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Abstract: The stiffness reduction is studied in detail of compact W-Shapes (wide-flange steel shapes) that results from yielding of the 

cross-section due to uniaxial bending and axial compression. Three-dimensional m-p-τ surface plots developed from detailed fiber 

element models of a W8x31 are used to develop a generalized material model for direct implementation in the virtual work method. A 
portal steel frame is used to illustrate the virtual work method with the nonlinear material model in a first-order, inelastic analysis 
implementation and in a second-order, inelastic analysis condition. The nonlinear modeling capabilities of MASTAN2 are used to 
verify the accuracy of the virtual work results and are found to be in very close agreement. 
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1. Introduction  

The in-plane behavior of steel frames with compact 

doubly-symmetric beam-columns that are subjected to 

major or minor axis bending has been shown to exhibit 

significant differences in their response based on 

plastic hinge and plastic zone analyses [1, 2]. Frames 

of this type with little to no redundancy can be very 

sensitive to the refinement of the inelastic analysis 

procedure employed [3, 4]. Recent research has 

focused on developing improved empirical 

relationships to account for the reduction in stiffness 

that occurs due to yielding of the beam-column’s 

cross-section [5-7]). The objective of this paper is to 

present the findings from a detailed fiber element 

model investigation of the stiffness reduction that 

develops as a result of yielding in the flanges and web 

over the full range of moment and axial load 

combinations from initial yield to the fully plastic 

condition. Considering major axis or minor axis 

bending under axial compression conditions, analytical 

expressions are presented to determine the moment and 

axial load combinations at the initial onset of yielding 
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and when the section becomes fully plastic.  

Closed-form equations are presented that provide a 

straightforward and relatively easy to use material 

model when conducting a nonlinear analysis of planar 

steel frames with compact W-Shapes (wide-flange 

steel shapes) using the virtual work method. 

Expressions for the stiffness reduction over the length 

of the member in a virtual work application with linear 

moment variation are also presented. The material 

model can accommodate any W-Shape and assumed 

maximum value of residual stress. 

Discussion is provided on how the equations can be 

used as tangent modulus values in the nonlinear 

analysis program MASTAN2 [8]. The use of the 

material model is first demonstrated for a steel portal 

frame with first-order, inelastic response behavior. The 

virtual work method is then extended to consider 

second-order effects. The concluding section combines 

the findings from the previous section to consider the 

virtual work and MASTAN2 models of a steel frame 

with second-order, inelastic response behavior. 

2. Modeling Inelastic W-Shape Behavior 

A nonlinear analysis requires a series of linear 

analyses with load increments up to the fully applied 
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Fig. 3  ECCS residual stress pattern. 
 

  
Fig. 4  m-p-τ surface plot of a W8x31 for (a) minor axis bending and (b) major axis bending. 
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The major axis bending moment ݉଴at which τ = 0 is 
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where λ = Aw/Af , λo = tw/bf , λ1 = dw /tf [12]. Aw is the 

web area, Af is the flange area, tw is the web thickness, 

bf is the flange width, dw is the web depth, and tf is the 

flange thickness.  

Using a linear variation in stiffness between the 

elastic condition of τ = 1 and the fully plastic condition 

of τ = 0, the stiffness reduction τ for a given m and p 

condition is evaluated based on the ݉ଵ  and ݉଴ 

values from Eqs. (8) through (13). ߬ ൌ ݉଴ െ݉݉଴ െ݉ଵ 																											ሺ14ሻ 
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The denominator of Eq. (16) is evaluated using the 

member axial load p(P/Py) and the moments mi(Mi/Mp) 

and mj(Mj/Mp). The reduced stiffness ܫܧ௘௣ሺݖሻ in Fig. 6 

is written in terms of ߬௜ and ௝߬	as ܫܧ௘௣ሺݖሻ ൌ ߬ሺݖሻܫܧ ൌ ቈ߬௜ ൅ ൫ ௝߬ െ τ௜൯ܮݖ௘௣ ቉  ሺ18ሻ	ܫܧ
where ߬௜ ൌ ሺ݉଴ െ ݉௜ሻ ሺ݉଴ െ ݉ଵሻ⁄   

and	 ௝߬ ൌ ሺ݉଴ െ ௝݉ሻ ሺ݉଴ െ݉ଵሻ⁄ . 

Substituting Eqs. (17) and (18) into Eq. (16), and 

evaluating the integral, yields the following 

closed-form expression for the area Aep as depicted in 

Fig. 7.  ܣ௘௣ ൌ 	 ቈ1 െ ቆ ߬௜௝߬ െ ߬௜ െ Δܯ௜
Δܯ௝ െ Δܯ௜ቇ ݈݊ ൬ ௝߬߬௜൰቉ ൈ 

ቆΔܯ௝ െ Δܯ௜௝߬ െ ߬௜ ቇ ܫܧ௘௣ܮ 	ሺ19ሻ 
The centroid of this area is evaluated using the 

following expression ܣ௘௣ݖ௘̅௣ ൌ න Δܯ௘௣ு ሺݖሻܫܧݖ௘௣ሺݖሻ ௅೐೛଴ݖ݀ 									ሺ20ሻ 
Substituting Eqs. (17) and (18) into Eq. (20), the 

centroid ݖ௘̅௣  as depicted in Fig. 7 is determined by 

dividing the integral solution by the area obtained from 

Eq. (19). 

௘̅௣ݖ ൌ ێێۏ
ۍ 12 ൬Δܯ௝ ൅ Δܯ௜

Δܯ௝ െ Δܯ௜൰1 െ ൬ ߬௜௝߬ െ ߬௜ െ Δܯ௜
Δܯ௝ െ Δܯ௜൰ ݈݊ ቀ ௝߬߬௜ቁെ ߬௜௝߬ െ ߬௜൪  ሺ21ሻ																												௘௣ܮ

3. Modeling First-Order, Inelastic Behavior 

The first example will use the frame and loading 

condition in Fig. 1 to demonstrate the use of the 

equations to perform a first-order, inelastic analysis. 

The two columns are modeled as compact W8x31  

 

 

 

 

W-Shape sections and the girder is modeled as a 

W10x60. All structural members are modeled as 

ASTM A992 steel [11] with material behavior as 

depicted in Fig. 5. Each member is oriented with major 

axis bending and length defined as l/rx = 31. The load H 

in Fig. 1 is applied in ΔH increments using a 

simple-step procedure with ΔH = Py/42,500. The lateral 

displacement at point c is evaluated up to the maximum 

H value when frame instability initiates. 

As depicted in Fig. 8a, the frame initially responds in 

an elastic manner with a constant ܫܧ௞∗ in Eq. (4). For 

the W8x31 with cr = 0.3 and p = 0, Eqs. (9) and (12) 

give ݉ଵ  = 0.633 and ݉଴  = 1. The response of the 

W10x60 remains elastic up to the maximum load 

condition. Until ݉ଵ  is reached in member bc, the 

increment of displacement at c is determined using  

δ௖௕ ൌ ഥ௔௕ொܯ௔௕Δܣ ൅ ഥ௕௖ொܯ௕௖Δܣ ൅ ഥ௖ௗொܯ௖ௗΔܣ 				ሺ22ሻ 
where the area and centroid values are determined 

using Table 1 for the areas depicted in Fig. 8a. 

For the moments in Fig. 8b for which yielding 

occurs, the stiffness reductionτ = 2.725 – 2.725m is 

obtained from Eq. (14). After yielding initiates, the 

increment of displacement at c is determined using Eq. 

(4) as 

δ௖௕ ൌ ഥ௔௔′ொܯ௔௔′Δܣ ൅ ഥ௔′௕ொܯ௔′௕Δܣ ൅ ഥ௕௖ொ൅ܯ௕௖Δܣ ഥ௖ௗொܯ௖ௗΔܣ 																																				ሺ23ሻ 
where ܣ௔′௕ and Δܯഥ௔′௕ொ  are evaluated using Eqs. (19) 

and (21), respectively. For the member bc, the 

curvature diagram is constant with Δܯ௕ ൌ Δܯ௖; thus ܣ௕௖Δܯഥ௕௖ொ  is evaluated as a rectangular area with 

reduced stiffness τb = τc. During this phase of the 

analysis, the numerical procedure accommodates an 

adaptive length for members aa′ and a′b using the ݉ଵ 

moment condition to locate a′. 
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The results from the virtual work method above were 

verified using the program MASTAN2 [8] with 

modifications to accommodate the material model 

defined by Eqs. (8) through (15). The closed-form 

stiffness matrix in Eq. (24) was developed by  

Ziemian and McGuire [2] and is part of the   

nonlinear material capabilities of MASTAN2. This 

stiffness matrix was developed using a linear variation 

in the tangent modulus over the element length     

and was chosen because the τ values from Eqs. (14) 

and (15) can be used directly for the a and b terms.  

The tangent modulus is defined as Etm = τE. Since   

the normalized modulus is Etm/E, then a = τ from the m 

and p conditions at the start of the element, and        

b = τ  from the m and p conditions at the end of the 

element. 
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The frame was modeled using MASTAN2 with 

eight elements for the left column, and one element 

each for the girder and right column. As with the virtual 

work method, the lateral load was applied in ΔH = 

Py/42,500 increments using a simple-step procedure up 

to its maximum value of H. As depicted in Fig. 9, the 

frame initially responds in an elastic manner. At the 

end of this phase, the normalized load HL/2Mp is 0.633 

and the normalized displacement Δ/L is 0.0185 at point 

c. Beyond this point with additional increments of ΔH 

loading, inelastic response initiates with stiffness 

reduction from c to a′. It is during this phase that the 

results from the two analyses deviate slightly as 

indicated in Fig. 9. This is expected as the curvature 

over the length a′b is modeled differently in each type 

of analysis method. The frame becomes unstable when 

the moment ݉଴ is reached in member bc. This occurs 

when the normalized load HL/2Mp is 0.997 and the 

normalized displacement Δ/L is 0.0533at point c. 

4. Modeling Second-Order, Inelastic Behavior 

The first frame example demonstrated that modeling 

the inelastic material behavior of the left column in  

Fig. 8 using multiple elements with linear variation in 

stiffness in MASTAN2 provided almost identical 

results with that of the more detailed material model 

using Eqs. (19) and (21). In Fig. 10 the second-order 

effects that develop due to vertical loads V influence 

the curvature diagrams such that the assumed linear 

variation of moments over the member length (as given 

in Fig. 6) are no longer valid. For these two reasons, the 

curvature diagrams in the regions of the structure 

affected by second-order, inelastic response behavior 

are best approximated using multiple equally-spaced 

members with the virtual work method. 

When the structure responds in an inelastic manner, 

Eq. (4) must be used with the vertical loads V fully 

applied throughout the analysis as the horizontal load 

H is applied incrementally. For each load increment 

ΔH, the area and centroid values of the curvature for 

each member are closely approximated using Table 1 

with	ܫܧ equal to the most recent ܫܧ௞∗ value for each 

member. 

The frame in Fig. 10 is modeled using the same 

structural properties as the first-order, inelastic frame 

example. The left side column is modeled using eight  
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reached at point c. This phase of response continues 

until load increment r = 805. At this point, the 

normalized load HL/2Mp is 0.290 and the normalized 

displacement Δ/L is 0.0124 at point c. 

As depicted in Fig. 12a, the frame then responds in a 

second-order, phase I inelastic manner with stiffness 

reduction initiating at point c and progressing down to 

point b. Phase I inelastic response ends at load 

increment r = 947 when the normalized load HL/2Mp is 

0.342 and normalized displacement Δ/L is 0.0147 at 

point c. Beyond this point with additional increments 

of ΔH loading, phase II inelastic response initiates with 

stiffness reduction progressing below point b as 

depicted in Fig. 12b. It is during this phase that the 

most significant nonlinear response is observed in Fig. 

13. At load increment r = 1,328, the moment ݉଴ is 

reached at point c and the frame becomes unstable 

when the normalized load HL/2Mp is 0.479 and the 

normalized displacement Δ/L is 0.0330 at point c. 

The results from the method above were verified 

using the program MASTAN2. The frame was 

modeled using eight elements for the left column, and 

one element each for the girder and right column. As 

with the virtual work model, the lateral load was 

applied in increments using a simple-step procedure 

with ΔH = Py/45,000. The two curves in Fig. 13 

indicate identical results. This is to be expected as each 

element of the MASTAN2 model with inelastic 

response was modeled using the same linear 

approximation for the variation in stiffness in Eq. (24). 

The only difference in the two analyses is that 

MASTAN2 terminates when the normalized load 

HL/2Mp is 0.476 and the normalized displacement Δ/L 

is 0.0285 at point c. Comparing the two methods of 

analysis, the percent difference in the collapse load H is 

only 0.60%. 
 

 
Fig. 11  Curvature diagram during second-order, elastic response. 
 

  
Fig. 12  Curvature diagrams during second-order: (a) phase I and (b) phase II inelastic response. 
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Fig. 13  Second-order, inelastic load-displacement curves. 
 

5. Conclusions 

Using the virtual work method, the response of steel 

frames due to inelastic material behavior and 

second-order effects was studied in detail. A detailed 

model of a W8x31 with 2,046 fiber elements was used 

to develop three-dimensional m-p-τ surface plots. A 

linear variation in reduced stiffness over the surface 

was used as a generalized material model between the 

initial yield and fully plastic conditions. The material 

model provides a straightforward and relatively easy to 

use means of conducting nonlinear analyses of planar 

steel frames with compact W-Shapes.  

Although the paper used a W8x31with cr = 0.3, the 

generalized material model can accommodate any 

W-Shape and assumed maximum value of residual 

stress. Compared with the direct stiffness method, or 

the more general finite element method, the paper 

demonstrates an alternative method of analysis when 

investigating nonlinear behavior of steel frames. The 

virtual work method explicitly uses incremental 

curvature diagram regions, and this provides the 

analyst with insights on when inelastic behavior 

initiates and on the progression of stiffness reduction 

throughout the structure up to the collapse condition. 
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