of 

0.613. A correlation coefficient between two measures 

is roughly a measure of the tendency of one thing 

measured, to be above or below its average, when the 

other measure is also above or below its average and 

goes from -1 for a perfect negative correlation and +1 

for a perfect positive. It uses the two averages, 

something we have a little trouble with earlier, and 

like the average it is an aggregate statistic. It can be 

shown, that for a close to ellipsoidal scatter plot of 

data, a good 29.9% of data points will show an 

association in the opposite direction when the 

correlation coefficient is the 0.613 above—in 29.9% 

of the days at the beach, ice-cream sales will be below 
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the average ice-cream sale with the number of sand 

castles built being above average and vice-versa. 

Details on calculations are in Appendix 3. The 

discordant proportion evaluates to the simple 

expression  𝐶𝑂𝑆−1 𝜌 𝜋 . The correlation of 0.613 

above is not much association for a good 29.0% of the 

individual data points—they associate in an opposite 

direction to that indicated by the correlation 

coefficient. The discordant percentages are 33.3%, 

25.3% and 20.5% for correlations of 0.5, 0.7 and 0.8 

respectively. All three correlations would be 

considered large. In Cohen [15] correlations of 0.1 to 

0.3 are small, 0.3 to 0.5 are medium and greater than 

0.5 are deemed large. Scientists working in the social 

sciences, psychology, quality of life, mental health, 

drug abuse and addiction, criminal justice and other 

similar disciplines rely considerably on statistical 

tools using correlations. Many of their conclusions 

likely have ecological fallacies making them 

inappropriate for prescriptive recommendations at an 

individual level. 

10. Fallacies in the Histogram and the 

Standard Deviation as Well 

First recall how we spoke earlier about the skinny 

notional distribution of the average with its spread 

characterized by the narrow standard error and the 

wider distribution for individuals with its spread 

characterized by the standard deviation. That 

―distribution‖ for individual data can be a fallacy as 

well unless every individual‘s measurement has an 

identical distribution—otherwise what are we talking 

about when we look at the histogram? This 

assumption is also made in Bayesian approaches when 

obtaining the likelihood used to update the prior 

distribution of an underlying aggregate to obtain the 

updated posterior distribution of the aggregate as 

discussed in Spiegelhalter et al. [16]. These 

measurements should be independent of each other, 

otherwise, for instance for a positive dependence, if 

we get some measures on one side of the histogram 

most others would tend to be on that side skewing the 

histogram away from the true distribution. These 

assumptions drive the classical central limit theorem 

used to derive the notional distribution of the average 

and as noted, the Bayesian approaches as well. 

We have frequently referred to an alternate 

additional statistic reflecting individual variation 

through the proportion of times a patient on the 

standard had a better reduction in BP than a patient on 

a new therapy. We can try to move from this data 

driven fact to a state of nature true for all patients that 

underlies it. We might infer that this proportion is an 

estimate of the probability of ―any‖ patient responding 

better to the standard therapy than to the new therapy 

in similar patients elsewhere outside the confines of 

the clinical trial. The assumptions in both the 

frequentist and Bayesian setting that we are making 

about ―identical‖ distributions across patients and 

independence across patients would support the 

previous statement. Returning to our BP example, this 

would mean that all patients under standard and new 

therapy would tend to hit reductions in BP of say 5 

and 8.5 respectively, give or take about a standard 

deviation of 7. This however, would not be true, if, for 

instance, a patient had a skinnier or wider distribution 

under the two therapies than that reflected by our wide 

histograms and if the patient distributions are centered 

at different BP reduction levels than those for the wide 

histograms. It can be shown that drawing independent 

identical observations from a distribution obtained as 

the average of individual non-identical distributions is 

equivalent to drawing an observation from each of the 

independent non-identical individual distributions. 

The grouped averages and the histograms could be 

estimating either something interpretable as the true 

underlying mean and true underlying distribution of 

identically distributed individual measures or the 

average of the differing underlying means and 

distributions of individuals with differing distributions. 

See Appendix 4 for details demonstrating these 

observations. The grouped variance obtains as an 
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average of the individual variances plus the mean of 

the squared differences of the individual means from 

the average of the means. At one extreme this identity 

allows differing individual means with all variances of 

zero—these distributions have singularities at the 

mean values. At the other extreme all patients have the 

same underlying mean with identical or differing 

variances. One could argue fixed or singular data at 

the subject level or an inherent volatility. Likely we 

have differing underlying variances and means for 

individuals and an argument that they have identical 

distributions is likely specious. Computed statistics 

such as the estimated aggregate treatment differences 

with confidence intervals, and p-values will be 

identical—inferences that are likely to be 

masquerading as applicable equally in all individuals. 

The data derived proportion of times patients on 

standard have a larger BP reduction under standard   

is likely estimating the mean probability over all 

patients of patients responding better on standard, 

rather than the probability for any and every patient. 

An estimated proportion of 30% could mean some 

patients have a 20% or less probability of doing better 

and some have a probability of 40% or more. So, the 

statistic we used to demonstrate an ecological fallacy, 

itself has an ecological fallacy. The ―underlying‖ 

mean, variance and distribution, used often in the 

previous paragraph, presumed to be different or the 

same across patients was used to make the scientific 

distinction that I had made earlier between an 

experience and an explanation. We are encouraged to 

look at an ordering of the underlying means from a 

clinical trial and presume that a patient is always 

innately better off on one therapy and not look at the 

experience which tells us that a good number of 

patients ended up with a better response on standard 

than on new therapy. We are trained to value an 

explanation or a rule more than 

experience/phenomenon, as all experience should fall 

in place when we have the rule. A little explanation in 

physics will tell us that we will come out screaming, 

but alive and unhurt, from every roller-coaster ride. 

But this context here is somehow different. When 

evaluating whether someone will respond to a therapy 

we should be referencing both the mean measures on 

therapies, any established ordering of means for the 

patient (differing or identical distributions across 

patients) and observed prior data such as the flipped 

proportion estimate. In some social contexts, when 

someone is getting fixed up for good, the prospective 

bride (and sometimes the groom) is usually told that 

we know their family, we know their community, they 

are good people! I am reminded about a little ditty the 

girls used in my hometown when a boy misbehaved, 

which goes ―handsome is as handsome does‖! There 

is a strong move now with modernization, towards 

allowing this assessment adequately. We need that and 

it is still helpful to reference the ―good‖ if it is not 

based on some prejudice. 

We see in Fig. 2 patients on standard therapy 

surviving 4 years when a patient on new therapy 

survives 3 years. Would that standard therapy patient 

have survived 5 years if he had taken the new therapy 

instead—hard to tell—most of us have only one life to 

live. We need to be able to assess the distribution for 

measures of interest, within subject and under both 

therapies before we can make a statement about a 

personalized probability of one therapy being better 

than the other for the patient. Sounds very much like 

the thing with the average—we usually have just one 

observation on a patient and that too on just one 

therapy. Perhaps the notion of a distribution 

underlying that one thing, identical or different across 

patients, is a convenient bit of fiction as well. More so 

for survival data and for diseases where we have only 

one shot at therapy. Cross-over and N-of-1 designs, 

where we can switch between short term therapies (as 

the disease recurs on stopping therapy), can allow us 

to use a notion of a patient ―distribution‖ and help 

crudely assess that distribution. Even for survival data 

some kind of a distribution could be assessed using 

response on some quick leading indicators of future 
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survival. 

11. Tea Tasting Experiment 

We hear a lot about randomized, blinded designs 

and it all started round about when a famous 

statistician, Sir Ronald Fisher, had a little tea with a 

lady. The table was set. There were walnut scones, 

jumbleberry jam, biscuits perhaps, and tea—lots of 

that, 8 cups—all for the lady. Let me tell you why. 

Earlier, the lady, lady Muriel Bristol, had claimed that 

she could tell if the tea or the milk was added to the 

cup first. Now our statistician, Sir Ronald Fisher, 

likely a bit of a skeptic, said ―Let us find out if you 

can?‖. The rest is part of our folklore. Sir Ronald 

Fisher had 4 cups made with the milk first and 4 with 

the tea first and then randomly ordered them on the 

table with the lady blinded to the ordering. The lady 

picked all four cups out correctly. Sir Ronald Fisher 

figured a p-value of 1 in 70 or 0.0143. For the tea 

tasting design and details on experimental design see 

Hinkelmann and Kempthorne [17]. 

This experiment, you should notice, is very much 

an N of 1 trial. There was N = 1 Lady, two 

interventions occurring 4 times each and the outcome 

was a correct guess. The probability that this 

individual, Lady Muriel Bristol, was guessing at 

random is just 1.4% so we reject the null and conclude 

that she very likely was not. The conclusion was not 

about an aggregate—we are not making the much 

weaker conclusion that people in the aggregate tend to 

be able to tell if the tea was added first. We could do a 

study asking a large number of people if they can tell 

if a cup of tea had the milk or the tea added first. A  

65% correct rate could be statistically significantly 

different (with those 5 zeroes in the p-value) than 

guessing (null of 50%), if we had the right number of 

subjects. A 15% difference—some may even call it 

meaningfully significant – but 35% of the individual 

subjects got it wrong! 

 

12. Getting to Personalized Medicine 

The standard deviation (SD) of diastolic blood 

pressure measures (usually about 8 mmHg) is a little 

larger than that for a measure of the reduction in blood 

pressure (about 7 mmHg) and this is due to the 

correlation of before and after measures for a subject. 

A correlation of 0.7 would have given close to the 

same SD for the two measures. A cross-over design 

would consider a similar difference of effects of two 

or more therapies given to the same subject and can be 

more efficient when correlations between effects are 

greater than zero. This would lead to a smaller sample 

size requirement than a parallel arm study. This would 

also get at the within subject distribution we referred 

to earlier as something which would help us overcome 

issues with aggregates. However, the cross-over 

analyses reported will additionally provide between 

subject aggregates of within subject differences 

between therapies and are hence subject to similar 

fallacies to those described earlier when used at a 

patient level. Menard et al. [18] report results of a 

hypertension trial involving cross-overs between a 

beta-blocker alone, a combination of two diuretics, 

and the two diuretics in combination with the 

Beta-blocker. This manuscript focused on design of 

hypertensive trials and did not report adverse event 

rates for the therapies used. Information on safety is 

available on the product labels [19-21]. The mean 

reductions from prior placebo wash over after 

adjusting for carryover effects in the Menard report 

were 3.2, 4.0 and 6.5 respectively. These differences 

were not demonstrated to be statistically significant in 

this cross-over study with 24 patients. After patients 

went through the three therapies, they continued on 

the therapy with the largest reduction in Diastolic BP. 

An N-of 1 trial would have been similar and would 

have had just one patient with more repetition of 

therapies to gauge effect and variance for that one 

subject [22]. Like the Menard trial this would allow 

for a more informed patient choice should the patient 

provide informed consent to such an approach. There 
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would be the additional burden to the patient of 

switching back and forth through therapy and 

wash-out periods. And there are scores of options, for 

hypertension and other indications. Other issues with 

cross-over designs include difficulty with drop-outs, 

inappropriateness for many conditions, carry over of 

previous treatment effects and some difficulty in 

analysis and in confidence in findings given 

carry-over and period effects [23]. In the Menard trial, 

3 patients (12.5%) had insufficient response on any 

therapy. Seven (29.2%) had their largest reduction in 

BP on Beta-blockers—the therapy with the lowest 

aggregate response. Four (16.7%) had their largest 

reduction in BP on the diuretics and 10 (41.7%) on the 

Diuretics in combination with Beta-blockers—the 

therapy with the largest aggregate response. Had it 

been a larger study yielding statistically significant 

results (The difference between the largest average 

reduction and the smallest in the Menard study was 

close to half the standard deviation), a winner takes all 

treatment strategy would have put all subjects on the 

diuretics/beta-blocker combination. This result 

supports earlier discussions on the considerable 

percent of subjects who buck aggregate data 

supporting a therapy and do well on a therapy deemed 

inferior. 

In Figs. 1-3 we were simulating completely 

randomized designs or designs where there was 

blocking just to ensure that the randomization did not 

give us an imbalance in the size of the two groups. 

Often, we have randomized block designs where 

subjects are randomized within blocks—typically a set 

of 4 patients within strata (for two treatment groups), 

with 2 patients randomly assigned to each group. One 

might stratify a hypertension trial by gender and age 

(< 50, >= 50 years). Computing our statistic on the 

flipped proportion within each of the 4 {gender × age} 

strata should lead to a smaller proportion when there 

is increased homogeneity of measures within strata for 

both therapy groups. This allows some degree of 

personalization of effect for patients. Dynamic 

randomization which balances group membership 

within a larger number of strata as well as propensity 

score matching in the non-randomized setting could 

help tease out an effect better for more complex 

patient profiles. Supervised machine learning methods 

used in AI (artificial intelligence) are built on a 

decision theoretic framework reducing error around an 

expected mean given a patient profile [24]. One must 

note that predictions based on machine learning are 

also based on aggregate data though they are trained 

to a larger degree by data closer to a profile. The ideas 

discussed earlier about the skinny distribution for 

aggregates and the wide distribution for the patient 

still applies. These distributions now associate with a 

complex patient profile including characteristics and 

therapeutic interventions rather than those we saw 

earlier standing on one feature (a particular 

therapy—new or standard). Both the skinny and the 

wide distributions will be tighter due to homogeneity 

when looking at a narrow patient profile. There are a 

number of machine learning methods to choose from 

which will give somewhat different widths, locations 

and shapes for these distributions. Hastie et al. [24] 

provide expressions, for some models, for the much 

wider prediction intervals for individuals as well as 

the confidence interval of the aggregate prediction. 

Clear expressions of this distinction between patient 

and aggregate predictions are provided in standard 

books on multivariate regression [25]. The patient 

prediction is a lot more useful for a physician treating 

a patient—indicative that some patients with an 

adverse profile might do well and some others with a 

good profile might do poorly, calling for a more 

personalized look at patient data. 

Another good statistic to look at is the concordance 

probability—it is the probability that a randomly 

selected pair of patients, one with a poorer outcome 

than another, will be correctly identified based on 

inputting the two patient profiles in the model [26]. 

This statistic inspires the flip proportion statistic in 

this commentary and like that statistic it tends to be 



Inverted Simulations Demonstrating Strong Ecological Fallacies in Cohort Studies 

  

132 

about the same when the size of the data set 

changes—it is not an artifact of big and bigger data. It 

tends not to be too large. The historically popular 

Framingham Heart Study Model (2002 version) had a 

concordance probability of a little more than 70% [27]. 

Likely other more predictive disease contexts and a 

good choice of the model and relevant predictors 

could provide larger concordance probabilities, while 

still leaving 10% to 35% of patients characterized 

incorrectly. Patient factors and populations not 

considered during training of the model could lead to 

biased estimates through an AI model. Even 

randomized and blinded studies lead to strong 

expectancy effects with data moving towards patient 

and physician biases. The data itself is ―trained‖ 

towards these biases and the AI model trained on the 

data may quantify these and perpetuate them. In a 

different context, a predictive model used by Chicago 

law enforcement, resulted in inappropriate profiling 

not very different from human racial profiling [28], 

possibly due to inherent biases in databases. Often the 

model is based on correlations without a strong 

theoretically linked basis. For instance, a model may 

use the bill payment history of subjects and a poor 

history may signal a cognitive disability requiring 

intervention. Clearly there are other contexts such as 

poverty or unemployment which could lead to such a 

poor history. 

13. Implications for Patients 

Significant stochastic propensities for efficacy, 

small or large, are likely to be associated with 

ecological fallacies when we look at individual 

patients. We computed proportions of patients on one 

therapy responding favorably despite aggregate data 

significantly (and even clinically significantly) 

supporting its inferiority to an alternate, as a statistic 

demonstrating this fallacy. Discomfort with p-values 

is reflected in the official statement by the American 

Statistical Association [29] which discounts some 

interpretations of p-values which were more 

acceptable historically, likely due to increasing 

perceptions of subject level anomalies. The relevance 

of p-values may continue to hold for aggregate 

inferences. We had some difficulty ascribing meaning 

to our discordant statistic given ecological fallacies in 

its construction as well. This flipped proportion was 

based on a single core endpoint and not on the 

complete profile of effects of a new therapy including 

safety, financial costs, convenience and some 

assessment of short and long term adverse effects. 

When an informed patient and physician choice for 

therapy occurs using such complete holistic effects 

surrounding therapy, the flipped proportion is likely 

even less predictive of the eventual intervention and 

outcome. 

We discussed emerging trends in personalized 

medicine. Models with a high degree of complexity 

incorporating methods for reducing bias and 

variability are likely needed to help make 

individualized predictions and choices. Personalized 

medicine in many contexts is currently too 

rudimentary to justify a normative therapeutic 

recommendation based on a patient‘s genetic or 

disease profile, particularly when there are larger 

variances associated with patient specific predictions. 

We have to hold on to a large number of choices for 

patients. Randomized controlled clinical trials are a 

good critical first step in demonstrating the validity 

each of these choices. Uncontrolled studies can 

support a therapeutic intervention if there are a large 

number of other independent analyses supporting the 

intervention. In a parallel publication [30], we provide 

a set of tools to evaluate the subject level and 

aggregate utility of cohort comparisons in randomized 

or uncontrolled settings. 

This rather complex landscape, without clear 

answers for all patients, necessarily requires consent 

from patients after alternatives are discussed 

adequately. When faced with a set of equally 

unfavorable choices, patients should have the right to 

forego any therapy. It is necessary to factor in the 
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patient‘s subjective quality of life assessments under 

therapy and consider changes in therapy which 

improves it. One may consider available care options, 

which are infrequently used due to less commercial 

backing, such as therapies which are off patent or 

those for which intellectual property rights do not 

apply. In many cases, evidence is available about 

these therapies from randomized controlled trials. See 

for instance, a review about Hibiscus sabdariffa 

extract for Hypertension by Hopkins et al. [31]. One 

sometimes hears of elderly patients having as many as 

a dozen pills a day. Perhaps there is an overuse and 

the physician can monitor closely and do nothing or 

consider preventive care, especially when evidence 

supporting action is weak. The physician‘s intuition 

derived from training, skill, and experience, bedside 

communications, patient reports of health, sickness 

and pain and patient specific data continue to be 

critical. Aggregate data and model-based predictions 

are helpful but are not likely to entirely replace 

personalized care. 
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Appendix 1: Details on the Inverted Simulations 

For all three cases we start by obtaining the Wald Statistic Z which maps to the k of zeroes in the two-sided p-value (between the 

decimal and a 1) using the expression 

𝑍 = 𝜑−1 1 − 0.5 ∗ 10^ −𝑘 − 1  , 

where 𝜑−1 is the inverse of the cumulative distribution function of the standard normal. 

Continuous Case 

For the continuous case we consider a null distribution of the reduction in BP with a mean reduction in BP of 5 in the standard 

therapy group and a standard deviation sigma of 7. A somewhat skewed distribution is obtained as a 25%/75% mixture of two normal 

distributions with means of 4 and 5.333. Then for the given M subjects per group two data sets are simulated under this null distribution 

for ‗standard therapy‘ and for the ‗new therapy‘. The standard deviations SS and SN and the averages 𝑋𝑆     and 𝑋𝑁    
0 were computed for 

these null distribution-based standard and new therapy data sets. The difference in sample means that would yield the p-value with the 

k zeroes was obtained as 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑋𝑁    
1 − 𝑋𝑆    = 𝑍 ∗ 𝑆𝑄𝑅𝑇  

𝑆𝑆2

𝑀
+

𝑆𝑁2

𝑀
  

Where 𝑋𝑁    
1 is the sample mean we need to have when the p-value has those k zeroes. We now add the following to each observation 

in the null based new therapy data so that it now has the appropriate difference in sample means corresponding to the p-value.  

𝑋𝑁    
0 − 𝑋𝑆    +  𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

The two datasets are then plotted in a histogram with the number of bins computed by rounding up  

1 + 2 ∗ 𝑀^ 1 3   

The distribution of the averages are overlaid on the plots and are normal distributions centered around group averages 𝑋𝑆     and 𝑋𝑁    
1  

with scale parameters 𝑆𝑆  𝑀  and 𝑆𝑁  𝑀 . The estimate of the percent chance of individual BP reductions for new therapy 

exceeding individual BP reductions for standard therapy is computed by counting the number of reductions in the standard group which 

are lower than that for each simulated subject in the new therapy group and then adding these tallies across all new therapy subjects. 

This sum is then divided by the total number of such comparisons given by M^2. The estimate of the percent chance of individual BP 

reductions for standard exceeding individual BP reductions for new therapy is computed in a similar manner. 

The default value 85 for the M per group in the calculator would be required to detect a difference of 3.5 between mean reductions in 

BP of 5 for standard therapy and 8.5 for new therapy with 90% power using a two-sided 5% level test using the standard Wald Statistic 

based on the asymptotic normal distribution of the difference in averages. The difference 3.5 is half the standard deviation of 7 – having 

a difference of at least that fraction of the standard deviation is often considered meaningful. 

Survival Case 

For the survival case we consider a null exponential distribution of survival times with a median of 2 years. This corresponds to a 

hazard of 0.3466.  Then for the given M subjects per group two data sets are simulated under this null distribution for ‗standard therapy‘ 

and for ‗new therapy‘ with a censoring at 7 years. The estimated value of the ratio of hazards of standard to new HR1, that would yield 

the p-value with the k zeroes was obtained using the approximation to the variance of the natural logarithm of the hazard ratio given by 

the reciprocal of a fourth of the total number of events across the two groups [11]. The expression used was as follows 

𝐻𝑅1 = 𝐸𝑋𝑃 𝑍 0.5 ∗ 𝑆𝑄𝑅𝑇 𝐸𝑆 + 𝐸𝑁   

Initial estimates ES an EN were obtained as the expected number of events within 7 years under medians of 2 years for standard and 

2.857 for the new therapy (Hazard ratio = 0.7). The hazards under the null simulations for the standard and new therapy of H1 and H20 

were obtained as dividing the number of events ES and EN by the sum of the event and censor durations in the two groups obtained by 

the null simulation. The hazard ratio under the null simulation was obtained as HR0= H1/H20 and a correction was computed as 

HR1/HR0. This correction is the amount you would have to multiply the survival times generated under the null for the new therapy to 
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get data consistent with the estimated HR1computed earlier. 

This initial computation of HR1 used expectations for ES and EN. We can now use the ratio transformed new therapy data to 

update the number of events EN, recompute HR1 with this EN and the number of events ES in the null simulation of the standard 

therapy group and recompute EN. We repeat this process twice to get stable values for EN and HR1. The reported hazard ratio in the 

calculator is the reciprocal of HR1and represents the ratio of hazards of new therapy to standard. This inverted ratio is the one usually 

presented. 

The two estimates on ordering of individual survivals on the two therapies are derived in a similar manner to that for the 

continuous data. We use the simulations of survival times before the censoring is applied to compute these estimates.  

The default value of 176 for the M per group in the calculator would be required to detect a reduction of 30% in the hazard of an event 

in the new therapy compared to standard therapy (a hazard ratio of 0.7) with 90% power using a two-sided 5% level test using the log 

rank statistic in fixed 7 year follow-up context. Hazard ratios of at most 0.7 or less are usually considered worth testing. 

Binomial Case 

For the binomial case we consider a null distribution of the proportion P responding of 0.5. Then for the given M subjects per 

group the number of responders for standard therapy XS was obtained as random outcome from a binomial distribution with M 

Bernoulli trials with a probability of 0.5 of responding. Then an initial estimate of the value of the ratio of the odds of responding to 

new therapy to the odds of responding to standard therapy, corresponding to the p-value with the k zeroes, is obtained using the 

standard error SE of the natural logarithm of the odds ratio as 𝑂𝑅1 = 𝐸𝑋𝑃 𝑍 ∗ 𝑆𝐸 . The initial computation uses a crude estimate of 

the standard error given by  

𝑆𝐸 = 𝑆𝑄𝑅𝑇 2  𝑀 ∗ 𝑃 ∗ (1 − 𝑃)   = 𝑆𝑄𝑅𝑇 2  𝑀 ∗ 0.25    

Then we calculate the sample proportion responding  𝑃𝑆 = 𝑋𝑆 𝑀  for standard therapy and compute the odds of response for 

standard therapy as 𝑂𝑆 = 𝑃𝑆 ∗  1 − 𝑃𝑆  . Then an initial estimate of the odds of responding for new therapy is given by 𝑂𝑁 =  𝑂𝑅1 ∗

𝑂𝑆. This can then be used to compute the sample proportion responding to the new therapy as  𝑃𝑁 = 𝑂𝑁  1 + 𝑂𝑁  . This can then be 

used in a more accurate estimate of the standard error given by 

𝑆𝐸 = 𝑆𝑄𝑅𝑇  1  𝑀 ∗ 𝑃𝑆 ∗  1 − 𝑃𝑆   + 1  𝑀 ∗ 𝑃𝑁 ∗  1 − 𝑃𝑁       

This is followed by an update of the odds ratio 𝑂𝑅1 = 𝐸𝑋𝑃 𝑍 ∗ 𝑆𝐸 , the odds of responding to new therapy ON, the proportion 𝑃𝑁  

responding to new therapy, the standard error SE and odds ratio corresponding to the p-value.  We repeat this process twice to get 

stable values for 𝑃𝑁 and OR1. The number responding to new therapy XN is obtained by multiplying the proportion 𝑃𝑁  by M and 

rounding. The calculator provides two proportions and a difference in proportions corresponding to a p-value.  

The estimate of the percent chance of individual responses in the new therapy arm being better than individual responses for standard 

therapy is obtained as [XN*(M-XS)]/M^2. The estimate of the percent chance of individual responses in the standard therapy arm being 

better than individual responses for new therapy is [XS*(M-XN)]/M^2. The estimate of the percent chance of individual responses in the 

standard therapy arm being the same as individual responses for new therapy is 

 [XS*XN + (M-XS)*(M-XN)]/ M^2 

Finally, the estimate of the percent chance of individual responses in the standard arm being the same or better than individual 

responses for new therapy is the sum of the last two estimates above. 

The default value of 230 for the M per group in the calculator would be required to detect a difference of 15% between the 

proportion responding to standard therapy of 50% versus a proportion of 65% responding to new therapy (an odds ratio of 1.86) with 

90% power using a two-sided 5% level test using the Wald Statistic based on the asymptotic normal distribution of the log odds ratio. 

Differences in proportions of at least 15% or more are usually considered worth testing.  
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Appendix 2: Details on the Publication Bias Error Calculator 

Denote by 𝑃𝑟𝑜𝑏(𝑅), the probability of an erroneous rejection of a null hypothesis i.e. a rejection when the null is true. Then 

𝑃𝑟𝑜𝑏(𝑅𝑐), the probability of not rejecting a null when it is true is 1 − 𝑃𝑟𝑜𝑏(𝑅).   

For the publication bias related calculator, let 𝑃𝑟𝑜𝑏 𝑃 𝑅  be the probability of publishing when the null hypothesis is rejected. 

Let 𝑃𝑟𝑜𝑏 𝑃 𝑅𝑐  be the probability of publishing when the null hypothesis is not rejected. Then by Bayes theorem the probability of 

an erroneous rejection of a null hypothesis given that the result is published is given by 

𝑃𝑟𝑜𝑏 𝑅 𝑃 =  
𝑃𝑟𝑜𝑏 𝑃 𝑅 ∗ 𝑃𝑟𝑜𝑏(𝑅)

𝑃𝑟𝑜𝑏(𝑃)
 

where, 𝑃𝑟𝑜𝑏(𝑃) is the probability of publishing given by 

𝑃𝑟𝑜𝑏 𝑃 = 𝑃𝑟𝑜𝑏 𝑃 𝑎𝑛𝑑 𝑅 + 𝑃𝑟𝑜𝑏 𝑃 𝑎𝑛𝑑 𝑅𝐶  

=  𝑃𝑟𝑜𝑏 𝑃 𝑅 ∗ 𝑃𝑟𝑜𝑏 𝑅 + 𝑃𝑟𝑜𝑏 𝑃 𝑅𝐶 ∗ 𝑃𝑟𝑜𝑏(𝑅𝐶) 

Appendix 3: Correlation Related Calculations 

Inverted Estimated Value of Sample Correlation Coefficient 

The sample correlation coefficient r associated with the two-sided k zero p-value, when rejecting a null correlation of 𝜌0, is 

obtained by using the approximate normality for large sample sizes (𝑛>=25) of the statistic below using [25].  

 1/2 𝐿𝑛
1 + 𝑟

1 − 𝑟
 ~ 𝑁𝑜𝑟𝑚𝑎𝑙  𝑀𝑒𝑎𝑛 =  

1

2
 𝐿𝑛

1 + 𝜌0

1 − 𝜌0
, 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 1/ 𝑛 − 3   

Then to reject a null correlation of zero we would compute the Wald Statistic  

𝑍 = 0.5 ∗ 𝑆𝑄𝑅𝑇 𝑛 − 3 ∗ 𝐿𝑛
1 + 𝑟

1 − 𝑟
, 𝑤𝑕𝑖𝑐𝑕 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑟 =

𝐸𝑥𝑝  2𝑍 𝑆𝑄𝑅𝑇 𝑛 − 3   − 1

𝐸𝑥𝑝  2𝑍 𝑆𝑄𝑅𝑇 𝑛 − 3   + 1
 

Using 𝑍 = 𝜑−1 1 − 0.5 ∗ 10^ −𝑘 − 1  , with 𝜑−1  being the inverse of the cumulative distribution function of the standard 

normal, k = 5 and  𝑛 =50 we get a correlation coefficient r = 0.613 in the example. 

Estimating Individual Discordance with Aggregated Sample Correlation Coefficient 

The estimated discordance rate in individuals can be estimated for a given correlation coefficient by using a probability calculator 

for the bivariate normal at a University of Michigan website [32].For two variable X and Y with means 𝜇𝑋  and 𝜇𝑌 the discordant 

probability for a positive correlation is given by the sum of the probabilities  

𝑃𝑟𝑜𝑏  −∞ < 𝑋 < 𝜇𝑋  𝑎𝑛𝑑  𝜇𝑌 < 𝑌 < ∞  + 𝑃𝑟𝑜𝑏  𝜇𝑋 < 𝑋 < ∞  𝑎𝑛𝑑  −∞ < 𝑌 < 𝜇𝑌   

The correlation coefficient of these two variables as well as the probability above is invariant under translation and scaling of X and 

Y.  Hence the required estimated discordant probability can be obtained using a standard normal marginal (mean zero and variance 1) 

for X and Y and varying the correlation coefficient. The bounds to X and Y need to be entered twice in the calculator at the University of 

Michigan site for each correlation coefficient to get the two probabilities in the expression above. In general, there is no closed form 

expressions to compute probabilities over regions defined through intersections of intervals on two bivariate normal variables X and Y. 

The U MICH site provides a numerical computation. We derive an expression for the probability in the limited context of the interval 

intersections above, and used the U MICH calculator to check our result. This analytical result holds for the class of elliptically 

symmetric distributions, which includes the multivariate normal distribution. We had noted, rather loosely, that the result about the 

discordant probability holds for any ―ellipsoidal‖ cloud of data – and for that I must say - aye! Here is the 𝑅𝑼𝑩! 

An elliptical distribution can be constructed as the distribution L given by  

𝐿 𝑾 =  𝐿 𝝁 + 𝑅𝑼𝑩  

where W and µ  are k dimensional row vectors corresponding to the variables and their means, U is a k dimensional random row vector 

from a uniform distribution on a k-dimensional unit sphere, R is some radial distribution on [0, ∞) and B is a rank factorization of a 
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matrix of scale parameters 𝜮 [33]. Different radial measures produce different classes of elliptically symmetric distributions. For the 

normal distribution the density of the radial measure R is given by  

f(r) = [2/SQRT(2π)]*EXP(-0.5*r^2) 

The matrix 𝜮 has an interpretation as a variance-covariance matrix when second order moments exist. If E is the matrix containing 

the eigen vectors of 𝜮 as it columns and D is the diagonal matrix containing the square root of the corresponding eigen values, then B 

= ED. Since the two components of our discordant probabilities are defined relative to the means, we can consider the random row 

vector Z = W - µ  with null mean 0. Then Z is related to a spherically symmetric distribution S as in Z=SB =SED. The column vectors of 

B project each of the elements of Z onto the co-ordinates of a transformed metric where the distribution is spherical. The discordant 

probabilities are probabilities over quadrants about 0 in a two-dimensional sub-space defined by two elements in the Z metric (or the 

entire space if k =2). The elements of Z are perpendicular to each other in this metric. Reading probabilities is much easier in the 

transformed metric as it has a characterization through just the uniform distribution U on the unit sphere. The radial measure is not 

relevant in our context as the probabilities are over infinite wedges radiating from 0 and the measure integrates out over each ray in the 

wedge. When we project Z onto the transformed metric, the elements of Z have wedges between them in the transformed metric which 

are no longer perpendicular. The angles in radians between two such elements can be found as the inverse of the cosine of the ratio of 

the dot product of the corresponding row vectors of B divided by the product of the lengths of these vectors. Probabilities in the 

quadrants in the bivariate marginal distributions of two elements of Z are obtaining by dividing the angle by 2*π (360 degrees).  

Probabilities over orthants or other wedges in the Z metric can be worked out in similar manners. 

Note that for this translation and scale distributional context, one can get a correlation matrix with 1‘s for diagonals and the 

correlations as off diagonal values by subtracting out the vector means and scaling each marginal by the marginal scale parameter. This 

removes all parameters except the correlation coefficient. When we pick two elements of Z, say X and Y, having a correlation ρ, then the 

corresponding correlation matrix has eigen values (1+ ρ) and (1 - ρ) correspond to the eigen vectors of [1/ 2, 1/ 2] and [1/ 2, 

-1/ 2]. For characterization of equicorrelated and other similar matricessee [34,35]. The matrix B can be obtained as 

𝑩 = 𝑬𝑫 =    
1/ 2 1/ 2

1/ 2) −1/ 2
 ∗  

  1 + 𝜌 0

0   1 − 𝜌 
 =  

 0.5 ∗  1 + 𝜌  0.5 ∗  1 − 𝜌 

 0.5 ∗  1 + 𝜌 − 0.5 ∗  1 − 𝜌 
  

Denote as 𝒃1 and 𝒃2 the two row vectors of B. Then  𝒃1 = |𝒃2| = 1 and dot product 𝒃1 . 𝒃2 = ρ. As the discordant probability is 

computed over two quadrants in the Z metric the total probability is computed as twice the fraction of the circle spanned by the angle 

between two elements 𝒛1 and 𝒛2 as in 

2 ∗ 𝐶𝑂𝑆−1 𝒃1. 𝒃2   𝒃1 .  𝒃2    

2 ∗ 𝜋
=

𝐶𝑂𝑆−1 𝜌 

𝜋
 

Thus, our discordant probabilities depend solely on the correlation coefficient across the class of elliptically symmetric 

distributions. Computed numbers based on this expression agree with those from the University of Michigan calculator. 

Appendix 4: Theoretical Statistical Justification for Observations about Distributions 

The probability of subjects i and j under Standard and New therapy respectively, having a reduction in BP for standard higher than 

that for the new therapy is given by  

𝑃𝑖𝑗 =  𝐹𝑗𝑁  𝑠 𝑑𝐹𝑖𝑆 𝑠 
∞

𝑠=−∞

 

Where the cumulative density functions (CDF) for the two subjects are 𝐹𝑖𝑆 𝑠  and 𝐹𝑗𝑁  𝑛  respectively. Note that we make 

references to a BP measure and a standard and new therapy to remain consistent with the text but the expressions provided hold more 

generally. When the reductions in BP have identical and independent distributions for subjects within a group then we can note that for 

any randomly chosen pair of reductions in BP, the standard reduction will be larger with a probability given, on dropping the subject 

subscripts in the CDFs, by  
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𝑃 =  𝐹𝑁 𝑠 𝑑𝐹𝑆 𝑠 
∞

𝑠=−∞

 

When the reductions in BP are independent but not identically distributed for subjects within a group, then we can note that over all 

chosen pairs of reductions in BP the standard reduction will be larger with a mean probability given by the following with expressions 

for averaged distributions 𝐹  𝑠  below it. 

𝑃 =
   𝐹𝑗𝑁  𝑠 𝑑𝐹𝑖𝑆 𝑠 

∞

𝑠=−∞

𝑀𝑁
𝑗=1

𝑀𝑆

𝑖=1

𝑀𝑆 ∗ 𝑀𝑁
=   𝐹 𝑁 𝑠 𝑑𝐹 𝑆 𝑠 

∞

𝑛=𝑠

∞

𝑠=−∞

 

 𝐹 𝑁 𝑠 = 1
𝑀𝑁

  𝐹𝑗𝑁  𝑠 
𝑀𝑁

𝑗 =1
 𝑎𝑛𝑑 𝐹 𝑆 𝑠 = 1

𝑀𝑆
  𝐹𝑖𝑆 𝑠 

𝑀𝑆

𝑖=1
 

It is noted that drawing M independent identically distributed observations from the 𝐹  𝑠  distributions will be indistinguishable to 

drawing 1observation each from M independent non-identically distributions. If we were to believe that the observations are not 

identically distributed, then the expected value of a function g(s) under the 𝐹  𝑠  distributions is the average of the expectation over the 

distributions 𝐹𝑖𝑆 𝑠  and 𝐹𝑗𝑁  𝑛 . These two statements are supported in the following 

 𝑑𝐹 𝑁 𝑠 
𝑏

𝑎
=  1

𝑀𝑁
  𝑑𝐹𝑗𝑁  𝑠 

𝑀𝑁
𝑗=1

𝑏

𝑎
=  1

𝑀𝑁
   𝑑𝐹𝑗𝑁  𝑠 

𝑏

𝑎

𝑀𝑁
𝑗=1 , and 

 𝑔(𝑠)𝑑𝐹 𝑁 𝑠 
∞

−∞

=  𝑔(𝑠) 1
𝑀𝑁

  𝑑𝐹𝑗𝑁  𝑠 
𝑀𝑁

𝑗 =1

∞

−∞

=  1
𝑀𝑁

   𝑔(𝑠)𝑑𝐹𝑗𝑁  𝑠 
∞

−∞

𝑀𝑁

𝑗 =1
 

Setting g(s) = s and g(s) =s^2, we have 𝐸𝐹  𝑆 = 1
𝑀  𝐸𝐹𝑗

 𝑆 𝑀
𝑗=1  and 

𝑉𝐴𝑅𝐹  𝑆 =  𝐸𝐹  𝑆
2 −  𝐸𝐹  𝑆  

2
= 1

𝑀  𝐸𝐹𝑗
 𝑆2 

𝑀

𝑗=1
−  1

𝑀  𝐸𝐹𝑗
 𝑆 

𝑀

𝑗 =1
 

2

 

= 1
𝑀  𝑉𝐴𝑅𝐹𝑗

 𝑆2 
𝑀

𝑗=1
+ 1

𝑀   𝐸𝐹𝑗
 𝑆 − 𝐸𝐹  𝑆  

2𝑀

𝑗 =1
 

 


