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Abstract: We study response of a shear beam to seismic excitations at its base. The research is conducted using computer simulation of 
the wave propagation on a numerical model. The wave equation is solved using the method of finite differences (FD) where the spatial 
and temporal derivatives are approximated with FD. We used formulation of the wave equation via the particle velocities, strains, and 
stresses. Integrating particle velocities in time, we obtained displacements at spatial points. The main goal in this research is to study 
phenomena occurring due to three different types of boundary conditions, Dirichlet, Neumann, and moving boundary when simple 
half-sine pulse propagates through 1D medium modeled as a shear beam. 
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1. Introduction 

In the problems dealing with infinite region, as the 

wave propagation problems in seismology, it is 

impossible and useless to model the whole region. 

Instead, we model and study only one part of the whole 

region, the region of interest. To analyze only one part 

of the whole region we need to utilize so called 

artificial boundaries [1, 2]. They are not physical 

boundaries, but artifacts used to simulate wave 

propagation outside of the numerical model.  

Opposite of the problems dealing with wave 

propagation in infinite domain, there is a wide research 

field in the earthquake engineering treating response of 

structures with finite dimensions to seismic excitations. 

In this problem, the boundaries bounding the structure 

are physical or real. In this case, the response of the 

structure inside depends upon the solution at the 

boundaries. Different boundary conditions imply 

different response of same structure excited by same 

excitation. 
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To show the influence of the boundary conditions on 

the response of the structures, in this paper we study 

several aspects of the response of a simple shear beam 

(1D medium) model of a structure excited by simple 

half-sine pulse. Although the shear beam model is one 

of the simplest mathematical models of the real 3-D 

structures (buildings, bridges, chimneys, multilayered 

soil etc.), through numerical simulation on this model, 

many physical phenomena of the linear [3] and 

nonlinear [4, 5] response of the structure can be studied 

[6, 7]. Based on these studies we learned under what 

conditions, where, and when peaks of the response of 

the structure to seismic excitation occur [4, 8]. 

The boundaries occuring in wave propagation 

problems can be classified into three groups [9]: 

 elementary (non-transmitting) boundaries; 

 consistent (global) boundaries; 

 imperfect (local) boundaries. 

In this paper we study the features of the response 

due to three types of boundaries. First, we analyze the 

non-transmiting (totally reflecting) elementary 

boundaries. For that purpose we study two cases of 

shear beam model. In both cases, at the bottom end we 
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prescribe zero motion (Dirichlet boundary condition or 

fixed boundary). In the first case, at the top end of our 

shear beam model, we imply prescribed zero 

displacement (Dirichlet, fixed) boundary condition, 

while in the second case we imply prescribed zero 

derivative of displacement (Neumann, free-stress) 

boundary condition. In both cases, the boundaries are 

perfect reflectors, e.g. the wave energy is totally 

reflected from the boundaries into the inner region of 

the shear beam. 

2. The Model 

The model in this paper is a shear beam excited at its 

bottom by prescribed motion in form of half-sine pulse. 

After the motion is prescribed at the bottom, we take 

that the bottom end does not move and the 

displacement is zero during whole simulation. The 

shear beam is divided on m equal intervals (m = 200 in 

this paper). The governing equation of the problem is 

the wave equation implemented with numerical 

scheme in our model. This numerical scheme causes 

propagation of the prescribed half-sine pulse along the 

shear beam with velocity of propagation ߚ ൌ ට
ఓ

ఘ
 , 

where ߤ is shear modulus and ߩ is density of the 

material of the shear beam. These parameters 

characterize the material from which the shear beam is 

made. 

The wave equation in one dimensional (1D) space is 

ߩ
డమ௎

డ௧మ ൌ
డఙ

డ௫
             (1) 

where, ߪ ൌ ߝߤ  is shear stress and ߝ  is shear strain 

(Fig. 1). 

For establishing “marching in time” procedure, we 

need to reduce the order of Eq. (1) in a system of partial 

differential equations (PDE) of first order.  

Taking ܸ ൌ
డ௎

డ௧
 and considering above stress-strain 

relation, the Eq. (1) reads 

డ௏

డ௧
ൌ

ଵ

ఘ

డ

డ௫
ሺߝߤሻ   (2) 

If we differentiate both sides of identity 
డ௎

డ௧
ൌ

డ௎

డ௧
 

with respect to x and change order of differentiation of 

left and right side, we get: 

డ

డ௧
ቀ

డ௎

డ௫
ቁ ൌ

డ

డ௫
ቀ

డ௎

డ௧
ቁ   (3) 

Substituting ߝ ൌ
డ௨

డ௫
, taking into account definition 

of vend plugging in Eq. (3) we get: 

డఌ

డ௧
ൌ

డ௏

డ௫
           (4) 

On this way the original second-order wave equation 

is reduced on system of two first-order PDEs: 

డ௏

డ௧
ൌ

ఓ

ఘ

డఌ

డ௫
       (5) 

డఌ

డ௧
ൌ

డ௏

డ௫
                   (6) 

Suitable for establishing of “marching in time” 

procedure. 

Eqs. (5) and (6) in vector form are: 

ሼܷሽᇱ௧ ൌ ሼܨሽᇱ௫               (7) 

where, ሼܷሽ ൌ ቄܸ
ߝ

ቅ and ሼܨሽ ൌ ቊ
ఓఌ

ఘ

ܸ
ቋ. 

Dirichlet boundary condition implies zero 

displacements. The allowable shape of 1D beam with 

applied Dirichlet boundary conditions at both ends is 

presented on Fig. 2a. The time history of the 

displacement at arbitrary point of the beam under 

forced vibrations is presented on Fig. 2b.  
 

 
Fig. 1  Linear stress-strain dependence.  
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Fig. 2  Allowable motion of a beam with applied fixed 
boundary conditions at both ends. (а) Shape of deformed 
beam in arbitrary time instant; (b) Time history at arbitrary 
point of the beam. 

3. Numerical Examples 

We consider a beam with height H = 50 m, divided 

on 200 equal space intervals. Wave with half-sine form 

is generated at bottom end (x = 0) and starts to 

propagate along the beam towards the top. Velocity of 

propagation of the wave is 300 m/s, the amplitude of 

the pulse is A = 0.1 m, and duration of the pulse is td = 

0.1 s (Fig. 3). 

After applying the pulse at the bottom (t > td), the 

bottom end remains motionless, e.g. fixed Dirichlet 

boundary condition is prescribed at the bottom end. 

While the pulse occupies a point of the beam, its 

displacement is: 

ݑ ൌ ܽ · ݊݅ݏ
గ௧

௧೏
            (8) 

where, ܽ ൌ 0.1 m  is amplitude and ݐௗ ൌ 0.1s  is 

duration of the pulse. 

Differentiating Eq. (8) with respect to time, we get 

the particle velocity which for our example is: 

డ௨

డ௧
ൌ ݒ ൌ

௔గ

௧೏
· ݏ݋ܿ

గ௧

௧೏
ൌ

଴.ଵగ

଴.ଵ
ݏ݋ܿ

గ௧

௧೏

௬௜௘௟ௗ௦
ሱۛ ۛۛ ሮ ௠௔௫ݒ ൌ

଴.ଵగ

଴.ଵ
ൌ  (9)  ߨ

 
Fig. 3  Incident wave with half-sine waveform. 
 

To obtain the strain, we multiply and divide the 

argument of sine function in Eq. (8) by velocty of 

propagation:  

ݑ ൌ ܽ · ݊݅ݏ
గ௧ఉ

௧೏ఉ
           (10) 

Taking that ݐߚௗ ൌ ܮ  is length of the pulse and 

ݐߚ  ൌ  is spatial coordinate along the length of the ݔ

pulse, Eq. (10) becomes: 

ݑ ൌ ܽ · ݊݅ݏ
గ௫

௧೏ఉ
           (11) 

Differentiating Eq. (11) with respect to x, we get the 

strain: 

డ௨

డ௫
ൌ ߝ ൌ

గ௔

௧೏ఉ
· ݏ݋ܿ

గ௫

௧೏ఉ

௬௜௘௟ௗ௦
ሱۛ ۛۛ ሮ ௠௔௫ߝ ൌ

గ௔

௧೏ఉ
ൌ

௩೘ೌೣ

ఉ
ൌ

గ

ఉ

  (12) 

If ߚ ൌ 300m/s, the maximum value of the strain is 

௠௔௫ߝ ൌ
గ

ఉ
ൌ

గ

ଷ଴଴
~0.01  what can be seen also from 

our numerical results in Figs. 4c1 and 4c2. 
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3.1 Results 

On following figures, we presented the results 

obtained by numerical simulation of the propagation of 

wave in form of half-sine pulse (Fig. 3). 

On Fig. 4 the response of the point at the middle of 

the beam (point 100, x = H/2 = 25 m) is shown. The 

response is shown via displacements u, particle 

velocities, v, and strains ߝ at that point versus time, t. 

On left side of Fig. 4 we show the response for fixed 

boundary, u = 0, at the top x = H = 50 m (Dirichlet, 

Figs. 4a1, 4b1 and 4c1), while on the right side the 

response for stress-free boundary, ߝ ൌ
డ௨

డ௫
ൌ 0, at the 

top (Neumann, Figs. 4a2, 4b2 and 4c2) is shown.  

Comparing displacements (Figs. 4а1 and 4а2) it can 

be noticed that in case of fixed (Dirichlet) boundary at 

top, after reflection the pulse changes sign and it comes 

in the middle of the beam (point 100) with opposite 

(negative) displacement than in the first passage 

through that point (second peak on Fig. 4a1 is with 

negative sign). In case of free-stress (Neumann) top 

boundary after reflection from the top the pulse does 

not change the sign and it comes at the point 100 with 

same (positive) displacements as in the first passage. 

The situation is the same with particle velocity 

(half-cosine pulse, Figs. 4b1 and 4b2). 

Dislike displacements and particle velocities, the 

strains, ε, after reflection from the fixed (Dirichlet) top 

does not change sign (all half-cosines on Fig. 4c1 start 

with negative and finish with positive signs). For 

stress-free (Neumann) top end, after reflection the 

strains change signs (Fig. 4c2). So, if we analyze Fig. 

4c2, we can notice that the first half-cosine pulse going 

upward passing through point 100 starts with negative 

values, while after reflection from the top it changes 

sign and comes at point 100 with opposite values (first 

positive and then negative). Then it reflects from 

bottom end (Dirichlet), does not change sign, so the 

third half-cosine is the same as second, then it reflects 

from top (Neumann), changes sign so the fourth 

half-cosine is opposite of third etc. One can learn from 

the above analysis that fixed end (Dirichlet boundary 

condition) changes sign of the displacement, u and 

particle velocity, v, while it does not change sign of 

strain, ε after reflection. Opposite, stress-free 

(Neumann boundary condition) does not change sign 

of displacements, u, and particle velocities, v, while it 

changes sign of the strains, ߝ , after reflection. 

Common for both boundary conditions is that after 

multiple reflections, the amplitudes of the pulse are the 

same (in absolute values). The above analysis is 

summarized on Fig. 5. It is a 3D view of displacement 

of the shear beam versus scaled, dimensionless time 

and space.  

In the real world, dislike the fixed (Dirichlet) 

boundary at the bottom, the structures are not fixed in 

the ground (zero motion), but rather there is some 

nonzero motion (moving boundary) at the bottom 

during the passage of the wave through soil-structure 

interface. Also the real structures, at the top end are not 

bounded and can freely move (Neumann boundary 

condition).  

Response of such a structure analized with 1-D shear 

beam model is shown on Fig. 6. At top row (Figs. 6а1, 

6b1 and 6c1) the displacement, particle velocity and 

strain at the middle of the beam, x = H/2 = 25 m (point 

100), vs. time are presented. Comparing Figs. 4a2, 4b2 

and 4c2 with Figs. 6a1, 6b1 and 6c1 one can notice that 

the shape is the same (in both sets at the top there is 

stress-free, Neumann boundary condition). The 

differences are boundary conditions at bottom. While 

the Figs. 4a2, 4b2 and 4c2 show the response for fixed 

bottom boundary, the Figs. 6a1, 6b1 and 6c1 show the 

response of the beam for moving bottom boundary. 

The moving boundary is a type of Dirichlet boundary 

which prescribes motions, not derivatives of motions 

like Neumann boundary and that is the reason why Figs. 

6a1, 6b1 and 6c1 resemble Figs. 4a2, 4b2 and 4c2 in 

shape. Only at moving boundary is the motion not zero 

as in case of fixed boundary. As a consequence after 

each reflection from bottom, part of the wave energy is 

transmitted in the soil and only a part is being reflected 

back in the beam which propagates upward. On this 
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way, after each reflection from the bottom, the wave 

remaining in the beam (structure) is weakened.  

In Figs. 6a2, 6b2 and 6c2 we can see the 

phenomenon of wave interference in point 150 close to 

the top (x = 3H/4 = 37.5 m). Part of the pulse going 

upward interferes with part of the pulse going 

downward and they add up. This is obvious at strains 

(Fig. 5c2) where the strain amplifies almost twice. This 

is the reason for generating high stresses  ߪ ൌ  that ߝߤ

can be reason for collapse of the structure. 
 

 
(a1)                                                 (a2) 

 

 
(b1)                                                  (b2) 

 

 
(c1)                                                     (c2) 

Fig. 4  Displacement, particle velocity, and strain at x = H/2 vs. time for β = 300 m/s, Dirichlet (a1, b1 and c1) and Neumann 
(a2, b2 and c2) boundary conditions.  
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Fig. 5  Displacement of the beam as a function of dimensionless time t and dimensionless height ɳ for two view angles. Dirichlet 

(a1 and a2) and Neumann (b1 and b2) boundary conditions.  
 

 
Fig. 6  Displacement, particle velocity, and strain in case of moving boundary at bottom and stress-free boundary at top. 
a1, b1 and c1 at x = H/2 (point 100); 
a2, b2 and c2 at x = 3H/4 (point 150). 
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Fig. 7  Displacement of the beam versus dimensionless time, τ, and dimensionless height, η, for two view angles. Moving 
(realistic) boundary on soil-structure interface (η = 0). Characteristic points: η = 0: soil-structure interface (moving boundary), 
η = 1: top of the beam (structure), Neumann (stress-free) boundary condition.  
 

Finally, on Fig. 7, a 3-D view of propagation of the 

the wave versus dimensionless time, τ, and 

dimensionless space, η, is presented. As can be seen 

from Fig. 7, after each passing of the wave through 

soil-structure interface, the reflected wave in the beam 

is weaker as a consequence of transmitting of the wave 

energy in the soil. The ratio of the reflected and 

transmitted wave depends upon the physical properties 

of the soil and structure and can be determined through 

reflection, kr, and transmision coeficient, kt [10]. 

4. Conclusions 

Fixed end (Dirichlet boundary condition) changes 

sign of displacement, u and particle velocity, v, while it 

does not change sign of the strain, ε, after reflection. 

Opposite, stress-free (Neumann boundary condition) 

does not change sign of displacement, u, and particle 

velocity, v, while it changes sign of the strain, ε, after 

reflection. Common for both boundary conditions is 

that after multiple reflections, the pulse amplitudes are 

unchanged. For moving boundary at soil-structure 

interface, after each passage of the wave through it, the 

reflected wave remaining in the structure is attenuated, 

indicating that part of the energy is refracted in the soil. 

The ratio of the reflected and refracted wave depends 

on the physical properties of the soil and the structure 

can be determined with the coefficients of reflection 

and transmission. 
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