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Abstract: In order to elucidate the phylogenetic relationship of fish, DNA and deduced amino acid sequences of myoglobin (Mb) 
were used for the phylogenetic analyses based on different approaches, namely, maximum likelihood (ML), neighbor joining (NJ), 
unweighted pair group method with arithmetic means (UPGMA) and maximum parsimony (MP) methods in comparison with the 
conventional molecular markers, mitochondrial cytochrome b (cyt-b) and cytochrome c oxidase subunit I (COI). The phylogenetic 
trees drawn based on Mb sequences were similar to those by the traditional classification based on the other molecular markers. The 
primary and secondary structures, as well as the modeled tertiary structures of Mbs were similar to each other, but were clearly 
distinguishable among those species. Such differences in structure would be associated with adaptation of Mb molecule to the 
physiological conditions of each species. These results suggest that Mb can be a molecular marker for the phylogenetic relationship 
of fish. 
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1. Introduction 

Fish show a large biodiversity in the strategies to 

adapt to respective inhabiting environments. More 

than 33,000 species of fish are known worldwide [1]. 

Among these fish, Osteichthyes is the largest class, 

followed by Chondrichthyes. Fish are highly diversed, 

in morphological, genetic, ecological, physiological 

and behavioral points of view, etc. Due to their high 

diversity, apparently similar species are likely to be 

different ones [2]. Species identification and 

classification of fish are difficult, but worth detailed 

investigation not only from biological viewpoints but 

also for effective utilization of marine bioresources. 

To define the phylogenetical relationship of 

organisms, specific proteins or genes, especially some 

conservative or common ones are usually used as 

markers. For evolutionary molecular studies, genes 
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contained in mitochondrial DNA are often used as 

molecular markers, because their nucleotide sequences 

are moderately diversed. Two genes in mitochondrial 

DNA encoding cytochrome b (cyt-b) and cytochrome 

c oxidase I (COI) are often used as molecular markers. 

Many studies on evolutionary taxonomy have 

indicated that cyt-b can clearly identify and specify 

organism species [3-8]. Usefulness of COI has been 

proposed by Hebert et al. [9]. 

Myoglobin (Mb), one of heme proteins, is found 

exclusively in muscle and responsible not only for 

oxygen storage in muscle but also for its pigmentation 

[10]. Vertebrates, including fish possess Mb with a 

few exceptions, such as some Antarctic species [11]. 

In fish, Mb can be found in striated muscles, such as 

skeletal muscle (especially dark muscle) and cardiac 

muscle [12]. Most fish Mbs consist of 147 amino acid 

residues with some exceptions, such as pufferfish 

Tetraodon nigroviridis (National Center for 

Biotechnical Information (NCBI) No. CAF31356) and 
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Takifugu rubripes (NCBI No. XP_003976095) Mbs 

with 146 residues and whale shark Rhincodon typus 

Mb (NCBI No. XP_020371173) with 149 residues. 

Many attempts have been made to employ 

molecular markers, such as mitochondrial cyt-b and 

COI genes for phylogenetic analyses. Not all of them, 

however, have been successful for this purpose. The 

authors’ research group has reported previously the 

availability of muscle tropomyosin for this purpose 

[13]. In this study, availability of Mb was evaluated as 

a new possible molecular marker for the purpose of 

precise classification and phylogenetic analysis of 

fish. 

2. Materials and Methods 

2.1 Alignment of Amino Acid Sequences 

The sequence data of fish muscle Mb, cyt-b and 

COI were collected from the database in NCBI. 

Alignment of the deduced amino acid sequences was 

performed with European Molecular Biology 

Laboratory-European Bioinformatics Institute 

(EMBL-EBI)—ClustalW2 (http://www.ebi.ac.uk/ 

Tools/msa/clustalw2/). 

Accession numbers of teleost Mbs examined in this 

study are as follows: channel catfish (Ictalurus 

punctatus, NP_001187526), greater amberjack 

(Seriola dumerili, BAG84239), milkfish (Chanos 

chanos, ABI97485), yellowtail amberjack (S. lalandi, 

BAH90800), Japanese amberjack (S. quinqueradiata, 

BAG84238), black rockcod (Notothenia coriiceps, 

AAG16646), zebrafish (Danio rerio, AAH56727), 

common carp (Cyprinus carpio, XP_018966946), 

bigeye tuna (Thunnus obesus, BAC82200), bluefin 

tuna (T. thynnus thynnus, AAG02105), yellofin tuna 

(T. albacares, AAG02112), longfin tuna (T. alalunga, 

AAG02106), Atlantic blue marlin (Makaira nigricans, 

AAG02107), Atlantic salmon (Salmo salar, 

ACM09229), Nile tilapia (Oreochromis niloticus, 

BAH19314), Mozambique tilapia (O. mossambicus, 

BAH22119), blue tilapia (O. aureus, BAH22118), 

rainbow trout (Oncorhynchus mykiss, BAI45225), 

walking catfish (Clarias batrachus, AGG38020), 

medaka (Oryzias latipes, XP_004065750), whale 

shark (Rhincodon typus, XP_020371173). The sperm 

whale (Physeter catodon, BAF03579), chicken 

(Gallus gallus, NP_001161224) and house mouse 

(Mus musculus, NP_001157520) sequences were used 

as outgroup. 

Accession numbers of teleost cyt-bs are as follows: 

zebrafish (D. rerio, ALK26838), bigeye tuna (T. 

obesus, ADA69860), bluefin tuna (T. thynnus thynnus, 

BAC78542), yellowfin tuna (T. albacares, 

ADF43962), Atlantic blue marlin (M. nigricans, 

ABN47259), Atlantic salmon (S. salar, ACB30582), 

Nile tilapia (O. niloticus, ADA58756), Mozambique 

tilapia (O. mossambicus, ABB85081), blue tilapia (O. 

aureus, YP_003406702), rainbow trout (O. mykiss, 

AAK54370), walking catfish (C. batrachus, 

AIQ81032), medaka (O. latipes, BAV60900), whale 

shark (R. typus, YP_009002145), sperm whale (P. 

catodon, AGB56617), chicken (G. gallus, AAF73235) 

and house mouse (M. musculus musculus, 

YP_001686710). 

Accession numbers of teleost COIs are as follows: 

channel catfish (I. punctatus, NP_612127), greater 

amberjack (S. dumerili, BAL52271), milkfish (C. 

chanos, NP_818802), yellowtail amberjack (S. lalandi, 

BAL52245), Japanese amberjack (S. quinqueradiata, 

BAL52232), black rockcod (N. coriiceps, AEH05440), 

zebrafish (D. rerio, NP_059333), common carp (C. 

carpio, NP_007084), bigeye tuna (T. obesus, 

YP_003587610), bluefin tuna (T. thynnus thynnus, 

AHH80744), yellowfin tuna (T. albacares, 

AIY51653), longfin tuna (T. alalunga, NP_955707), 

Atlantic blue marlin (M. nigricans, ACS34708), 

Atlantic salmon (S. salar, AAF61380), Nile tilapia (O. 

niloticus, ADA58747), Mozambique tilapia (O. 

mossambicus, AAT92269), blue tilapia (O. aureus, 

ADB43179), sperm whale (P. catodon, AGB56633), 

house mouse (M. musculus, NP_904330), rainbow 

trout (O. mykiss, NP_008292), walking catfish (C. 

batrachus, YP_009024095), medaka (O. latipes, 
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BAH84895), chicken (G. gallus, ADB06650), whale 

shark (R. typus, YP_009002135). 

2.2 Analysis of Highly Variable Regions of Amino Acid 

Sequences  

The amino acid sequences of highly variable 

regions in the above Mbs were analyzed by using 

Protein Variability Server (PVS) 

(http://imed.med.ucm.es/PVS/) [14]. The total of 20 

fish species Mb with 146 and 147 amino acid residues 

(including rainbow trout O. mykiss and walking 

catfish C. batrachus) was analyzed. 

2.3 Secondary Structure Prediction 

Secondary structure prediction was performed 

using a software ExPASy proteomics tools/secondary 

structure prediction/GOR IV (http://npsa- 

pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_gor

4.html) [15], a public server maintained by Swiss 

Institute of Bioinformatics. This analysis was carried 

out for only five common types of fish, such as 

medaka (O. latipes, XP_004065750), bluefin tuna (T. 

thynnus thynnus, AAG02105), zebrafish (D. rerio, 

AAH56727), Atlantic salmon (S. salar, ACM09229) 

and Mozambique tilapia (O. mossambicus, 

BAH22119). 

2.4 Tertiary Structure Prediction 

The prediction of tertiary structures was carried out 

by using SWISS-MODEL Automatic Modeling Mode 

(http://swissmodel.expasy.org/workspace/index.php?f

unc=modelling_simple1). Simulation results were 

obtained by using Swiss-PdbViewer 

(http://spdbv.vital-it.ch/) [16]. For this analysis, the 

same species examined for the secondary structure 

prediction were investigated. 

2.5 Phylogenetic Trees 

The amino acid sequences of Mb (24 species), cyt-b 

(16 species) and COI (24 species) were subjected to  

 

phylogenetic tree construction, which was carried out 

with the maximum likelihood (ML) [17], neighbor 

joining (NJ) [18], unweighted pair group method with 

arithmetic means (UPGMA) [19] and maximum 

parsimony (MP) [20-22]. The four approaches were 

performed based on ClustalW, which generated paired 

alignments of all the sequences. Bootstrap majority 

consensus values on 1,000 replicates were calculated 

[23] and were indicated in percent at each branch node. 

All these programs were parts of Molecular 

Evolutionary Genetics Analysis ver. 7 (MEGA 7) [24]. 

Evolutionary distances were computed using the 

Jones-Taylor-Thornton (JTT) method for ML analysis 

[17], p-distance model for NJ and UPGMA [25], 

Subtree-Pruning-Regrating (SPR) for MP [25], and 

were expressed as the unit (the number of amino acid 

substitutions per site). 

3. Results  

3.1 Amino Acid Sequence Alignment and Identification 

of Highly Variable Regions 

The alignments of amino acid sequences of Mbs 

from fishes, mammals and chicken are shown in Fig. 1. 

Total amino acid numbers of mammalian and chicken 

Mbs are 154, longer than those of most fish Mbs (147 

residues). The first four residues, the 53rd, 122nd and 

123rd residues are missing in fish Mbs. The eight 

helix segments A, B, C, D, E, F, G and H in the order 

from the N termini are indicated in the figure. 

Segment D is missing in fish Mbs. Rainbow trout and 

walking catfish Mbs were found to lack the 86th and 

85th residues, respectively. 

The analysis of highly variable regions for 20 fish 

Mbs by PVS showed similar pattern (data not shown). 

The 21st, 123rd and 131st residues showed high 

variations and the values of Shanon variability were 

2.484, 2.364 and 2.421, respectively, followed by the 

19th, 112th, 31st and 139th residues. The values were 

higher than 2 for all. 
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Fig. 1  Alignments of amino acid sequences of chicken, sperm whale, house mouse Mbs with those of other fish species.  
Amino acid gap is indicated by a dashed line. The upper boxes indicated the α-helical segments A through H. For sperm whale, 
house mouse and chicken Mb, the α-helical segments A-H are lower boxes. Segment D is missing in fish Mbs.  
The sequence data from the DDBJ/EMBL/GenBank databases are under the following accession numbers: channel catfish (I. 
punctatus, NP_001187526), greater amberjack (S. dumerili, BAG84239), milkfish (C. chanos, ABI97485), yellowtail amberjack (S. 
lalandi, BAH90800), Japanese amberjack (S. quinqueradiata, BAG84238), black rockcod (N. coriiceps, AAG16646), zebrafish (D. 
rerio, AAH56727), common carp (C. carpio, XP_018966946), bigeye tuna (T. obesus, BAC82200), bluefin tuna (T. thynnus thynnus, 
AAG02105), yellowfin tuna (T. albacares, AAG02112), longfin tuna (T. alalunga, AAG02106), Atlantic blue marlin (M. nigricans, 
AAG02107), Atlantic salmon (S. salar, ACM09229), Nile tilapia (O. niloticus, BAH19314), Mozambique tilapia (O. mossambicus, 
BAH22119), blue tilapia (O. aureus, BAH22118), rainbow trout (O. mykiss, BAI45225), walking catfish (C. batrachus, AGG38020), 
medaka (O. latipes, XP_004065750), whale shark (R. typus, XP_020371173). The sperm whale (P. catodon, BAF03579), chicken (G. 
gallus, NP_001161224), house mouse (M. musculus, NP_001157520) sequences were used as outgroup. 
 

3.2 Secondary Structure Prediction  

The highly variable residues were found in the 

random coil (the 21st one), α-helical regions (the 

123rd and 131st ones), but were contained in the 

extended strands for salmon Mbs (the 131st one). The 

lower extent of variations was found in the 19th, 

112th, 130th and 139th residues. The 21st, 123rd and 

130th residues were the same among Mbs from the 

five fish species, but the 19th and 112th residues 

showed slight variations. The summary of secondary 

structures in the highly variable regions of Mbs is 

shown in Table 1.  

3.3 Tertiary Structure Prediction 

The tertiary structure prediction of fish Mbs 

performed by SWISS-MODEL and Swiss-PdbViewer 

revealed very similar tertiary structures among 

different fish species. Although slight species 

specificity in the secondary structure was recognized 

as described above, their tertiary structures well 

resembled each other. The two representative 

structures on tuna and salmon Mbs are shown in Fig. 2. 

Although the 21st, 123rd and 131st residues were 

highly variable among different fish species, these 

residues do not seem to affect the tertiary structures so 

much.  

3.4 Phylogenetic Trees 

Phylogenetic trees of Mb, cyt-b and COI were 

drawn by ML method, NJ method, MP method and 

UPGMA based on the amino acid sequences by the 

aid of MEGA 7. The results are shown in Figs. 3-5, 

respectively. Fig. 3 shows the analytical results 

obtained for Mb. The optimal tree with the sum of 

branch length is as follows: ML with the highest log 

likelihood (-3,452.08), NJ (3.293), UPGMA (3.255) 

and MP with the most parsimonious trees (645). Fig. 4 

shows the results obtained for cyt-b, with the branch 

length as follows: ML with the highest log likelihood 

(-5,383.28), NJ (2.030), UPGMA (2.319) and MP 

with the most parsimonious trees (1,019). The results 

for COI are shown in Fig. 5, with the branch length as 

follows: ML with the highest log likelihood 

(-5,323.45), NJ (1.356), UPGMA (1.344) and MP 

with the most parsimonious trees (768). The 

phylogenetic trees of Mb, cyt-b and COI were used for 

bootstrap value check. The amino acid variations were 

calculated based on each different model, JTT method 

for ML, p-distance for NJ and UPGMA, SPR for MP. 

In particular, the alignment showed that tuna and 

tilapia Mbs are classified into the same clade. By the 

traditional taxonomy, both species belong to the order 

Perciformes. In the phylogenetic tree based on Mb 

sequences, these species were closer to each other 

compared to the trees based on cyt-b and COI.  

4. Discussion 

Amino acid sequences of conservative proteins (like 

cyt-b and COI) are usually used to infer distant 

phylogenetic relationships, such as early divergences 

near the root of the universal tree of life [26-28]. For 
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distant relationships of phylogeny, the use of 

nucleotide sequences can be problematic, because it is 

likely that the alignment is difficult, and the base 

frequencies may vary among species, and further the 

saturation of substitutions may have diluted 

phylogenetic information [29]. In some cases, use of 

amino acid sequences seems to be advantageous [30]. 

The nucleotide and amino acid sequences have been 

successfully applied to phylogenetic analyses, but in 

this study, amino acid base analyses are considered to 

be better than nucleotide base ones. 

4.1 Properties of the Markers 

Genes encoded by mitochondrial DNA are valuable 

for understanding the evolutionary relationships 

among individuals, populations and species. The cyt-b 

and COI genes are usually chosen as phylogenetic 

probes, because it is much easier to align 

protein-coding sequences that have evolved over the 

period spanning the origin of the species than to align 

either mitochondrial rDNA or non-coding sequences 

from the distant relatives. 

Cyt-b is the main subunit of transmembrane 

cytochrome complexes and functions as a member of 

electron transport chain. It is a kind of integral 

membrane protein that probably has eight 

transmembrane domains. Cyt-b is considered to be the 

most useful marker for exploring the relationships 

within families and genera. Fish cyt-bs generally 

consist of 380 amino acid residues.  

On the other hand, COI is the main subunit of the 

cytochrome c oxidase complex. Cytochrome c oxidase 

is a key enzyme in aerobic metabolism and the 

member of the respiratory chain that catalyzes the 

reduction of oxygen to water. COI is recognized as an 

extremely useful DNA barcode, capable of accurate 

species identification in a very broad range of 

eukaryotic organisms [31-33]. 
 

Table 1  Highly variable area of amino acid position and secondary structure. 

Species 
Amino acid position (secondary structure/amino acid residue) 

19 21 112 123 130 131 139 

Bluefin tuna        e/T c/I h/H h/T h/G h/I h/N 

Mozambique tilapia c/T c/Y c/A h/Q h/S h/K h/S 

Medaka c/N c/H h/A h/Q h/A h/G h/D 

Zebrafish h/A c/N h/A h/G h/D h/A c/Y 

Atlantic salmon c/N c/H c/G h/E h/G e/V e/T 

c: random coil; e: extended strand; h: α- helix.  
 

 
(a)                                   (b) 

Fig. 2  Tertiary structure prediction of bluefin tuna (a) and Atlantic salmon (b) Mbs by ExPASy proteomics 
tool/Swiss-PdbViewer. 
Different colors indicate different α-helical regions of Mbs.  
Highly variable amino acid residues (positions 21, 123 and 131) are indicated in red with the letters in yellow.  
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Fig. 3  Phylogenetic trees based on the amino acid sequences of Mbs from sperm whale, chicken, house mouse and various 
fish species (total of 24 species).  
Deduced amino acid sequences were aligned using ClustalW, and the trees were constructed by the ML (a), NJ (b), UPGMA (c) and 
MP methods (d). The house mouse, chicken and sperm whale sequences were used as outgroup. The percentages of the replicated 
tree in which the associated taxa clustered together in the bootstrap test (1,000 replicates) are shown at the nodes. The evolutionary 
distances were computed using the Poisson correction method. Evolutionary analyses were conducted in MEGA 7. 

(c) 

(b) (a) 

(d) 
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Fig. 4  Phylogenetic trees based on the amino acid sequences of cyt-bs from sperm whale, chicken, house mouse and various 
fish species (total of 16 species).  
Deduced amino acid sequences were aligned using ClustalW, and the trees were constructed by the ML (a), NJ (b), UPGMA (c) and 
MP methods (d). The house mouse, chicken and sperm whale sequences were used as outgroup. The percentages of the replicated 
tree in which the associated taxa clustered together in the bootstrap test (1,000 replicates) are shown at the nodes. The evolutionary 
distances were computed using the Poisson correction method. Evolutionary analyses were conducted with MEGA 7. 
 

(c) 
(c) (c) 

(b) (a) 

(d) 
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Fig. 5  Phylogenetic trees based on the amino acid sequences of COIs from sperm whale, chicken, house mouse and various 
fish species (total of 24 species).  
Deduced amino acid sequences were aligned using ClustalW, and the trees were constructed by the ML (a), NJ (b), UPMGA (c) and 
MP methods (d). The house mouse, chicken and sperm whale sequences were used as outgroup. The percentages of the replicated 
tree in which the associated taxa clustered together in the bootstrap test (1,000 replicates) are shown at the nodes. The evolutionary 
distances were computed using the Poisson correction method. Evolutionary analyses were conducted in MEGA 7. 
 
 
 

(a) (b) 

(c) (d) 
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The COI gene has been extensively studied in 

relation with the phylogeny of fish, since the 

sequences are highly conserved among species. COIs 

from various vertebrate taxa have been sequenced [32, 

34-36]. Such well characterized COI genes have been 

proved to be a robust evolutionary marker also for the 

analysis of intraspecific and interspecific relationships 

in many marine fish species [32, 37]. The number of 

COI amino acid residues is generally 516, but those of 

tilapia and medaka examined in this study consist of 

533 and 518 residues. 

Mb is a less conserved protein. Unlike cyt-b and 

COI, Mb is not a mitochondrial member but exists in 

the sarcoplasm of muscle cells. Most fish Mbs consist 

of 146 amino acids residues. The numbers of amino 

acids in Mbs are much smaller than those of cyt-b 

(380) and COI (516), making it easier to compare the 

sequences.  

In order to explore the evolutionary importance of 

biomarkers, phylogenetic tree based on the 

conventional taxonomy is an essential reference. The 

phylogenetic tree made by Bonde [38] was considered 

in this study.  

4.2 Evolution of Mbs 

Mb is a relatively compact globular protein, whose 
backbone structure consists of eight α-helical 
segments designated A through H from the N 
terminus. The heme resides in a hydrophobic “heme 
pocket” groove, and binds to the imidazole group of 
proximal histidine directly and that of distal histidine 
through an oxygen coordinate binding [39]. As the 
oxygen affinity level of Mb is higher than that of 
hemoglobin, Mb can store oxygen temporarily in 
muscle and transfer it to an electron transfer system. 
Out of 154 amino acids, more than 120 residues are 
present in the helical regions and the 32 amino acids 
are distributed all over the non-helical regions. 

Fish Mbs are very unstable compared with those of 

higher vertebrates, and thus autoxidize and aggregate 

easily [40-43]. The primary and crystal structures of 

yellowfin tuna T. albacares Mb have been solved [44, 

45]. The tertiary structures of fish Mbs are quite 

similar to those of mammalian counterparts [45, 46], 

although fish Mbs lack a D-helical [45].  

Fish have changed Mb affinity for oxygen through 

adaption and evolution. Since Mb facilitates the 

oxygen transfer from the blood to tissues, 

environmental changes, like high water temperature or 

hypoxia tolerance could decrease oxygen affinity of 

Mb [47, 48]. Mbs also show cold-compensated 

metabolic demands at low temperatures [49]. It means 

that Mb plays an important role for the organisms to 

adapt environmental changes. 

4.3 Structure Variance of Mbs 

Apomyoglobin (apoMb) is a protein portion of Mb 

free from heme. It has eight α-helical segments, and 

the structure of each segment has been discussed [50]. 

The stability of segments A, G and H in a molten 

globule intermediate state was found to be important 

for unfolding of Mb [51]. These segments are readily 

structured just after translation and form a 

hydrophobic core, while helices B and E are involved 

in the core formation of apoMb [52]. Helix F is 

disordered by removal of heme [53]. The absence of 

the 53rd residue results in the disappearance of 

segment D [54]. The lengths of α-helical segments are 

comparable between whale and tuna Mbs, but tuna 

Mbs have shorter segments F and H [45]. Such 

differences would also affect the stability of Mbs. 

4.4 Usefulness of Mb as a Molecular Marker  

Based on the results obtained in the present study, 

Mb is considered to be a good marker for 

phylogenetic analysis of fish as shown in Fig. 3. The 

model of NJ method seems to be closer to the 

conventional taxonomy (Fig. 3b), where tilapias 

(Mozambique tilapia, Nile tilapia and blue tilapia) 

belonging to the family Cichlidae, the order 

Perciformes, are closer to tunas (family Scombridae). 
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In cyt-bs system, Atlantic salmon and rainbow trout 

branches were present in family Scombridae (Fig. 4), 

while, in the COI system, tilapia branches were far 

from family Scombridae (Fig. 5).  

In this study, it was necessary to use the database in 

the web. The more fish species are to be analyzed, the 

more refined the model can be. Some fish species 

belonging to Acipenseriformes, Anguilliformes, 

Lophiiformes and Siluriformes were planned to be 

included in the present model, but the sequences from 

the limited numbers of fish species could be referred 

to. At present, it is difficult to find the species whose 

sequences of Mb, cyt-b and COI are available. For this 

reason, fish species examined were different for each 

phylogenetic analysis carried out in this study. The 

data for channel catfish (I. punctatus), greater 

amberjack (S. dumerili), milkfish (C. chanos), 

yellowtail amberjack (S. lalandi), Japanese amberjack 

(S. quinqueradiata), longfin tuna (T. alalunga), black 

rockcod (N. coriiceps) and common carp (C. carpio) 

were not available for the cyt-b trees (Fig. 4). 

Compared with cyt-bs and COIs, Mbs provide 

advantage in their shorter sequences, which made it 

easier to identify the species or to estimate the 

relationship among fishes. The tertiary structures of 

Mbs were similar to each other among medaka, 

bluefin tuna, Mozambique tilapia, Atlantic salmon and 

zebrafish, although they were clearly distinguishable 

from each other in the primary structure (Fig. 1). The 

primary structures of Mbs were found to be highly 

variable at the 21st, 123rd and 131st residues, which 

are not reflected to their tertiary structures (Fig. 2). 

The phylogenetic trees drawn based on Mb sequences 

were similar to those by the conventional 

classification based on other markers (Figs. 4 and 5).  

5. Conclusions 

This study mainly focused on the development of a 

new marker for the problems encountered in fish 

species identification. The small-sized and conserved 

proteins can be excellent candidates for this purpose. 

Although many reports have discussed the theory of 

phylogenetic trees, the mathematical principles were 

not referred to in this study, but instead, a common 

model has been adopted to draw the trees. The present 

study showed that, although the Mb proteins are 

smaller (only 147 aa) compared to cyt-b (380 aa) or 

COI (516 aa), it is not inferior to the other two. This is 

the strongest advantage of Mb. The results obtained in 

this study suggest that Mb can be available as a useful 

molecular marker for the phylogenetic analysis of fish. 
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