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Abstract: The stiffness reduction is studied in detail of compact W-Shapes (wide-flange steel shapes) that results from yielding of the

cross-section due to uniaxial bending and axial compression. Three-dimensional m-p-7 surface plots developed from detailed fiber

element models of a W8x31 are used to develop a generalized material model for direct implementation in the virtual work method. A
portal steel frame is used to illustrate the virtual work method with the nonlinear material model in a first-order, inelastic analysis

implementation and in a second-order, inelastic analysis condition. The nonlinear modeling capabilities of MASTAN?2 are used to
verify the accuracy of the virtual work results and are found to be in very close agreement.
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1. Introduction

The in-plane behavior of steel frames with compact
doubly-symmetric beam-columns that are subjected to
major or minor axis bending has been shown to exhibit
significant differences in their response based on
plastic hinge and plastic zone analyses [1, 2]. Frames
of this type with little to no redundancy can be very
sensitive to the refinement of the inelastic analysis
procedure employed [3, 4]. Recent research has
focused on developing improved empirical
relationships to account for the reduction in stiffness
that occurs due to yielding of the beam-column’s
cross-section [5-7]). The objective of this paper is to
present the findings from a detailed fiber element
model investigation of the stiffness reduction that
develops as a result of yielding in the flanges and web
over the full range of moment and axial load
combinations from initial yield to the fully plastic
condition. Considering major axis or minor axis
bending under axial compression conditions, analytical
expressions are presented to determine the moment and

axial load combinations at the initial onset of yielding
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and when the section becomes fully plastic.

Closed-form equations are presented that provide a
straightforward and relatively easy to use material
model when conducting a nonlinear analysis of planar
steel frames with compact W-Shapes (wide-flange
steel shapes) wusing the virtual work method.
Expressions for the stiffness reduction over the length
of the member in a virtual work application with linear
moment variation are also presented. The material
model can accommodate any W-Shape and assumed
maximum value of residual stress.

Discussion is provided on how the equations can be
used as tangent modulus values in the nonlinear
analysis program MASTAN2 [8]. The use of the
material model is first demonstrated for a steel portal
frame with first-order, inelastic response behavior. The
virtual work method is then extended to consider
second-order effects. The concluding section combines
the findings from the previous section to consider the
virtual work and MASTAN2 models of a steel frame

with second-order, inelastic response behavior.
2. Modeling Inelastic W-Shape Behavior

A nonlinear analysis requires a series of linear

analyses with load increments up to the fully applied
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load condition or to a lower magnitude if an instability
occurs prior to full load application. By introducing
increments of load AH and virtual load AQ, an
expression for the displacement at ¢ due to the load H
can be found for the frame in Fig. 1 with inelastic
material behavior. Throughout this load increment
condition, the material behavior and deformations of
the frame are held constant at the conditions
immediately prior to AH and AQ being applied.

Using ., to represent the increment of displacement
at ¢ due to the load AH at b, the virtual work

relationship is

Le AMJ AMP
AQS, = Z f ek dz
k

where El; is the stiffness condition in member £

1)

immediately prior to the next application of load AH.
The integral expression can be simplified for an
individual member k£ by considering the moments
AM"(z) and AM®(z) to be continuous functions over the
length L. Since AQ is a concentrated force, AM?(z)
will always be a linear function (a + bz) such that

f Lk AMH (2)

0

Q
Bl AM®(z)dz

(M AMT(2) bd )
- | @i @

where AM “(z)/EI," is the curvature equation due to the
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form
ka AMH(Z) J’Lk AMH(Z)
a +b dz
0 El; EIL;
= Ay(a+ bz) = A;,(AM?) 3)
The incremental displacement at any point j can be
determined using the following generalized form of the
virtual work equation

n

k=1
where Aj is the incremental area of the curvature

AR (AMD) (4)

diagram with stiffness that varies over the member
length L;, and AM,? is the moment at the centroid of
each area due to AQ =1 at .

Consider the steel frame in Fig. 1 to have compact
W-Shape sections with elastic, perfectly plastic
material properties as depicted in Fig. 2. Provided the
load H is large enough to produce an inelastic material
response, Eq. (4) can be used to find the lateral
displacement at any point j.

The moment condition between the yield moment
M, and the plastic moment M, is the elasto-plastic
moment M,, At this magnitude of moment, the
cross-section has a specific value of reduced flexural
stiffness £/,,. Recognizing that plane sections remain
plane after bending, even after a portion of the
cross-section has yielded, the curvature equation is

given as
load AH, and AM?(z) is the moment equation due to the My, M.,
virtual load AQ. Eq. (2) can be written in the following ¢= El,, T TEl ®)
0 /
—
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Fig. 1 Steel frame with loads H and Q.
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Fig. 2 Elastic, perfectly-plastic material.

The bending moment M, is defined to be the moment
that would exist if the cross-section had not yielded and
maintained its full stiffness E/. At this condition of
moment and stiffness, the curvature is defined to be the
same as the actual condition of moment M., with
reduced stiffness El,,.

M, M,
P=%= EI::,

From Egs. (5) and (6), the relationship for T in terms

(6)

of the moments M., and M. is given as
Me
T 7)

The stiffness reduction that results from yielding of
the cross-section due to bending up to the plastic
moment M, and axial compression up to the yield load
P, was studied in detail for W-Shapes with an ECCS
(European Convention for Constructional Steelwork )
[9] residual stress pattern as depicted in Fig. 3 [10]. For
a given normalized moment m (M/M,), normalized
axial load p(P/P,), and residual stress ratio c¢{0o;/0y),
the stiffness reduction was carefully assessed using a
detailed fiber element model of a W8x31 [11] with ¢, =
0.3.

A computer program was developed to
accommodate a specified number of rows and columns
of fiber elements in each flange and the web. The angle
and location of linear strain distribution were varied in
specified increments from zero to specified maximums
in order to capture the m and p conditions at 0.01
increments to at least three significant digits of

accuracy.

t +&

At each condition of strain distribution, the stresses
in all of the fiber elements were used to calculate the
corresponding moment and axial load condition. When
yielding occurred, the M., and M, conditions were used
to evaluate the corresponding stiffness reduction using
Eq. (7). The W-Shape model used 2,046 elements over
the cross-section (400 fiber elements in each flange and
1,246 fiber elements in the web). This level of
discretization was found to be necessary to develop the
smooth m-p-7 surface plot in Fig. 4 [10]. Using the m
and p results with increments of 0.01, over 7,000 data
points were used to produce the three-dimensional
surface plots (m and p conditions of 7= 0 outside of the
boundary were excluded).

For a given residual stress ratio ¢, and axial

compression load condition p, the maximum
moment m, at which 7= 1 is maintained is given as
Sy
my =2 (1=, —p) ®
y
Sx
m; = 21—, —p) O
X

where S}, is the minor axis elastic section modulus, Z, is
the minor axis plastic section modulus, S, is the major
axis elastic section modulus, and Z, is the major axis
plastic section modulus.

Two equations are needed to determine the m and p
conditions when 7 = 0 for both the minor axis and
major axis bending conditions. For a given p condition,
the minor axis bending moment myat which 7= 0 is
given as

p*(2+1)?
Q2+ M2+ A

m0=1

(10)
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A

Fig.3 ECCS residual stress pattern.

_4-[p2+1) -1

Mo =TT+ Ay
" - 2, + 1 11
WRERP =757 an
The major axis bending moment myat which z=0is
given as
2 2
_ p°(2+2)
Mo =T+ G+ ) (12)
_CH) =[P+ - A+ M)

Mo = 44+ 2,(4+2)

whenp = (13)

2+ A

(b)

Fig. 4 m-p-7surface plot of a W8x31 for (a) minor axis bending and (b) major axis bending.

where A = 4,/A;, Ao = t,/bs, My = d,, /t;[12]. A,,is the
web area, Ay is the flange area, #, is the web thickness,
byis the flange width, d,, is the web depth, and ¢ is the
flange thickness.

Using a linear variation in stiffness between the
elastic condition of 7= 1 and the fully plastic condition
of 7= 0, the stiffness reduction 7 for a given m and p
condition is evaluated based on the m; and m,
values from Egs. (8) through (13).

my—m
T=—— (14)
my—m
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T=(1_p)(1—mﬁ) whenp =21—c, (15)

Cr 0

The generalized material models in Fig. 5 have been
shown to be an effective approximation of the m-p-7
surface plotsin Fig. 4 [12]. Frame behavior results
using Eqgs. (14) and (15) to model the stiffness
reduction were found to be in close agreement with
El-Zanaty et al. [13] benchmark frame in Attalla et al.
[1], King et al. [14], and Ziemian and McGuire [2].

For the condition of reduced flexural stiffness EZ,,
that varies over a yielded region L., it is necessary to
use an iterative procedure with increments of load to
produce the moments as depicted in Fig. 6 [15]. The

area expression in Eq. (4) is evaluated to accommodate
the increments of moment and reduced stiffness over
the elasto-plastic region as

Lep AMH (2
Agp =f L()dz (16)
0

Ele,(2)

Since the load AH is a concentrated force in Fig. 1,

the moment equation for AMEI,(Z) is linear over the

yielded region, and the moment increments vary

between AM; and AM; in Fig. 6 according to the
following relationship

(AM; — AM;)z

e

(7)

P

n, m

Fig. 6 Reduced stiffness over yielded region L., when p <1 -¢,.
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The denominator of Eq. (16) is evaluated using the
member axial load p(P/P,) and the moments m(M/M,,)
and m;(M;/M,). The reduced stiffness El,,(z) in Fig. 6

is written in terms of 7; and 7; as

El.,(z) = T(2)El = [ri + (T’L_—TL)Z] EI (18)
ep

where 7; = (mo —m;)/(mg —m,)

(mo —m;)/(my — my).

Substituting Eqs. (17) and (18) into Eq. (16), and
yields the
closed-form expression for the area 4., as depicted in

Fig. 7.

A =1 T AM; ] (‘L‘)
v = T -1 AM;—AM;)

AM; — AM;
<—> (19)

T

and T =

evaluating the integral, following

X

The centroid of this area is evaluated using the
following expression
_ Lev AME, (2)z
AepZep =j;] El,,(2) ——dz (20)
Substituting Eqgs. (17) and (18) into Eq. (20), the
centroid Z,, as depicted in Fig. 7 is determined by
dividing the integral solution by the area obtained from
Eq. (19).

| 7(AM-—AM->
Zep = T, AM, T;
_ l ]
[1 (rj—rl AM, — AM)ln( )
’l’.
———|Lep (21)
Tj—Tl'

3. Modeling First-Order, Inelastic Behavior

The first example will use the frame and loading
condition in Fig. 1 to demonstrate the use of the
equations to perform a first-order, inelastic analysis.

The two columns are modeled as compact W8x31

W-Shape sections and the girder is modeled as a
W10x60. All structural members are modeled as
ASTM A992 steel [11] with material behavior as
depicted in Fig. 5. Each member is oriented with major
axis bending and length defined as //r, =31. The load H
in Fig.
simple-step procedure with AH = P,/42,500. The lateral

displacement at point ¢ is evaluated up to the maximum

1 is applied in AH increments using a

H value when frame instability initiates.

As depicted in Fig. 8a, the frame initially responds in
an elastic manner with a constant EI}; in Eq. (4). For
the W8x31 with ¢, = 0.3 and p = 0, Egs. (9) and (12)
give my = 0.633 and my = 1. The response of the
W10x60 remains elastic up to the maximum load
condition. Until m; is reached in member bc, the
increment of displacement at ¢ is determined using

dcp = AabAMgb + AbcAMl?c + AchM(?d (22)
where the area and centroid values are determined
using Table 1 for the areas depicted in Fig. 8a.

For the moments in Fig. 8b for which yielding
occurs, the stiffness reductionz = 2.725 — 2.725m is
obtained from Eq. (14). After yielding initiates, the

increment of displacement at ¢ is determined using Eq.
(4) as

Scp = AggAM® . + Ay, AM2, + Ay AMIY,
+ A AMY, (23)
where A, and A1\713b are evaluated using Egs. (19)

and (21),

curvature diagram is constant with AM, = AM_; thus

respectively. For the member bc, the

AbCAIVIl?C is evaluated as a rectangular area with
reduced stiffness 7, = 7. During this phase of the
analysis, the numerical procedure accommodates an
adaptive length for members aa” and a’b using the m,

moment condition to locate a’.
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Fig. 7 Area and centroid of the curvature diagram in the elasto-plastic region.
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Fig. 8 Curvature diagrams during (a) elastic response and (b) inelastic response.

Table 1 Area and centroid formulas for curvature diagrams with constant stiffness.

Curvature Area Centroid
Diagram A Z
y L .
L o .
i § M;L 2L
e 4 |M 2E1 3
El
L >
W A
" (M; + Mp)L  (M; + 2M;)L
¥ o 4 |M 2 3(M; + M)
\ El
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The results from the virtual work method above were
verified using the program MASTAN2 [8] with
modifications to accommodate the material model
defined by Eqs. (8) through (15). The closed-form
stiffness matrix in Eq. (24) was developed by
Ziemian and McGuire [2]
nonlinear material capabilities of MASTAN2. This

stiffness matrix was developed using a linear variation
12(a+b) _6(2a+b
r\ 2 L\ 3

4(3a+bJ
4

and is part of the

Sym.

The frame was modeled using MASTAN2 with
eight elements for the left column, and one element
each for the girder and right column. As with the virtual
work method, the lateral load was applied in AH =
P,/42,500 increments using a simple-step procedure up
to its maximum value of H. As depicted in Fig. 9, the
frame initially responds in an elastic manner. At the
end of this phase, the normalized load HL/2M;, is 0.633
and the normalized displacement A/L is 0.0185 at point
c. Beyond this point with additional increments of AH
loading, inelastic response initiates with stiffness
reduction from ¢ to @’. It is during this phase that the
results from the two analyses deviate slightly as
indicated in Fig. 9. This is expected as the curvature
over the length a’b is modeled differently in each type
of analysis method. The frame becomes unstable when
the moment m, is reached in member bc. This occurs
when the normalized load HL/2M,, is 0.997 and the
normalized displacement A/L is 0.0533at point c.

4. Modeling Second-Order, Inelastic Behavior

The first frame example demonstrated that modeling

the inelastic material behavior of the left column in

)
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in the tangent modulus over the element length
and was chosen because the 7 values from Egs. (14)
and (15) can be used directly for the a and b terms.
The tangent modulus is defined as E,, = 7F. Since
the normalized modulus is E,,/E, then a = 7 from the m
and p conditions at the start of the element, and
b = 7 from the m and p conditions at the end of the

element.
12(a+b) 6(a+2b
r\ 2 L{ 3
6(2a+b 5 @ +b
L 3 2
12(a+b 6(a+2b
'\ 2 L\ 3
+3b
4l @
4 -
Fig. 8 using multiple elements with linear variation in
stiffness in MASTAN2 provided almost identical
results with that of the more detailed material model

using Egs. (19) and (21). In Fig. 10 the second-order

effects that develop due to vertical loads V influence

24)

the curvature diagrams such that the assumed linear
variation of moments over the member length (as given
in Fig. 6) are no longer valid. For these two reasons, the
curvature diagrams in the regions of the structure
affected by second-order, inelastic response behavior
are best approximated using multiple equally-spaced
members with the virtual work method.

When the structure responds in an inelastic manner,
Eq. (4) must be used with the vertical loads V fully
applied throughout the analysis as the horizontal load
H is applied incrementally. For each load increment
AH, the area and centroid values of the curvature for
each member are closely approximated using Table 1
with EI equal to the most recent Elj; value for each
member.

The frame in Fig. 10 is modeled using the same
structural properties as the first-order, inelastic frame

example. The left side column is modeled using eight
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Fig. 9 First-order, inelastic load-displacement curves.
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Fig. 10 Steel frame with loads H, V and Q.

equally-spaced members, and the girder and right
column are modeled with only one member each since
they remain elastic throughout the analysis. The
vertical loads V are fully applied throughout the
analysis and each are 20% of the column yield load P,.
The load H is applied in AH increments with AH =
P,/45,000. The lateral displacement at point c¢ is
evaluated up to the maximum H value when frame
instability initiates.

The following two equations are used to evaluate the
moment at any point j with a height z from the left
support.

M; = RjA; 4+ Rlz (25)

3EI d
EIl]
9

l l
M; = RYA; + Rtz —rAH (z - E) when z > 5 (26)

where 7 is the load increment number, and RY and
R! are the vertical and horizontal reactions at point a,
respectively.

20\ TAH
Ry =y (1 20 o

7 > (27)

A 2A A
Rl = V(TC>(1+ lc) +rAH(1+2—;) (28)

For the W8x31 with ¢,= 0.3 and p = 0.2, Egs. (9) and
(12) give my = 0.451 and my = 0.905. In Fig. 11 the
frame initially responds in a second-order, elastic

manner with a constant stiffness EI until m; is
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reached at point c¢. This phase of response continues
until load increment » = 805. At this point, the
normalized load HL/2M,, is 0.290 and the normalized
displacement A/L is 0.0124 at point c.

As depicted in Fig. 12a, the frame then responds in a
second-order, phase | inelastic manner with stiffness
reduction initiating at point ¢ and progressing down to
point b. Phase I inelastic response ends at load
increment 7 = 947 when the normalized load HL/2M,, is
0.342 and normalized displacement A/L is 0.0147 at
point ¢. Beyond this point with additional increments
of AH loading, phase II inelastic response initiates with
stiffness reduction progressing below point b as
depicted in Fig. 12b. It is during this phase that the
most significant nonlinear response is observed in Fig.
13. At load increment » = 1,328, the moment m, is
reached at point ¢ and the frame becomes unstable
when the normalized load HL/2M,;, is 0.479 and the

normalized displacement A/L is 0.0330 at point c.

The results from the method above were verified
using the program MASTAN2. The frame was
modeled using eight elements for the left column, and
one element each for the girder and right column. As
with the virtual work model, the lateral load was
applied in increments using a simple-step procedure
with AH = P,/45,000. The two curves in Fig. 13
indicate identical results. This is to be expected as each
element of the MASTAN2 model with inelastic
response was modeled using the same linear
approximation for the variation in stiffness in Eq. (24).
The only difference in the two analyses is that
MASTAN?2 terminates when the normalized load
HL/2M,, is 0.476 and the normalized displacement A/L
is 0.0285 at point ¢. Comparing the two methods of
analysis, the percent difference in the collapse load H is

only 0.60%.

3ET
AM: "
LI c d
AM» ),
EI d
a e
& &
Fig. 11 Curvature diagram during second-order, elastic response.
AM. AM:
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Curvature diagrams during second-order: (a) phase I and (b) phase II inelastic response.
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Fig. 13 Second-order, inelastic load-displacement curves.
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Using the virtual work method, the response of steel
frames due to inelastic material behavior and
second-order effects was studied in detail. A detailed
model of a W8x31 with 2,046 fiber elements was used
to develop three-dimensional m-p-7 surface plots. A
linear variation in reduced stiffness over the surface
was used as a generalized material model between the
initial yield and fully plastic conditions. The material
model provides a straightforward and relatively easy to
use means of conducting nonlinear analyses of planar
steel frames with compact W-Shapes.

Although the paper used a W8x31with ¢, = 0.3, the
generalized material model can accommodate any
W-Shape and assumed maximum value of residual
stress. Compared with the direct stiffness method, or
the more general finite element method, the paper
demonstrates an alternative method of analysis when
investigating nonlinear behavior of steel frames. The
virtual work method explicitly uses incremental
curvature diagram regions, and this provides the
analyst with insights on when inelastic behavior
initiates and on the progression of stiffness reduction
throughout the structure up to the collapse condition.
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the MASTAN2 source code in order to input the
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