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Abstract: The ongoing research for model choice and selection has generated a plethora of approaches. With such a wealth of 
methods, it can be difficult for a researcher to know what model selection approach is the proper way to proceed to select the 
appropriate model for prediction. The authors present an evaluation of various model selection criteria from decision-theoretic 
perspective using experimental data to define and recommend a criterion to select the best model. In this analysis, six of the most 
common selection criteria, nineteen friction factor correlations, and eight sets of experimental data are employed. The results show 
that while the use of the traditional correlation coefficient, R2 is inappropriate, root mean square error, RMSE can be used to rank 
models, but does not give much insight on their accuracy. Other criteria such as correlation ratio, mean absolute error, and standard 
deviation are also evaluated. The AIC (Akaike Information Criterion) has shown its superiority to other selection criteria. The authors 
propose AIC as an alternative to use when fitting experimental data or evaluating existing correlations. Indeed, the AIC method is an 
information theory based, theoretically sound and stable. The paper presents a detailed discussion of the model selection criteria, their 
pros and cons, and how they can be utilized to allow proper comparison of different models for the best model to be inferred based on 
sound mathematical theory. In conclusion, model selection is an interesting problem and an innovative strategy to help alleviate 
similar challenges faced by the professionals in the oil and gas industry is introduced. 
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Nomenclature 

MARE Mean absolute relative error, % 

RMSE Root mean square error, % 

SDMARE Standard deviation of MARE 

CR Correlation ratio 

AIC Akaike Information Criterion 

f Friction factor, dimensionless 

g Ratio of evidence of a model 

i Any models in the set 

m Number of candidate models 

n Flow behavior index, dimensionless 

N No. of data points 

NReg Generalized Reynolds number, dimensionless 

R2 Coefficient of determination 

K Number of parameters in the model 

yi Actual value of the observed parameter 

 ො௜ Estimated value of the observed parameterݕ

 ത௜ Average value of the observed parameterݕ
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w Akaike’s weight 

Δ AIC difference, Δi= AICi – AICmin 

1. Introduction 

Crude oil and other petroleum products are 

transported under turbulent flow conditions through 

pipelines. Pumping stations provide power to 

overcome the inertia, gravity, and friction inside the 

pipeline, where friction is the major component. For 

friction pressure losses calculations, the friction factor 

has to be determined first. This a crucial task partly 

due to the large number of correlations available to 

predict the friction factor for non-Newtonian 

pseudoplastic shear-thinning fluids. In many scenarios, 

these models are either simple but not accurate or are 

accurate but not simple. Yet, they all seem to suffer 

from some drawbacks. Generally, these models were 

not developed using independent data. They were 

either developed for a specific type of material and/or 
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based on a particular set of results. Consequently, they 

are not universally applicable [1]. 

The other concern is due to the lack of complete 

fundamental understanding for turbulent phenomenon. 

There have been no general theories and/or 

mathematical and computational models to describe 

turbulent flow [2]. Instead, different analytical, 

semi-empirical and empirical correlations (explicit 

and implicit) have been proposed to predict friction 

factor under turbulent flow conditions [1]. 

Traditionally, the coefficient of determination, R2 

has been the criterion to select the best model; the 

model with the highest R2 should be the one to be 

picked. Nowadays, statisticians are involved heavily 

in the question of model selection and there have been 

many approaches proposed over the years for dealing 

with this key issue. However, it is well documented 

that these approaches still have some shortcomings 

[3-5]. 

Considering this, the question to be answered is 

which model selection criteria should be adopted to 

pick the most accurate model among all models used 

to predict specific parameter. The very least we need 

is an approach that can be carried out easily and yields 

results that can be scientifically and numerically 

interpreted. In addition, it is important that the choice 

of model should be based on its general applicability, 

not just goodness-of-fit [6]. 

In this paper, a comprehensive and critical review 

of the various model selection criteria is presented. A 

total of six different criteria are evaluated using 

nineteen friction factor correlations and eight different 

sets of experimental data covering a wide range of 

flow behavior indices, n and generalized Reynolds 

numbers, NReg. The first objective is to recommend a 

simple, but an accurate model selection criterion that 

can be unquestionably adopted by the professionals. 

The second objective is to apply the selected criterion 

to evaluate the available friction factor correlations 

and check their validity to recommend the most 

applicable one. 

2. Friction Factor Models 

The matrix involved in this study includes 

correlations that are used to calculate friction factor 

for non-Newtonian pseudoplastic fluids flowing in 

circular pipes under turbulent flow conditions. There 

are many correlations available in the literature to 

determine friction factor. Yet, they are not considered 

in this study due to either complexity or limited 

application range. Among all the available models, 

only nineteen models are used in the present study. 

These models were selected due to their higher 

accuracy and precision, simplicity, and their wide 

application range. The flow behavior index, n ranges 

from 0.14 to 1.0 while the generalized Reynolds 

number ranges from 548 to 250,000 [1]. These models 

are listed in Table 1. More details can be found 

elsewhere [1, 7, 8]. 

3. Experimental Data 

The experimental data include eight different sets of 

friction factor data points measured at different values 

of flow behavior indices and generalized Reynolds 

numbers gathered by several authors. Dodge and 

Metzner [9] published friction factor values for flow 

behavior indices of 0.617, 0.726 and 1.0 while Shaver 

and Merrill [10] published friction factor values for 

flow behavior indices of 0.6, 0.7 and 0.9. Yoo [11] 

gathered friction factor for flow behavior indices 

covering a wide range from 0.241 to 0.893 while 

Szilas et al. [12] data were gathered for n = 0.5287, 

0.6991, 0.7169, 0.8311, and 0.948. Bogue [13] 

published another set of friction factor data covering a 

wide range of flow behavior indices ranging from 

0.445 to 1.0. Other sets of data were gathered by 

Pinho and Whitelaw [14], Pereira and Pinho [15], and 

Cruz and Pinho [16] covering an n range from 0.4 to 

0.9. The included data sets cover a wide range of 

generalized Reynolds number up to 100,000. The 

details of the experimental data, ranges for flow 

behavior indices, and generalized Reynolds numbers 

are shown in Table 2. 
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Table 1  Fanning friction factor equations and application ranges. 

No. Model Formula Notes Year Ref. 

1 
Dodge & Metzner 
(D & M) 

1
ඥ݂൘ ൌ

4
݊଴.଻ହ ൫ ோܰ௘௚݂ଵି௡

ଶൗ ൯ െ
0.4
݊ଵ.ଶ 0.36 < n < 1.0 

2,900 < NReg < 100,000 
1959 [9] 

2 
Dodge & 
Metzner-Blasius Type 
(D & M)B 

݂ ൌ
0.0665 ൅ 0.01175݊

ோܰ௘௚
଴.ଷ଺ହି଴.ଵ଻଻௡ା଴.଴଺ଶହ௡మ 0.36 < n < 1.0 

2,900 < NReg < 100,000 
1959 [9] 

3 
Shaver & Merrill 
(S & M) 

݂ ൌ
0.079

݊ହ
ோܰ௘௚

ଶ.଺ଷ
ଵ଴.ହ೙ൗ

 0.40 < n < 1.0 
4,000 < NReg < 100,000 

1959 [10] 

4 
Tomita 
(To.) 

1
ඥ݂൘ ൌ √2 log ቌ ோܰ௘௚ඨ

݂
4

ቍ െ √0.2 
0.178 < n < 0.952 
2,000 < NReg < 100,000 

1959 [17] 

5 
Thomas 
(Th.) 

1
ඥ݂൘ ൌ

√2 
݊

log ቌ ோܰ௘௚ ൬
݂
4

൰
ଵି

௡
ଶ

ቍ െ
√0.2

݊
 

0.36 < n < 1.0 
2,900 < NReg < 100,000 

1960 [18] 

6 
Clapp 
(Cl.) 

1
ඥ݂൘ ൌ

1.16
݊

െ 1.22 ൅
1.51

݊
log ቌ ோܰ௘௚ ൬

݂
4

൰
ଵି

௡
ଶ

ቍ

൅
0.58

݊
ሺ5݊ െ 8ሻ 

0.698 < n < 0.813 
548 < NReg < 42,800 

1961 [19] 

7 
Kemblowski and 
Kolodziejski 
(K & K) 

݂ ൌ ܧ ൈ
׎

ଵ
ேೃ೐೒

ோܰ௘௚
ఈ  

ܧ ൌ 0.0089݁ଷ.ହ଻௡మ
 

׎ ൌ ݁
଴.ହ଻ଶሺଵି௡ర.మሻ

௡బ.బరయఱ  
ߙ ൌ 0.314݊ଶ.ଷ െ 0.064

0.14 < n < 0.83 
2,680 < NReg < 98,600 

1973 [20] 

8 
Hanks & Ricks 
(H & Ri.) 

݂ ൌ 0.0682
݊ି଴.ହ

ோܰ௘௚

ቀ ଵ
ଵ.଼଻ାଶ.ଷଽ௡ቁ

 0.4 < n < 0.82 
4,000 < NReg < 75,000 

1975 [21] 

9 
Stein and Kessler 
and Greendar 
(SKG) 

1
ඥ݂൘ ൌ 1.7373݈݊൫ ோܰ௘௚݂଴.ହ െ 0.398൯ 0.58 < n < 0.80 

3,400 < NReg < 63,000 
1980 [22, 23]

10 
Szilas, Bobok & 
Navratile 
(SBN) 

1
ඥ݂൘ ൌ

√2
݊

൫݃݋݈ ோܰ௘௚݂ଵି௡
ଶൗ ൯

൅ 1.23
ଵ ௡ൗ ൬

0.707
݊

൅ 2.12൰

െ
2
݊

െ 1.028 

0.24 < n < 1.0 
10,000 < NReg < 100,000 

1981 [12] 

11 
Garica & Steffe 
(G & S) 

1
ඥ݂൘ ൌ 1.318 ݈݊ ൫ ோܰ௘௚ඥ݂ െ 0.398൯ 0.4 < n < 0.82 

3,000 < NReg < 50,000 
1986 [24] 

12 
Hartnet & Rao (H & 
Ra.) 

݂ ൌ 0.079݊଴.଺଻ହ
ோܰ௘௚
ି଴.ଶହ 

0.24 < n < 0.53 
3,400 < NReg < 11,600 

1987 [7] 

13 
Irvine 
(Ir.) 

݂ ൌ
2 ൬

2௡

7଻௡൰
ଵ

ሺଷ௡ାଵሻൗ
8

ሺଵି௡ሻ
ሺଷ௡ାଵሻ൘

ቀ
3݊ ൅ 1

4݊ ቁ
ሺଷ௡మାଶ௡ሻ

ሺଷ௡ାଵሻ൘
ோܰ௘௚

ିଵ
ଷ௡ାଵ 

0.25 < n < 0.55 
3,400 < NReg < 52,800 

1988 [25] 

14 
Tam & Tiu 
(T & T) ݂ ൌ 0.0792 ቀ

݊
0.25 ൅ 0.75݊

ቁ
ଶ.ହ

ோܰ௘௚
ି଴.ଶହ 

0.24 < n < 0.6 
3,000 < NReg < 50,000 

1988 [26] 

15 
Desouky & El-Emam 
(D & E) 

݂ ൌ 0.71݊௡൫0.0112 ൅ ோܰ௘௚
ି଴.ଷଵ଼ହ൯ 

0.241 < n < 0.893 
4,000 < NReg < 100,000 

1990 [27] 
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Table 1 to be continued 

16 
Hemida 
(He.) 

1
ඥ݂൘ ൌ 3.536 െ 392.081 ൬

݂
݊

൰
଴.ଽ଴ଵଷ

െ 305.624 ൬
݂
݊

൰
଴.ଽ଴ଵଷ

቎݈݊ ቌ1

െ ඨ1 െ
14.142

ோܰ௘௚ඥ݂
ቍ

൅ ඨ1 െ
14.142

ோܰ௘௚ඥ݂
቏ 

0.241 < n < 0.893 
4,000 < NReg < 100,000 

1993 [28] 

17 
Hawase, Shenoy, & 
Wakabayashi 
(HSW) 

1
ඥ݂൘ ൌ ݃݋1.89݈ ቌ

ோܰ௘௚
௡

భ
బ.లభఱ

6.5݊
ଵ

ଵା଴.଻ହ௡

ቍ 
0.3 < n < 1.0 
4,000 < NReg < 100,000 

1994 [29] 

18 

El-Emam, Kamel, 
El-Shafei, & 
El-Batrawy 
(EKSB) 

݂ ൌ
݊

3.072 െ 0.143݊ ோܰ௘௚

௡
଴.ଶ଼ଶିସ.ଶଵଵ௡ െ 0.00065

0.178 < n < 1.0 
4,000 < NReg < 150,000 

2003 [22] 

19 
Trinh 
(Tr.) 

݂ ൌ
ߙ

ோܰ௘௚

ቀ ଵ
ଷ௡ାଵቁ

 

ߙ ൌ
11.8ି

଺௡
ଷ௡ାଵ ቀ

3݊ ൅ 1
4݊ ቁ

଻௡
ଷ௡ାଵ

2
ସା௡

ଷ௡ାଵ

0.817
଻௡

ଷ௡ାଵ

 

0.4 < n < 1.0 
4,000 < NReg < 250,000 

2010 [8] 

 

Table 2  Ranges for experimental data. 

No. Data Flow behavior index, n Generalized Reynolds number, NReg Ref. 

1 Dodge & Metzner 0.617-1.0 4,000-100,000 [9] 

2 Shaver & Merrill 0.6-0.9 5,000-100,000 [10] 

3 Bouge 0.445-1.0 2,100-36,000 [13] 

4 Yoo 0.241-0.893 4,600-57,000 [11] 

5 Szilas et al. 0.5287-0.948 4,000-100,000 [12] 

6 Pinho & Whitelaw 0.56-0.90 2,000-47,000 [14] 

7 Pereira & Pinho 0.492-0.685 3,450-100,500 [15] 

8 Cruz & Pinho 0.40-0.62 2,000-54,000 [16] 
 

The different sets of data are considered 

collectively in the analysis to cover a wide range of 

both generalized Reynolds number and flow behavior 

index and to draw a universal conclusion. 

4. Model Selection Criteria 

Various criteria are available for model selection.  

It is very common that each criterion may lead to a 

different selection. No definite answer about    

which criterion should be practiced. Traditionally,  

the coefficient of determination, R2 has been used on  

a large scale by professional in the oil and gas  

industry for model selection. However, R2 is not the 

best methods in model selection; alternative 

approaches are more popular in other fields.  

Therefore, validity and efficiency is a crucial play 

when deciding upon which criteria to be used. The  

six model selection criteria employed in this study  

are adopted according to strong recommendations 

[30-36]. This study will detail the six selection criteria 

and then select the best criterion based on sound 

mathematical theory. These models under 

consideration with their details interpretations are 

listed in Table 3. 
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Table 3  Model selection criteria. 

No. Criteria Formula Notes 

1 
Coefficient of determination, adjusted 
(R2) ܴଶ ൌ 1 െ

∑ ሺݕ௜ െ ො௜ሻଶேݕ
௜ୀଵ

∑ ሺݕ௜ െ ത௜ሻଶேݕ
௜ୀଵ

 
The larger the R2, the more 
accurate the model. 

2 
Mean absolute relative error, % 
(MARE) 

,ܧܴܣܯ % ൌ
1
ܰ

෍|ݎ௜|
௡

௜ୀଵ

 

௜ݎ ൌ 100 ൬
ො௜ݕ െ ௜ݕ

௜ݕ
൰ 

The smaller the value, the 
better the model. 

3 
Root mean square error, % 
(RMSE) ܴܧܵܯ, % ൌ ඩ

1
ܰ

෍ሺݎ௜ሻଶ

ே

௜ୀଵ

 
The smaller the size of the 
errors, the better the 
regression model. 

4 
Standard deviation of MARE 
(SDMARE) 

ெ஺ோாܦܵ ൌ ඩ
1
ܰ

෍ሺݎ௜ െ ଵሻଶܧ

ே

௜ୀଵ

 

ଵܧ ൌ
1
ܰ

෍ ௜ݎ

ே

௜ୀଵ

 

 

Lower values indicate higher 
accuracy. 

5 
Correlation ratio 
(CR) 

ܴܥ ൌ ඨ1 െ
∑ ሺݕ௜ െ ො௜ሻଶேݕ

௜ୀଵ

∑ ሺݕ௜ െ ത௜ሻଶேݕ
௜ୀଵ

 

ത௜ݕ ൌ
∑ ௜ݕ

ே
௜ୀଵ

ܰ
 

 

Higher values indicate good 
agreement. 

6 AIC (Akaike information criterion) ܥܫܣ ൌ െ2݈݃݋ ቀ݈൫ߠ෠หݕ൯ቁ ൅  ܭ2
The most appropriate model 
is the one with the smallest 
values. 

 

4.1 The Adjusted Coefficient of Multiple 

Determinations, R2 

The coefficient of multiple determinations measures 

the proportion of the variation of certain parameter 

around the mean value. The adjusted coefficient of 

multiple determination considers the degrees of 

freedom of the numerator and denominator of R2. 

There are several shortcomings with this criterion. For 

example, R2 is interpreted as an indication of the 

“goodness of fit” of the model, which may be 

misleading if data are associated with noise. Another 

interpretation of the R2 coefficient is that the higher 

the coefficient of determination, the better the 

variance. Yet, R2 can be potentially increased by 

adding more independent variables to the model that 

makes it appear to be better while it is not. A third 

problem is that it does not give a clear cut answer on 

what value of R2 should be used to categorize a good 

model versus a poor model [1]. 

4.2 MARE (Mean Absolute Relative Error)  

It is a relative measure, expressed as percentage, of 

the amount of physical error when predicting a certain 

parameter using specific model. It gives an indication 

of how good the prediction is relative to the measured 

parameter. Higher errors are more worrying than 

lower errors. It is simple to calculate and easy to 

understand. In addition, it is easily and intuitively 

interpretable, which makes it very popular in our daily 

language. 

However, its validity is questionable. It is neither a 

resistant nor a robust measure since it can be 

dominated by the presence of outliers and yields 

erroneous results. It also lacks the theoretical 

background [37, 38]. 

4.3 RMSE (Root Mean Square Error) 

RMSE (also called the root mean square deviation, 

RMSD) is a natural measure used in many forecast 



Which Friction Factor Model Is the Best? A Comparative Analysis of Model Selection Criteria 

  

163

error evaluations that use regression-based and 

statistical methods. It is the measure of the noise in the 

system as it measures the difference between values 

predicted by a specific model and the observed values. 

The differences are normally called residuals and can 

be aggregated into a single measure by the RMSE. 

Yet, RMSE is not a good indicator of average model 

performance and might be misleading as there is no 

absolute criterion for a “good” fit. Moreover, as 

arithmetic means, the presence of outliers will 

influence RMSE [30-38]. 

4.4 Standard Deviation of MARE 

It is commonly used and easy to interpret as it gives 

the standard deviation of the model prediction error. It 

is a measure of how precise the average is, that is, 

how well the individual numbers agree with each 

other. It measures a specific type of error called 

random error. It is often used to compare real-world 

data against a model to test it and it has a wide 

application in all fields [31-36]. 

4.5 Correlation Ratio, CR 

When the data show a nonlinear relationship 

between two variables, the correlation ratio is 

preferred over the coefficient of determination to 

achieve better answer. It is defined as the ratio of two 

standard deviations representing variations of 

dispersion of individual categories over dispersion 

across the whole sample. It reduces to coefficient for 

linear relationships. It is used to quantitatively 

describe the accuracy of model outputs. A correlation 

ratio of one corresponds to a perfect match between 

model and observations. Essentially, the closer the 

value is to one, the more accurate the model is 

[30-36]. 

4.6 AIC 

AIC, in the information theory approach, it is 

thought of the full reality as a model to be 

approximated [6] and the objective is to find the 

model that best approximates the truth model. Akaike 

showed that the model that best approximates the truth 

model is the one with smallest value of AIC [39]. 

The value of AIC gives the information lost if the 

chosen model is used to approximate the truth model. 

In other words, in the information theory approach, 

the smaller the AIC, the more accurate is the model. It 

is useful to define the AIC difference as Δi = AICi − 

AICmin, where AICmin is the smallest value of the AIC 

values for all the set of candidate models. In regard 

with ∆ values, the best model has a ∆ value of zero. A 

candidate model with Δ-value higher than 10 should 

not be considered as a decent model [3, 5]. 

Another parameter is the Akaike’s Weight, wi: 

௜ݓ ൌ
݌ݔ݁ ቀെ

∆௜
2 ቁ

∑ ݌ݔ݁ ቀെ
∆௜
2 ቁ௠

௥ୀଵ

 (1)

Δi is the AIC difference of the model i and m is the 

number of candidate models. wi gives the weight of 

evidence in favor of model i being the best model in 

the set of models. 

The ratio of evidence of a model g is the Akaike 

weight of the best model divided by the Akaike weight 

of specific model. It gives an evidence of a kind of 

weak or strong support for the best model versus any 

other model in the set of candidate models 

One of the approaches to create a 95% confidence 

set of models in the information theory approach is 

based on Akaike weights. In this approach, we sum 

the Akaike weights from largest to smallest until the 

sum is just ≥ 0.95. In the information theory approach, 

it is essential to find the Akaike weight for each model 

to be able to see the probability of the model to be the 

best model. Akaike weight, AIC differences and the 

confidence set of models are all essential tools in the 

model selection process in the information theory 

approach. 

While, AIC is theoretically sound and 

information-based, more stable in model selection and 

clearly excludes the models that should not be 

considered, all other methods do not. 



Which Friction Factor Model Is the Best? A Comparative Analysis of Model Selection Criteria 

  

164

4.7 Model Analysis; Which Model Is the Best? 

In general, predicted friction factors are compared 

with the measured ones to evaluate the reliability of a 

correlation. However, since the selected correlations are 

either empirical or semi-empirical, and their predictions 

quite agree with their individual particular experimental 

data, the comparison was conducted against all the 

eight sets of experimental data, collectively. 

Predictions from the nineteen selected models of 

friction factor were calculated. Iterations were done to 

calculate friction factor from the implicit models. The 

predicted data were compared and evaluated against 

the eight sets of experimental data, collectively. The 

evaluation included the six most commonly used 

statistical parameters and the statistical results are 

shown in Table 4. Based on the statistical analysis, it 

can be seen that: 

(1) All the models’ predictions have R2 and CR 

values higher than 0.25 and 0.45, respectively. 

(2) According to AIC, only one equation, El-Emam 

et al., shows no information loss (Δ = 0). On the other 

hand, two equations, Trinh and Hemida equations, 

show zero weight factor (w = 0). 

(3) El-Emam et al. and Szilas, et al. equations are 

more accurate than all other equations considering the 

entire six criterion. The two equations show the highest 

R2 and CR values and the lowest MARE, RMSE, and 

SDMARE values. For AIC, the two equations show very 

comparable results with very low AIC difference (0 and 

0.96, respectively), highest weight factor, w (0.55 and 

0.34) and smallest AIC value (−215.88 and −201.28). 

(4) Dodge and Metzner-Blasius type equation 

comes with an acceptable accuracy level right after the 

above-mentioned two equations considering most of 

the model selection criteria. 

(5) However, the R2 and CR values show other 

equations (Shaver and Merrill and Stein et al, 

respectively) to have better accuracy than Dodge and 

Metzner-Blasius type equation. 

(6) Tomita, Hemida, and Trinh equations show the 

lowest performance compared to other equations 

considering, at least, four selection criteria, respectively. 

They show the highest MARE, RMSE, and SDMARE 

values. 
 

Table 4  Statistical Results. 

No. Model (R2) (MARE) (RMSE) (SDMARE) (CR) 
(AIC) 

Δ w (AIC) g 

1 (D & M) 0.72 22.59 26.26 26.07 0.89 2.95 0.21 -181.52 2.6 

2 (D & M)B 0.75 12.13 14.48 14.41 0.87 1.62 0.27 -199.75 2.0 

3 (S & M) 0.86 13.95 16.00 15.90 0.88 30.45 0.11 -133.14 5 

4 (To.) 0.28 51.68 56.51 56.04 0.82 55.68 0.005 -70.14 110 

5 (Th.) 0.79 15.40 18.40 18.28 0.89 5.15 0.22 -185.14 2.5 

6 (Cl.) 0.78 18.73 32.63 21.84 0.78 11.25 0.21 -165.92 2.6 

7 (K & K) 0.26 38.28 52.03 51.76 0.71 18.16 0.22 -121.51 2.5 

8 (H & Ri.) 0.48 14.45 15.15 15.01 0.88 25.68 0.01 -135.19 55.6 

9 (SKG) 0.52 43.98 49.01 48.61 0.92 31.11 0.15 -118.96 3.7 

10 (SBN) 0.91 11.59 14.49 14.26 0.93 0.96 0.34 -201.28 1.6 

11 (G & S) 0.21 22.51 45.18 50.36 0.46 36.72 0.13 -145.12 4.2 

12 (H & Ra.) 0.53 15.76 17.20 17.05 0.90 52.52 0.09 -99.14 6.3 

13 (Ir.) 0.78 15.36 16.24 16.07 0.80 41.29 0.04 -131.52 13.7 

14 (T & T) 0.81 16.49 17.23 17.09 0.90 2.64 0.18 -177.48 3.1 

15 (D & E) 0.78 21.50 25.63 25.45 0.91 61.55 0.01 -91.82 55.6 

16 (He.) 0.83 52.36 77.37 77.10 0.56 70.15 0.0 -65.85 ∞ 

17 (HSW) 0.69 23.73 27.36 27.16 0.83 14.58 0.24 -127.77 2.3 

18 (EKSB) 0.92 11.42 13.39 11.31 0.95 0.0 0.55 -215.88 1 

19 (Tr.) 0.49 57.45 61.12 60.57 0.86 72.84 0.0 -90.36 ∞ 
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(7) For AIC, they exhibit higher AIC difference, 

lower weight factors and higher AIC values. 

(8) Yet, the R2 shows a better performance for 

Hemida equation and assumes Garica and Steffe 

equation among the worst performer. On the other 

hand, CR values exclude Trinh equation and replace it 

by Kemblowski and Kolodziejski equation. 

(9) The other 13 equations (excluding the best three 

performers and the worst three performers listed 

above) show diverse performance considering the six 

criteria. Nevertheless, they show poor performance 

than the best three equations and better performance 

than the worst three equations. 

(10) The results from all the six model selection 

criteria confirm El-Emam et al. and Szilas, et al. 

equations as the best models. This is not true for the 

worst models where only five, out of six, criteria 

confirm Tomita and Hemida as the worst performer. 

CR and R2 values yield different results. 

(11) While CR values list Hemida equation among 

the worst performer, it shows an acceptable R2 values, 

higher than 0.8. 

(12) The R2 and CR values list Kemblowski and 

Kolodziejski among the worst performer with 0.31 

and 0.78, respectively. 

(13) The six-selection criteria agree on selecting the 

best two models. However, there is no such agreement 

for the worst two models. 

(14) The ratio of evidence, g confirms El-Emam et 

al. equation as the best model (g = 1) and both of 

Trinh and Hemida as the worst ones (g = ∞). 

5. Results & Recommendations 

5.1 Recommended Friction Factor Equation 

According to AIC, if Δ is more than 10, the model 

should not be considered. Therefore, there are only 6 

models to be considered when predicting friction 

factor. These models are El-Emam et al., Szilas et al., 

Dodge and Metzner (both forms), Tam and Tiu, and 

Thomas equations. Among these six models, Tam and 

Tiu and Thomas show weak performance considering 

other selection criteria when compared to top four 

equations. Therefore, the top four models are the only 

recommended ones, from the authors’ point of view 

considering all the statistical results. 

Among these four equations, the statistical results 

demonstrate clearly that the El-Emam et al. and Szilas 

et al. models are the best two models that show 

excellent agreement with the measured data 

considering the six selection criteria over the complete 

range of n and NReg values. Dodge and Metzner 

correlation (both forms) can, therefore, be excluded as 

they show relatively lower R2 (did not exceed 0.75) 

and low CR (did not exceed 0.89) values compared to 

El-Emam et al. and Szilas et al. models. 

Yet, El-Emam et al. model has no information  

loss (Δ = 0) while Szilas et al. model shows an 

information loss of 0.96. Meanwhile, El-Emam et al. 

model has the largest Akaike weight factor of      

(w = 0.55), while it is relatively low for Szilas et al. 

model (w = 0.34). 

A value of 0.55, the weight of evidence, is in favor 

of El-Emam et al. equation being the best in the set of 

all equations. It shows a much better performance 

compared to Szilas et al. equation as the ratio between 

their Akaike weights (ratio of evidence, g is 0.55/0.34 

= 1.6) which states that El-Emam et al. equation is 1.6 

times better than the other one. 

In addition, El-Emam et al. equation covers a wider 

range of flow behavior indices (0.178 < n < 1.0) and 

Reynolds number (4,000 < NReg < 150,000) than what 

Szilas et al. equation covers (0.24 < n < 1.0 and 4,000 

< NReg < 150,000). Moreover, it has another advantage 

because of its simplicity in calculation and explicit 

form. Consequently, it is strongly recommended by 

the authors for friction factor prediction in the future. 

This analysis clearly illustrates that some of the 

very common selection criteria can be misleading. The 

R2 values for five equations are more than 0.8 

indicating relatively reasonable similarity between 

predicted and measured friction factors. On the other 
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hand, the CR values for fourteen equations are more 

than 0.8 (six of them show a value higher than 0.9) 

indicating their high performance. Yet, these models 

should not be considered when predicting friction 

factor as they show a Δ-value higher than 10 

according to AIC. Furthermore, considering MARE, 

RMSE, and SDMARE, these equations do not exhibit the 

same performance as indicated by either R2 or CR. 

Considering all criteria, it can be seen that, every 

selection criterion shows somehow a different order 

for the nineteen friction factor equations investigated 

in this study as shown in Table 5. Yet, all the six 

criteria agree when selecting the top two models, 

which is not the case when talking about the worst 

models. Furthermore, there is no clear answer when 

using some selection criteria, high R2, high, CR, etc. 

On the contrary, it is clear that the AIC criteria 

confirm largely the models that exhibit the best 

performance and rank them according to the 

information loss and their weight factor. El-Emam et 

al. equation has an accuracy 1.6 times (g = 0.55/0.34 = 

1.6) better than Szilas et al. model (the second best 

model) and more than two times (g = 0.55/0.27 = 2) 

better performance than Dodge and Metzner-Blasius 

type model. Similar conclusions can be drawn from 

the other four selection criteria, R2, MARE, SDMARE, 

and CR. The RMSE values are slightly different as its 

value ranks Dodge and Metzner-Blasius type model as 

the second best model favoring it over Szilas et al. 

model, which comes in the third rank. However, the 

difference is not significant. 

Since the main goal is to select the best model 

among different models available to predict certain 

parameter, giving no weight to the worst models, any 

selection criteria can be used. Favorably, the AIC 

criterion provides greater insight on the validity of 

each equation. In particular, AIC ranking clearly 

indicates not the only the best equation and how it is 

compared to the other ones, but also it ranks the 

equation and separates the ones that should not be 

considered. Its efficiency is clear and it shows how 

and why the selected equation is preferred. The 

advantages of using AIC criterion over the other are 

explained in more details in other work [1, 40, 41]. 
 

Table 5  Order of the friction factor equations. 

No. Model (R2) (MARE) (RMSE) (SDMARE) (CR) (AIC) 

1 (D & M) 11 13 11 12 7 5 

2 (D & M)B 10 3 2 3 11 3 

3 (S & M) 3 4 5 5 9 10 

4 (To.) 17 17 17 17 14 19 

5 (Th.) 6 7 9 9 8 4 

6 (Cl.) 7 10 13 10 16 7 

7 (K & K) 18 15 16 16 17 13 

8 (H & Ri.) 16 5 4 4 10 9 

9 (SKG) 14 16 15 14 3 14 

10 (SBN) 2 2 3 2 2 2 

11 (G & S) 19 12 14 15 19 8 

12 (H & Ra.) 13 8 7 7 5 15 

13 (Ir.) 8 6 6 6 15 11 

14 (T & T) 5 9 8 8 6 6 

15 (D & E) 9 11 10 11 4 16 

16 (He.) 4 18 19 19 18 8 

17 (HSW) 12 14 12 13 13 12 

18 (EKSB) 1 1 1 1 1 1 

19 (Tr.) 15 19 18 18 12 17 
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6. Summary 

This paper presents a new statistical evaluation to 

examine 19 friction factor correlations for a flow 

behavior index, n from 0.14 to 1.0 and NReg from 548 

to 250,000. Six different model selection criteria and 

eight different sets of experimentally measured 

friction factor were used. The following are the 

concluded remarks: 

(1) El-Emam et al. model is strongly recommended 

for predicting friction factors under turbulent flow 

conditions. 

(2) Other models with a relatively lower confidence 

level such as Szilas et al. and Dodge and Metzner 

models can be recommended. 

(3) Different selection criteria result in different 

ranking of the investigated correlations. Yet, nearly all 

criteria recommended the best model and the worst 

model. 

(4) The use of the R2 and CR is inappropriate, 

especially when selecting the worst model. 

(5) MARE, RMSE, and SDMARE can be used to rank 

models, but do not give in-depth details about the 

validity and ranking. 

(6) AIC is a new tool that can best help to select the 

accurate models and advances the state-of-the-art of 

models comparison. AIC is theoretically sound, more 

stable and shows numerous advantages over the other 

presented criteria. 

(7) Future investigation is proposed using other 

friction factor correlations and other model selection 

criteria for better understanding of the model selection 

challenge. 
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