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Abstract: Someone or the other is always pointing to a published study to justify a point of view or the need for a change in what we do 

or how we live. There are so many such studies, many reported in top-notch journals, reporting results inconsistent across and often 

inconsistent within. It is in the interest of increasing the credibility of science, and to safeguard the general public living with its overt 

and covert influence, to filter good science from bad. Some inferences are good, even when counter-intuitive or seemingly inconsistent, 

and are likely to withstand scrutiny and some others may represent marginal effects in the aggregate not entirely useful for individual 

choices or decisions, and are often non-reproducible. The New York Times featured an article in August 2018 debunking some of the 

reported studies supporting testing for Vitamin D deficiencies and the recommendation of large supplemental doses of Vitamin D. 

Some of these Vitamin D claims, among other claims, were reported as not holding up on replication in controlled trials [1]. We have 

noted in Ref. [2] that we need to be wary as individuals about reported signals detected in studies using stochastic data, even when these 

aggregate signals are of a large magnitude. We demonstrated discordance rates of 30% or higher between subject level assessments of 

effect and the conclusion drawn in the aggregate. Here we will provide a computation of this discordant proportion as well as post-hoc 

assessments of aggregate inferences, with emphasis on evaluating studies with time-to-event endpoints such as those in cancer trials. 

Similar evaluations for continuous, binomial data and correlations are also provided. We also discuss the use of response thresholds. 
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1. Introduction

 

Perhaps you are a journalist covering science, 

perhaps you are a reviewer with a non-quantitative 

background evaluating a submitted manuscript, 

perhaps you are a lead on a research project evaluating 

computed statistical inferences before publication, or a 

lay person with a disease or an issue for which an 

academic publication offers a solution. Lots of us need 

a sense of whether scientific stochastic data (data 

associated with noise where signals are hard to discern) 

reported in the media or on blogs and websites is 

credible. Whether it amounts to something? Whether it 

is a call for change in our lives? Whether these reported 

signals are large enough to warrant societal change? 

We are getting inundated with scientific claims and it is 

clear that a lot of these lack merit due to shoddy science 

and analysis and are often influenced by commercial or 

partisan considerations. Ideas which appear to have the 

backing of the “scientific method” have an overly 
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strong influence in our lives. 

We argued [2] that current standard inferential 

presentations of aggregate data exaggerate claims when 

applied to individuals. We saw a considerable 30% 

discordance at a subject level even with meaningful 

effects and a string of 5 zeroes in a p-value from 

appropriately sized studies. A statement by the 

American Statistical Association [3] as well expresses 

caution when using p-values. There can be a push for 

action based on such aggregate inferences, when 

clearly it won’t work for many and there is a 

discomfort which needs to be addressed. Perhaps the 

sheer volume, and the changing, often contradictory 

claims will negate the near coercive social norms or 

public policy which might result if the claims persist 

over time. This high-volume churn and the recent 

chorus of criticism of science will likely drown out the 

good as well as the bad. We need to come to the 

rescue of what works—the ability of quantitative 

methods, designed to reduce bias, to bring out useful 

signals from noise. Through this article we hope to 
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provide tools for a measured and proportional evaluation 

of the merit of reported inferences, thus mitigating any 

over-reach of science in personal lives. Evaluations of 

effect, which are not overstated, may paradoxically 

increase the acceptance of valid scientific data. 

2. Post-Hoc Assessment of Reported Study 

Results 

When evaluating reported study results, we examine 

studies where the investigator went with available data 

to address a question, rather than planned cohorts of the 

right size to detect meaningful effects. Often 

inappropriately sized studies or lopsided unequal 

cohorts will arise from observational studies. 

Sometimes, one can have randomized controlled 

studies with limited resources or those which are 

over-resourced to address ancillary endpoints such as 

rare adverse events in clinical trials. The tools we 

describe will be relevant when there is a degree of 

discipline exercised when obtaining results—such as 

statistical analysis plans pre-specifying a path through 

the data to test a well-defined primary objective. See [2] 

for a discussion. For uncontrolled studies, comparisons 

between patient groups receiving a therapy of interest 

to a suitable control need to be adjusted for inherent 

difference and biases in such data—see propensity 

score based methods [4] or methods evolving from this. 

We had noted earlier, an ecological anomaly leading to 

as much as a 30% incidence at a subject level of 

patients in a group which is inferior in the aggregate, 

being superior on the assessed measure, to members of 

the group deemed superior in the aggregate. This was 

in highly statistically significant contexts with relevant 

meaningful differences. We start our discussion of 

tools to evaluate reported study results with this flipped 

statistic, and then move on to standard assessments 

used for aggregate inferences. 

2.1 The Discordant Proportion 

We will look at discordance arising in subject 

records in a study evaluating aggregate differences 

between some two Groups S and N. For convenience 

we will label them the Standard and the New Group 

respectively. The probability of subjects i and j under 

Standard and New respectively, having an outcome 

measure for standard higher than that for the new is 

given by 𝑃𝑖𝑗 =  𝐹𝑗𝑁  𝑠 𝑑𝐹𝑖𝑆 𝑠 
∞

𝑠=−∞
,where the CDF 

(cumulative density functions) for the two subjects are 

𝐹𝑖𝑆 𝑠  and 𝐹𝑗𝑁  𝑛  respectively. When the outcome 

measures have identical and independent distributions 

for subjects within a group, then we can note that for 

any randomly chosen pair of subjects chosen from each 

group, the standard outcome measure will be larger 

with a probability, given, on dropping the subject 

subscripts in the CDFs, by 𝑃 =  𝐹𝑁 𝑠 𝑑𝐹𝑆 𝑠 
∞

𝑠=−∞
. 

Fig. 1 illustrates the integral. Discussion of the case 

when outcome measures are independent but not 

identically distributed, with interpretations of the 

resulting ecological fallacies, are provided in Ref. [2]. 

We will further evaluate the integral above in the 

time-to-event context under the proportional hazards 

assumption. Expressions in the continuous case under 

normal distributions, the time-to-event case under 

exponential distributions and the binomial contexts are 

in Appendix 1. In the time-to-event case, the 

distributions have support only over positive real 

numbers. Further, it is customary to work with survival 

functions instead of CDF’s. The integral above is 

equivalent to 𝑃 =  𝑆𝑆 𝑛 𝑑𝑆𝑁 𝑛 
∞

𝑛=0
. 

 
Fig. 1 Densities with CDFs indicated, illustrating the 

integral to compute the discordant proportion. 
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Under the proportional hazard assumption, the 

hazard ratio is independent of time n and we will 

compute it as the ratio of hazards of New to 

Standard𝜂 = 𝜆𝑁 𝑛 𝜆𝑆 𝑛  . The survival functions are 

then related as in the following [see 5]. 

 𝑆𝑆 𝑛  
𝜂 = 𝑆𝑁 𝑛  

Note that 

𝑑𝑆𝑁 𝑛 
𝑑𝑛
 =

𝑑 𝑆𝑆 𝑛  
𝜂

𝑑𝑛
  

= 𝜂 𝑆𝑆 𝑛  
𝜂−1 ∗

𝑑𝑆𝑆 𝑛 
𝑑𝑛
  

Hence the integral evaluates as 

𝑃 = 𝜂  𝑆𝑆 𝑛  
𝜂𝑑𝑆𝑁 𝑛 

∞

𝑛=0

 

= 𝜂 ∗  
 𝑆𝑆 𝑛  

𝜂+1

𝜂 + 1
+ 𝐶 

𝑛=0

∞

=
𝜂

𝜂 + 1
 

The discordant proportion evaluates as a simple 

ratio involving reported hazard ratios and is 

independent of sample sizes and p-values. An 

identical expression is obtained using the more 

restrictive exponential assumptions in Appendix 1.In 

our manuscript on ecological fallacies in cohort 

studies [2], we had provided a simulated example of a 

planned study to detect a hazard ratio of 0.7 with 90% 

power with a two-sided test at a significance level of 

0.05 which resulted in a p-value with 5 zeroes after 

the decimal and estimated hazard ratio of 0.58. When 

asked what they might expect as the subject level 

discordance we computed above, many, including 

statisticians with doctorates guess that this discordant 

proportion is either 0.000001 or 0.05. Using our 

expression above the flipped proportion is 

0.58/(1+0.58) = 36.7%. It is clear that many may 

presume individual effect based on aggregate 

inferences. Fig. 2 illustrates why the discordant 

proportion is this high despite highly significant 

effects, statistical and clinical. 

Fig. 2 shows the usual stair step survival curves 

corresponding to a ratio of hazards of about 0.6 and 

reporting significant effect. The separation of the 

survival curves is convincing evidence of aggregate 

effect. Every vertical dip in the survival curves 

represent follow-up times where events occurred. The 

dips in the red oval represent short durations to event in 

the cohort with superior aggregate effect and the dips in 

the green oval represent long survival durations in the 

cohort inferior in the aggregate. Clearly this is close to 

the assessed subject level discordance and not 

anywhere near the assessed or planned false positive 

rates corresponding to the test for aggregate effect. 

 

Fig. 2 Graphic depicting high discordance despite well 

separated aggregate survival curves. 

2.2 Evaluating Aggregate Inferences 

As noted, often scientists work with available 

cohorts in observational or randomized settings which 

may or may not be of an appropriate size to detect 

clinically meaningful differences. Oversized studies 

can trigger trivial effects and undersized studies may 

reflect large effects despite a result which is not flagged 

as statistically significant. Here we will provide, based 

on standard sources [6, 7], expressions to obtain likely 

p-values to help reproduce, approximately, the 

p-values the scientists obtained. Further, expressions 

are provided for calculating the post-hoc power given 

the cohort sizes available to the scientist using [8-10]. 
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These together with an assessment of the size of the 

effect through standardized statistics can help assess if 

a reported result is meaningful. These formulations are 

provided for continuous data and binomial data in 

Appendix 2. For survival data, under the proportional 

hazard assumptions, the p-value can be obtained using 

an estimate 𝜂  of the ratio of hazards 𝜆𝑁 𝜆𝑆 , the total 

number of events and the proportion in first group 𝑟𝑆 

through the following expression 

𝑝 = 2 ∗  1 − Φ |𝐿𝑁 𝜂  |  𝐸𝑆 + 𝐸𝑁 𝑟𝑆 1 − 𝑟𝑆   , 

where, Φ  is the cumulative density function of the 

standard normal distribution. The post-hoc power for 

other hazard ratios 𝜂  considered more relevant or 

worth detecting obtains as 

Φ   𝐿𝑁 𝜂    𝐸𝑆 + 𝐸𝑁 𝑟𝑆 1 − 𝑟𝑆 − 𝑍𝛼 2   

The interpretation of the subject level and aggregate 

statistics discussed in the last two sections are 

provided in the next section. 

2.3 Interpretive Examples 

We use an online calculator [11] to evaluate 

hypothetical scenarios involving time-to-event data. A 

screen shot from the calculator is in Fig. 3. At the 

online calculator [11], the reader can enter data 

specific to the study being evaluated in the blue cells. 

The calculator allows for the post-hoc assessment of 

inferences for continuous data, time-to-event data, 

binomial data and for correlations in four tabs of the 

online spreadsheet. In Fig. 3, we have a screen shot of 

evaluations for three scenarios involving time-to-event 

data involving events such as disease progressions or 

death. 

Scenario 1 has a hypothetical study having one 

group with 217 events in 431 subjects and another 

group with 191 in 407. It is adequately powered 

(82.10% for a hazard ratio of 0.75—see bottom box, 

80 to 90% is often the norm for planned studies) given 

the number of events observed and reports results 

which are not statistically significant (p-value about 

0.1583 in the second box). The study’s reported 

hazard ratio of 0.87 would not be considered of a 

relevant magnitude. Further, we have computed a 

proportion of subject pairs selected, one from each 

group, with the group inferior in the aggregate (Group 

A) having a larger event free survival period in these 

pairs at 46.51%. All indicative of very little difference, 

in this hypothetical context, between the two groups. 

In the second scenario, we have one group with 50 

events in 112 subjects and another group with 26 in 

106 with a meaningful reported ratio of hazards of 

0.65. Further our flipped proportion is lower at 

39.53%. These reflect, relative to scenario 1,the 

possibility of a reasonable effect despite the 

non-significant p-value of 0.0639. One might give 

some credence to this result despite the lack of 

statistical significance when the study report indicates 

a lack of bias and a disciplined path through the data. 

The non-significant p-value is likely due to the 

smaller number of events, less than a fourth of those 

in scenario 1 and thus having a computed power to 

detect a ratio of hazards of 0.6, at a low 60.82%. 

Scenario 3 has an unimpressive reported hazard ratio 

of 0.85. However, the event rates are more than twice 

those in scenario 1 resulting in a statistically 

significant p-value of 0.0219, which is not surprising 

as there is a high 97.66% power to detect a hazard 

ratio of 0.75. The discordant proportion is 45.87%. All 

indicative of a marginal difference between groups. 

The remaining three tabs of the spreadsheet provide 

a similar set of three scenarios for survival, 

dichotomized binomial response endpoints and 

correlations. As in the continuous case, the first 

scenario presents an inconclusive result which we find 

is adequately powered, the second presents a result 

which we find is inadequately powered to detect 

differences but demonstrates the likelihood of effect 

despite the non-significant p-value, and the third 

scenario presents marginal differences triggering a 

statistically significant effect due to large cohort sizes 

leading to an overly sensitive discernment of effect. 
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Fig. 3 Post-hoc assessment of reported results in time-to-event studies. 

2.4 Additional Note on Correlations 

A Pearson correlation coefficient between two 

measures is roughly a measure of the tendency of one 

thing measured, to be above or below its average, when 

the other measure is also above or below its average 

and goes from－1 for a perfect negative correlation and 

+1 for a perfect positive. In Cohen [12] correlations of 

0.1 to 0.3 are small, 0.3 to 0.5 are medium and greater 

than 0.5 are deemed large. In our calculator [11] we 

have analogously used these intervals to classify the 

difference between correlation coefficients under the 

null and alternate hypotheses. It can be shown, that for 

a close to ellipsoidal scatter plot of data, a good percent 

of subjects will show an association in the opposite 

direction from that indicated by the aggregate 

correlation coefficient. For instance, for a correlation 

coefficient of 0.55, which would be considered “large”, 

there would be a 31.46% discordance rate. Scientists 

working in the social sciences, psychology, quality of 

life, mental health, drug abuse and addiction, criminal 

justice and other similar disciplines rely considerably 

on statistical tools using correlations. As discussed at a 

greater length in Refs. [2, 13], many conclusions are 
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likely to have ecological fallacies making them 

inappropriate for prescriptive recommendations at an 

individual level. 

3. Expected p-Values: Below Analyst 

Expectations 

When quarterly results for public corporations are 

announced, the impact of the reported earnings per 

share, revenue growth and other such key financial 

summaries on movement in share prices depend more 

on how these compare to analyst expectations rather 

than absolute results. One often sees results which 

appear to be quite impressive and yet there is often a 

drop in stock prices when results are released. The 

market had moved to a larger price level based on 

some kind of a consensus analyst valuation, leading to 

a correction, as the reported results, though impressive, 

were below these expectations. A similar expectation 

can be derived for planned studies. 

Planned studies are sized based on limits to the 

false positive rate, typically to a two-sided 5%, and on 

the power or the ability to detect aggregate effect, 

which usually varies from 80 to 90%. Power is the 

chance of seeing a reported p-value less than 0.05, 

indicative of a statistically significant effect. So, with 

50% power one would tend to hit 0.05 and be lower or 

higher 50% of the time—an expected p-value of 0.05. 

With 80% or higher power we would expect to hit a 

much lower value as we now could have p-values 

greater than 0.05 only about 20% of the time with 

smaller values 80% of the time—an expected p-value 

much lower than 0.05. The expected p-value is 

obtained as 𝑝 = 𝑘 ∗  1 − Φ 𝑍𝛼 𝑘 + 𝑍𝛽  , where k = 1 

or 2 depends on whether the test is one or two-sided. 

𝑍𝛼 𝑘  and 𝑍𝛽  are values of the standard normal 

distribution associated with probabilities equal to the 

subscript in the right tail of the distribution. 𝛼  and 

(1 − 𝛽) are the false positive rate and power at the 

planning stages. For a discussion of expected p-values 

see Ref. [14]. This expectation at the planning of a 

study can be used to roughly gauge a study’s eventual 

aggregate estimated effect relative to the anticipated 

effect. The screen shot of a calculator in Ref. [15] 

displayed in Fig. 4, considers a study planned to 

provide 85% power to detect aggregate effect using a 

two sided test at a 5% significance level. The expected 

p-value of 0.00273 is less than a tenth of what is 

adequate to claim a statistically significant aggregate 

signal and is an approximate benchmark against which 

we can evaluate reported p-values. This kind of an 

assessment holds for group sequential trials having 

interim analyses with futility assessments and no 

stopping for efficacy. Further, it can be used to gauge 

expected effect in trials allowing for early termination 

for effect if the trial does not terminate early. For 

reported trails which were terminated earlier one can 

instead gauge aggregate and individual effect using the 

online calculator in Ref. [11] noted earlier. 

 
Fig. 4 Expected p-values. 

4. Assessment of Dichotomous Response 

Often one sees evaluations of effect using 

improvements by more than a threshold value at a 

specific time-point or at any time over a schedule of 

assessments. We will see that these endpoints can be 

problematic even when the thresholds represent an 

MID (minimally important differences). We use half a 

standard deviation for the MID, often seen to be 

relevant [16]. Flagging subject response based on the 

crossing of a threshold at any time over a large 

number of assessments is particularly susceptible to 

overstatements of effect. This is like evaluating if a 

subject is happier or healthier at any time over 5 or 10 

visits—likely a lot of people will be.  
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4.1 Calculator for Assessment of Response 

Classifications 

We evaluate response criteria based on improvement 

by various threshold values on measures from study  

baseline to post-baseline at this online calculator [17]. 

The estimated proportion of subjects likely to be 

deemed to have responded based on such thresholds is 

provided for user specified aggregate mean 

improvements post-baseline (in MID units). We look 

at subject level improvement thresholds in multiples 

M of the MID on the measure of interest and evaluate 

the proportions of subjects crossing these 

improvement thresholds given aggregate effect. 

Details on computations are in Appendix 3.A screen 

shot of the calculator is in Fig. 5. 

 

Fig. 5 Assessment of dichotomized response criteria. 

The first box of the online calculator [17] allows 

user input of data. The second box assesses subject 

level response rates given an immediate step change 

post-baseline due to the intervention being studied. 

The third box assesses subject level response rates 

given a gradual linear change post-baseline due to the 

intervention. We examine three scenarios. In the first 

scenario, there is no net effect due to the intervention. 

The aggregate mean improvement is 0. The second 

row allows input of a correlation between the baseline 

and the post-baseline measures. We entered 0.7 as a 

convenience, as this results in a standard deviation of 

the change post-baseline of the same magnitude as 

that for the baseline measure—about 2 MID units. We 
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enter 6 periodic measures post-baseline and a 1 MID 

subject level threshold for change, to assess the 

subject as having a response. This results in an 

estimated 31.03% response rate “at the last visit” 

despite the null net effect.  

This brings back our little paradox with the large 

proportion discordant to an aggregate effect. If a mean 

and distribution framework were “real”, then one 

would discount the 31.03% response rate as unreal 

and arising out of random variation around the mean. 

A scientist having data with close to a null aggregate 

effect, will, if he pores through individual subject 

records, see changes for about 30% of his subjects 

which are of a relevant and important magnitude and 

hence “real”. An 89.23% estimated response rate, with 

this null net effect, is likely if we flag response based 

on the crossing of the threshold “at any time”. Now, 

this might be something that the scientist will likely 

see as unreal, as those flagged as having response may 

not have an effect that persists over the periodic 

assessments. A requirement of persistence of response 

is similar to requiring multiple thresholds to be met 

concurrently to be deemed a responder. We will 

discuss more stringent thresholds and multiple 

thresholds in the next section. Deterioration statistics 

“at last visit” or “at any visit”, which one would not 

typically see reported, have the same estimated 

proportions under null net effect. 

In scenario 2 we consider an aggregate effect of 0.5 

MID. The proportion having a response “at the last 

visit” goes up to 40.22%. This is a little deceptive in 

contexts without a parallel control. In such contexts 

one should perhaps compare against a putative control 

rate of 31.03%—the rate we obtained in scenario 1 

when there is no net effect post-baseline. In scenario 3, 

with an aggregate worsening by 0.5 MID, we see a 

22.89% response rate “at last visit” and a 78.97% 

response rate when we look at response “at any time”. 

The numbers in the third box of the calculator are 

somewhat lower for scenario 2 and higher for scenario 

3 for the “at any time” assessment as the change 

occurs gradually. Note that high within subject pre 

versus post correlations on a measure help, and lower 

correlation results in increases in subjects crossing the 

threshold. You can enter a value of 0.2 instead of the 

0.7 for the correlation at the online calculator [17] to 

see this effect. 

4.2 Some Observations on Constructing a Response 

Classification 

If you increase M to a larger number than the 

default 1 MID, you make the threshold more 

conservative, resulting in a lower “zero error” 

proportion when there is null net effect. However, it is 

likely that there will be loss of information with too 

conservative a threshold in certain contexts where 

interventions are only moderately effective. Cut-off 

thresholds can be obtained using a “gold” standard on 

what constitutes response, through assessments of 

tradeoffs between specificity and sensitivity as we 

vary thresholds [18]. Even here, if the obtained 

thresholds do not reflect marked effects, one could 

convert the threshold to MID units and evaluate the 

null effect proportions and perhaps the symmetric 

“deterioration” assessment. Stronger response 

assessment can also be constructed by using a 

composite requiring a threshold on multiple measures. 

The ACR (American College of Rheumatology) 20, 

50 and 70% improvement measures [19] require 

improvements on tender joint counts and swollen joint 

counts and three of five other measures, before a 

patient with rheumatoid arthritis is deemed to have 

had a response. What strengthens the presentation of 

response in this context is the use of increasing 

thresholds for improvements from 20 to 70% as well 

as the requirement that the thresholds be met on 

multiple measures. Notice the “and” in the assessment 

—you do not want to see “or” as that will result in a 

weaker threshold than the use of the constituent 

measures. Note that the constituent measures should 

ideally provide additional independent information. 

There are moderate correlations across the ACR 
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measures making it likely that there is some residual 

response rate triggered even with stable disease 

post-baseline, especially with the ACR composite 

with the lower 20% threshold. A number of studies, 

which allow the use of a less effective older standard 

such as methotrexate in the placebo group, report 

placebo response rates on ACR20 of about 15% [20]. 

Likely one may see ACR(Minus20), defined 

analogously, looking at deterioration instead, 

reporting a similar 15% rate in these control groups if 

methotrexate lacks net effect. 

5. Discussion 

We present subject level as well as aggregate 

criteria for the assessment of reported results. Strong 

results in the aggregate, supported by extreme 

p-values, are often an artifact of large cohort sizes 

detecting small effects. Even when these results reflect 

meaningful effect in the aggregate, they often 

associate with a very large discordant effect when 

evaluated at a subject level. Note that one of the 

earlier exponents of the use of the p-value, Sir Ronald 

Fisher [21], when describing it through his tea tasting 

experiment, evaluated it in the context of a single 

subject. Our difficulties seem to arise with the use of 

this notion in inferences about aggregates over 

subjects. 

When evaluating survival data we noted that the 

discordant proportion obtains as a simple ratio using 

the ratio of Hazards HR, as HR/(1+HR), under the 

usual proportional hazards model and is independent 

of the sample size or obtained p-values. We had noted 

a subject level discordance with an aggregate Hazard 

ratio of 0.58 supporting effect, of 0.58/(1+0.58) = 

36.7%.One could attribute a patient’s lower survival 

despite being given the therapy superior in the 

aggregate to the argument that we may be looking at 

sicker patients in the lower tail of the distribution of 

survival times for the superior cohort. This presumes 

that those in the lower tail of the distribution of the 

inferior cohort are not sicker. Further, Forrest plots 

looking at effects in numerous subsets, including sick 

subsets, often obtained using risk criteria derived from 

a composite of assessments of susceptibility to the 

disease (see Ref. [22] for the IMWG risk criteria in 

Multiple Myeloma), result in hazard ratios in the same 

ball-park as the hazard ratio computed across all 

subjects, or worse. Such subset hazard ratios, if 

different from those for the entire cohort, can often be 

artifacts of the multiple assessments across multiple 

subsets [23]. 

We could argue bad luck in the roll of the die and 

always advocate the test therapy. A variability 

argument based on assessed aggregate distributional 

parameters and the ordering of a superior test group to 

a control. Here we may be looking at marginal instead 

of a more predictive conditional distributions using all 

information in patient profiles. A similar discordance 

rate assessed as a complement of the concordance 

index [24], which inspires our discordance proportion 

in our simpler contexts here involving cohort 

comparisons, reduces discordance somewhat but 

persists in large magnitude in complex predictive 

models using such complete patient information. The 

Framingham Heart Study Model (2002 version) had a 

concordance probability of about 70% [25]. We will 

often be left supporting the conjecture that the large 

discordant percentages reflect real discordance and 

there is a lack of effect, often reversed, to the “better” 

option for a number of patients. We need evaluations 

of patient profiles, as well as synergistic and 

antagonistic interactions of these patient 

characteristics with therapeutic options. 

Similar subject level discordance was demonstrated 

in the use of the correlation coefficient and for 

continuous and discrete data. In all cases the 

discordance rate was independent of p-values and 

sample sizes, both of which are seen as problematic 

when evaluating statistical inferences [3]. We hope to 

help the reader assess if a reported scientific finding 

based on stochastic data represents adequate effect in 

the aggregate, and when it does, to evaluate the extent 
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to which an option flagged as the better option in the 

aggregate will work for the reader or for someone to 

whom the reader might refer the finding. Whether it 

amounts to something? Whether it is a call for change 

in our lives? Whether these reported signals are large 

enough to warrant societal change? We might often 

conclude, that any social rule, action or guidance, 

based on reported scientific results using stochastic 

data, should be governed by the presumption of 

exception. When there is a need to act, one should 

usually pivot to addressing and accommodating 

exceptions, rather than an overly rigid adherence to 

the rule. 
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Appendix 1: Computations of the Discordant Proportion 

The probability of subjects i and j in Group S (Standard) and Group N (New) respectively, having a higher measured outcome for 

Group S despite an aggregate trend favoring Group N is given by 

𝑃𝑖𝑗 =  𝐹𝑗𝑁  𝑠 𝑑𝐹𝑖𝑆 𝑠 
∞

𝑠=−∞

 

where the CDF (cumulative density functions) for the two subjects are 𝐹𝑖𝑆 𝑠  and 𝐹𝑗𝑁  𝑛  respectively. When the measured 

outcome has identical and independent distributions for subjects within a group then we can note that for any randomly chosen pair of 

outcomes, the Group A measure will be larger with a probability given, on dropping the subject subscripts in the CDFs, by 

𝑃 =  𝐹𝑁 𝑠 𝑑𝐹𝑆 𝑠 
∞

𝑠=−∞

 

This flipped proportion can be computed based on actual subject level data from a study by tallying the number of subjects in Group 

A having a lower outcome than each subject in Group B and dividing the sum of these tallies across Group B subjects by the product of 

the Group A and Group B sample sizes. The likely proportion can be estimated when subject level data is not available post-hoc, by 

forcing distributional assumptions, or using resampling from estimated distributions, separated appropriately, if other historical data is 

available. 

Continuous Data 

For continuous data we use independent identical within group normal distributions to compute the flipped proportion in the 

calculator. For subjects i and j in Group S and Group N respectively, the distribution of the difference in measures is given through 

the Group means and variances by 

𝑋𝑖 − 𝑋𝑗  ~ 𝑁  𝜇𝑆 − 𝜇𝑁 ,   𝜎𝑆
2 + 𝜎𝑁

2   

The estimated probability of the flipped proportion can be obtained as 

𝑃 𝑋𝑖 − 𝑋𝑗 > 0 = Φ  𝜇𝑆 − 𝜇𝑁   𝜎𝑆
2 + 𝜎𝑁

2    

where, Φ is the CDF of the standard normal distribution. When computing this estimate for observed data we can use the sample 

means and the sample standard deviations 𝑆𝑆 and 𝑆𝑁. Forthe post-hoc evaluation we use the sample standard deviations and the mean 

differences worth testing instead of the sample means. 

Survival Data (Exponential Case) 

For survival data we use independent identical within group exponential distributions to compute the flipped proportion in the 

calculator. The text of the manuscript derives the proportion under proportional hazards assumptions. For subjects i and j in Group A 

(Standard) and Group B (New) respectively, the distribution of the differences 𝑌 = 𝑋𝑖 − 𝑋𝑗 in the times to event is given by the 

Laplace distribution whose CDF is given by 

𝐹𝑌 𝑦 =  𝜆𝑆  𝜆𝑆 + 𝜆𝑁   𝐸𝑋𝑃 𝑦 ∗ 𝜆𝑁  for 𝑦 ≤ 0 =  𝜆𝑁  𝜆𝑆 + 𝜆𝑁   𝐸𝑋𝑃 𝑦 ∗ 𝜆𝑆  for 𝑦 > 0 

For a hazard ratio 𝜂 = 𝜆𝑁 𝜆𝑆 , 

𝑃 𝑌 = 𝑋𝑖 − 𝑋𝑗 > 0 = 𝜆𝑁  𝜆𝑆 + 𝜆𝑁  = 𝜆𝑆 ∗ 𝜂  𝜂 ∗ 𝜆𝑆 + 𝜆𝑆 = 𝜂  𝜂 + 1    

When computing this estimate for observed data we can use the reported hazard ratio. For the post-hoc evaluation we use the 

hazard ratios worth testing instead of the reported hazard ratios. Note that the estimate is identical to that in the text of the document 

obtained using the less restrictive proportional hazards assumption. 

Binomial Data 

The estimate of the percent chance of individual responses in Group S being better than individual responses for Group N is obtained 
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from the proportions responding as 𝑃𝑆 1 − 𝑃𝑁 . Similarly, 𝑃𝑁 1 − 𝑃𝑆  for Group N subjects better than S. The estimate of the 

percent chance of individual responses in the two groups to be the same is 

𝑃𝑆𝑃𝑁 +  1 − 𝑃𝑆  1 − 𝑃𝑁  

Finally, the estimate of the percent chance of individual responses in the Group S (inferior in the aggregate) being the same or better 

than individual responses for Group N is the sum of the first and the third estimates above. When computing this estimate for observed 

data we use the reported proportions. For the post-hoc evaluation we use proportions reflecting a difference worth testing. 

Correlation Data 

The proportion of subjects with data discordant with aggregate correlation coefficient is given by cos-1(ρ)/π. This derivation is 

provided in Appendix 3 in Ref. [2]. 

Appendix 2: p-Value and Post-Hoc Power Calculations 

This appendix contains details on computing likely approximate p-values for inferential comparisons across groups as a check on 

reported p-values for the continuous, binomial and correlation contexts. The expression for time-to-event data is in the text of the 

manuscript. Expressions for the post-hoc power to detect clinically meaningful differences is also provided, given cohorts that were 

available in studies for which we have reported results. 

Continuous Data 

For continuous data we compute the pooled standard deviation (first box of calculator) using the sample sizes and standard 

deviations in Group S (Standard) and Group N (New) as 

𝑆𝑃 =    𝑁𝑆𝑆𝑆
2 + 𝑁𝑁𝑆𝑁

2  𝑁𝑆 + 𝑁𝑁   . 

Under approximate normality and independence, the student’s-t statistic can be computed using the difference in observed sample 

means as 

𝑡 =   𝑋 𝑆 − 𝑋 𝑁  𝑆𝑃 1 𝑁𝑆 + 1 𝑁𝑁     ~ 𝑡𝑁𝐴+𝑁𝐵−2 

The two-sided p-value then obtains as 2 ∗  1 − Φ |𝑡|  , where Φ is the cumulative density function for the student’s-t distribution 

above. We use half the pooled standard deviation as a measure of the MID (minimal important difference). The power is obtained by 

using differences in means considered worth detecting using the expression below. For the true pooled standard deviation 𝜎𝑃, one 

can still use 𝑆𝑃. 

Φ | 𝜇𝑆 − 𝜇𝑁 |  𝜎𝑃 1 𝑁𝑆 + 1 𝑁𝑁   − 𝑡𝑁𝑆+𝑁𝑁−2
𝛼 2    

Binomial Data 

For binomial data the p-value can be obtained using the estimated proportions 𝑃  and the post-hoc power through differences in 

proportions P worth detecting using 

𝑝 = 2 ∗  1 − Φ | 𝑃 𝑆 − 𝑃 𝑁 |  𝑃 𝑆 1 − 𝑃 𝑆 𝑁𝑆 + 𝑃 𝑁 1 − 𝑃 𝑁 𝑁𝑁     and 

power = Φ  | 𝑃𝑆 − 𝑃𝑁 |  𝑃𝑆 1 − 𝑃𝑆 𝑁𝑆 + 𝑃𝑁 1 − 𝑃𝑁 𝑁𝑁   − 𝑍𝛼 2  . 

Correlation Data 

The p-value associated with a reported sample correlation coefficient r, when rejecting a null correlation of 𝜌0, is obtained by 

using the approximate normality for large sample sizes (𝑛 ≥25) of the statistic above[26]. 

 1/2 𝐿𝑛
1 + 𝑟

1 − 𝑟
 ~ 𝑁𝑜𝑟𝑚𝑎𝑙  𝑀𝑒𝑎𝑛 =  

1

2
 𝐿𝑛

1 + 𝜌0

1 − 𝜌0
, 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 1/ 𝑛 − 3   

Then to reject a null correlation of 𝜌0 we would compute the Wald Statistic: 
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𝑍 = 0.5 ∗ 𝑆𝑄𝑅𝑇 𝑛 − 3 ∗  𝐿𝑛
1 + 𝑟

1 − 𝑟
− 𝐿𝑛

1 + 𝜌0

1 − 𝜌0
  

The p-value can then be obtained as using 𝑝 = 2 ∗  1 − Φ |𝑍|  , with Φ .   being the cumulative distribution function of the 

standard normal. The power associated with a two-sided 𝛼 level test of a correlation coefficient of 𝜌1 considered meaningfully 

different from 𝜌0 is given by 

Φ  0.5 ∗ 𝑆𝑄𝑅𝑇 𝑛 − 3 ∗  𝐿𝑛
1 + 𝜌1

1 − 𝜌1
− 𝐿𝑛

1 + 𝜌0

1 − 𝜌0
  − Φ 1 − 𝛼/2   

Appendix 3: Details on the Dichotomized Response Assessment Calculator 

In this calculator we evaluate responder criteria based on improvement by various threshold values on measures from study 

baseline to post-baseline. The estimated proportion of subjects likely to be deemed responders based on such thresholds is provided 

based on the aggregate mean improvement post-baseline. We look at improvement thresholds in multiples M of the minimally 

important differences (MID) on the measure of interest. The MID is often seen to be about half a standard deviation of the measure 

[17]. Hence if we standardize the data to MID units we obtain a standard deviation of the measure 𝜎𝑚  = 2 in MID units. The 

standard deviation of the improvement 𝜎𝛿  is obtained using the correlation between baseline and post-baseline as 

𝜎𝛿 = 2 ∗   2 − 2𝜌2  

We will consider probabilities of improvements crossing the threshold at different periods assuming: (1) An immediate aggregate 

mean improvement 𝜇𝛿  post-baseline, which stays stable and; (2) A linear change to the specified aggregate mean improvement 𝜇𝛿  

at the last post-baseline visit. 

In the first context, the probability of an improvement crossing the threshold at the ith periodic post-baseline measurement is 

obtained approximately through the cumulative distribution function Φ of a normal distribution with mean 𝜇𝛿  and standard 

deviation 𝜎𝛿  as 

𝑝𝑖 = 1 − Φ 𝑀  

In the second context, for the ith of k post-baseline periodic assessments this probability is obtained in a similar manner for mean 

 𝑖 ∗ 𝜇𝛿 𝑘  and standard deviation 𝜎𝛿 . In both cases we can compute probabilities of deteriorations of the same multiple M of the 

MID as 

𝑝𝑖 = Φ −𝑀 , 

and the probability of crossing the threshold, for the improvement or deterioration context using the corresponding𝑝𝑖  at any time in k 

assessments by 

𝑝 = 1 −  1 − 𝑝𝑖 
𝑘
𝑖=1 . 


