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Abstract: The previous paper Ref. [1] showed how to calculate activation energies for ideal gas reactions from the CDF (cumulative 
distribution function) of the MBD (Maxwell Boltzmann Distribution) and the heat capacity data of the components. The results 
presented here show comparisons of activation energies of four ideal gases calculated in that way with those calculated from the  
ND (Normal Distribution) and its CDF. The evaluation of the CDF for the MBD in Ref. [1] required extensive numerical integrations 
for each substance. In this paper this method of calculating activation energies is generalised, by showing the CDF is a unique 
function, independent of temperature and composition, enabling the CDF to be presented graphically or in tabular form. These 
activation energies are compared to those calculated from the ND and its CDF. The MBD is related to the ND because it has a 
generating function which is shown here to have the simple form (1-kT)-1.5. The activation energies obtained from the CDF of the  
ND are shown to agree ca. 5-7% with those obtained directly from the MBD. Because existing thermodynamic treatments are   
based on average properties, they cannot give either a complete account of thermodynamic controlled and kinetic controlled 
equilibrium states or explain transitions between them. Complete treatments must include effects from the MBD which are the causes 
of kinetic controlled equilibrium. The basis for a complete treatment is outlined, which includes the standard deviations and 
activation energies. 
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1. Introduction 

The first paper of this series [1] showed how to 

calculate activation energies for ideal gas reactions 

from the MBD (Maxwell Boltzmann Distribution), its 

cumulative distribution function, CDF (cumulative 

distribution function), and the heat capacities of the 

components. The results showed that the collision 

kinetic energies alone are too small, compared to bond 

energies, to provide mechanisms for these reactions. 

Nor can they explain why ignition temperatures, Tign, 

are well defined. The lack of correlations for the heat 

capacities of the components that include excitation of 

electrons is the main reason that activations energies 

cannot be calculated accurately. These issues show the 

need for accurate correlations for ideal gas heat 

capacities that include excitations of electrons to 
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calculate accurate activation energies. 

Those calculations of activation energies were 

based on the CDF for the MBD of the components 

involved in the reactions. How this approach can be 

generalised in a way that avoids numerical 

integrations is discussed below. But first an alternative 

treatment that also avoids numerical integrations is 

discussed. It is based on the ND and its CDF, for 

which there are widely available tables of values 

which obviate the need to do numerical integrations. It 

involves approximating the MBD by an ND and was 

the first method the author used to calculate activation 

energies. It was to resolve questions about how 

accurately the ND approximated the MBD that led to 

the method discussed in Ref. [1]. 

To show the MBD is related to the ND it is 

necessary to demonstrate it has a generating function 

and it is shown here that the MBD has the simple form 

(1-kT)-1.5. Hence the two distributions are 

mathematically related and the CDF for the ND can be 
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used in calculating energy distributions in the MBD. 

Activation energies obtained for four gas ideal 

mixtures from the CDF of the ND agree to ca. 5-7% 

with those obtained directly from the MBD. 

2. The Energy Distribution for the MBD 

Quantitative calculations of the energy distribution 

in the MBD require knowledge of the mole fraction xi 

with energies greater than a specific energy ui. The 

standard expression for the MBD is from Ref. [2]: 

ሻݑሺ݌ ൌ ቀି݁ܣ ೠ
ೖ೅

ቁܿଶ            (1) 

where c is the velocity, m is the mass, the temperature 

T and k is Boltzmann’s constant and, 

ܣ ൌ  ሻଵ.ହ           (2)ܶ݇ߨሺ݉/ሺ2 ߨ4

To obtain the mole fraction, yi, with u < ui this 

equation must be integrated between 0 and ci. 

௜ݕ ൌ ܣ ׬ ݁ሺି௨/௞்ሻ௖೔

଴ ܿଶ݀ܿ          (3) 

These integrals are intractable and cannot be solved 

analytically. As discussed in Ref. [1] they are simply 

and accurately evaluated numerically by summing the 

expression for xi in equation1 using an appropriate 

grid spacing for the values of c. 

An alternative method of calculating activation 

energies is to relate MBD to the ND and use the CDF 

for the ND to calculate the activation energies. How to 

do this is discussed below. 

3. The MBD and the Normal Distribution 

Any distribution that has an MGF (moment 

generating function) [3] is related to the ND. 

To relate MBD to the ND it is sufficient to show it 

has an MGF. This enables the tables for the CDF of 

the ND to be used for calculating mole fractions of 

molecules with energies > ui/uav. 

The moments of the MBD, Mn(u) are defined in Eq. 

(4) as, 

ሻݑ௡ሺܯ ൌ ׬ ݁ܣ
ሺି ೠ

ೖ೅
ሻ
௡ݑ

଴ ܿଶ݀ܿ        (4) 

Moments can be evaluated directly from this 

equation and the first four moments are tabulated in 

Table 1. The standard procedure in statistics to obtain 

a generating function is to form the function: 

ሻݐሺܯ ൌ ׬ ܣ ݁௧଴.ହ௠௖మ
݁ି௔௖మ

cଶ݀ܿ       (5) 

On carrying out the integration 

ሻݐሺܯ ൌ ሺ1 െ ݇ܶሻିଵ.ହ           (6) 

On expansion of this function the coefficients of the 

powers of t are the moments of the MBD as can be 

seen by comparing those coefficients with the direct 

evaluations of the first four moments in Table 1. 

The variable in the MBD that is related to the ND is 

the velocity, c, not the energy, u. 

To relate the MBD to the ND it is necessary to 

transform it into a normalised form [4] using a 

standard transformation either about zero or the 

average energy, uav. The expressions for the expansion 

about zero lead to much simpler algebraic forms, for 

the normalised MBD and are used below. The 

normalised form for a variable x, x*, is 

כݔ ൌ  (7)               ߪ/ݔ

where x* is the normalised value of x, σ is the standard 

deviation and xav is the average value of x. The 

normalised values of c and u are: 

כܿ ߪ ൌ ܿ                 (8) 

כݑ ൌ
௨

ఙమ                 (9) 

For ideal gases 0.5mσ2 is equal to 1.5kT so the 

parameter u/kT becomes 

ܶ݇/כݑ ൌ ሺܾ݇ܶሻ/ݑܾ ൌ
௕௨

ఙమ        (10) 

And b is (3/2). The derivatives dc* and dc are 

related 

כܿ݀ߪ ൌ ݀ܿ               (11) 
 

Table 1  The moments of the MBD. 

n Mn(0) Mn(1.5kT) 

1 1.5kT 1.5kT 

2 15/4(kT)2 6/4(kT)2 

3 105/8(kT)3 3(kT)3 

4 945/16(kT)4 252/16(kT)4 

Calculated directly from the generating function: about zero 
and about the average kinetic energy. 
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Restating Eq. (3) in terms of c* and u* about zero, it 

becomes: 

כ௖ݔ ൌ ଷܾܣ ׬ ݁ሺି௕௨כ/ఙమሻ௖כ

଴ మכܿ
 (12)     כܿ݀

This expression for xc
* is related to the ND for the 

ratio c2/cav
2. Multiplying each of these squared 

velocities by 0.5 m converts this ratio into u/uav. 

The percentage of molecules needed for the 

reaction to proceed, yign, is obtained, as previously in 

Ref. [1], using experimental values for the reactions  

of ideal gases. This leads to the same equation as in 

Ref. [1] where xi is the mole fraction of i and i is H2, 

O2 or N2. The heat of reaction is ∆H at standard 

conditions. 

For the mixture to reach the ignition temperature 

the heat released by the reaction of the mole fraction 

of hydrogen, yign, leads to: 

ܪ∆௜௚௡ݕ ൌ න ሺݔுమ

்೔೒೙

೚்

௣ಹమܥ
൅ ேమݔ

௣ಿమܥ
൅ 

ைమݔ
௣ೀమܥ

ሻ݀ܶ             (13) 

and the x values are the mole fractions, Cp is the heat 

capacity at constant pressure, To is 25 oC and the 

subscripts identify the components. Alternatively, this 

equation can be written in terms of the enthalpies of 

the components: 

ோܪ∆௜௚௡ݕ ൌ ுమݔ
௣ಹమܪ∆

൅ ேమݔ
௣ಿమܪ∆

൅ ைమݔ
௣ೀమܪ∆

(14) 

where ∆HR is the heat of reaction and the ∆Hx values 

are the enthalpy differences between Tign and T0 for 

each component. 

The quantities in this equation were obtained using 

the correlations of Harmens [5] to evaluate the heat 

capacities of the components together with the 

reaction enthalpies in the same way as in Ref. [1]. The 

results are discussed below. 

4. Activation Energies of Ideal Gas 
Reactions 

Activations energies and associated data are shown 

in Table 2 for an ND about the average energy. The 

mole fractions, yign, in Eqs. (1) or (2) are the ignition 

mole fractions of the fuel gases which, when 

combusted successfully, heat an equal number of 

molecules in the mixture of fuel and air to the Tign, 

ensuring that the combustion is sustained. They 

contain by definition those molecules with sufficient 

energy to overcome the activation energy barriers 

which otherwise prevent molecules from reacting. As 

shown in Ref. [1] their energies are at least equal to 

those of the activation energy barriers. Comparisons 

with the bond energies in Table 3 lead to the same 

conclusion as in Ref. [1] that the kinetic energies of 

collision occur as collision energies which are always 

< 20% of the bond energies but nevertheless disrupt 

bonds energies five times larger. 

Activation energies calculated from the MBD and 

ND about the average zero are compared with those 

calculated from the MBD and its CDF in Table 2 

where it can be seen there are differences of ca. 5-7%. 

These differences are unexplained but too small to 

affect any of the conclusions that arise from these 

results. In part they may be due to the fact that MBD 

is not accurately approximated by the ND. This 

conjecture is supported by the results of calculations 

of Uact from the ND about zero and Uav which differ 

from one another by about 5%. By contrast 

calculations based on the MBD and its CDF provide a 

rigorous root to activation energies, once accurate heat 

capacity correlations and data for the CDF of the 

MBD are available. 
 

Table 2  Combustion data for four fuels. 

Fuel 
xf [6] 
flammability 
limit 

Tign/K [6] 
yign 
mole fraction 

Uign/Uav from ND
Collision energy 
at Tign (kJ/mol) 

Uign/Uav 

from MBD [1] 

Hydrogen 0.040 847 0.0290 3.0 61.3 2.9 

Methane 0.050 905 0.0360 2.85 63.2 2.8 

Ethane 0.031 745 0.0089 3.9 63.3 3.4 

Propane 0.021 754 0.0057 4.1 66.6 3.5 
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Table 3  Bond energies and kinetic energies at ignition temperatures. 

Fuel Bond energy (kJ/mol) 
∆H Bond energy [7] 
(kJ/mol) 

Collision energies (kJ/mol) 

Hydrogen H-H 436 61.3 

Methane C-H 412 63.2 

 C-C 348  

Ethane C-H 412 63.4 

 C-C 348  

Propane C-H 412 66.6 

 C-C 348  
 

5. Simplified Calculation Methods for 
Activation Energies 

Prior to the results in Ref. [1], calculation of 

activation energies had to involve the ND and its CDF. 

The properties of the CDF for the MBD suggest a 

simpler way of obtaining activation energies using the 

interpolated values of x and u/uav listed in Table 1 of 

Ref. [1]; for convenience these values are listed in 

Table 4. 

The Boltzmann factor is dimensionless and 

consequently the distributions of kinetic energies are 

independent of temperature while the averages do 

depend on temperature. Introducing the parameter, c0, 
the average molecular velocity, it immediately follows 

that the MBD can be written in terms of ci
*, defined as 

the ratio ci/c0. Noting that 

0.5݉ܿ଴
ଶ ൌ 1.5݇ܶ            (15) 

The MBD becomes in terms of c* 

௜ݔ ൌ ׬ ܣ
௖೔

଴ ݁ିଵ.ହ௖כమ
כܿ ଶܿ଴

ଶ݀ܿ        (16) 

Writing this equation in terms of xi/c0
2and c* [2] 

shows there is a single expression for the kinetic 

energies of the MBD that applies to all substances at 

all temperatures. 

This is confirmed by the calculated values of the 

mole fractions for hydrogen for selected values of the 

molecular velocities and u/ua, at its ignition 

temperature, 500 K and at 298.15 K, only the data for 

298.15 K are shown in Fig. 1. The plots of values of x 

and u/ua are identical at all three temperatures. 

Identical results were obtained for the other gases at 

each value of the ratios of c2/c0
2 at both 298.15 °C and 

their ignition temperature. This is further confirmed 

by the data for yign for all four gases fall on a single 

plot of x versus u/ua for hydrogen, even though the 

velocities of the individual gases differ by the square 

root of the ratio of their molecular weights; this is a 

factor-four for hydrogen and propane. 

These considerations implied there is a generic 

function that applies to all kinetic energies at all 

temperatures. The expression in Eq. (16) can be 

reformulated using Eq. (15), to replace kT by 0.5mc0
2. 

When inserted into Eq. (16) these lead to the 

following expressions: 
 

Table 4  Values of x and u/ua for the MBD. 

Mole fraction 
x > u/uav 

u/ua 
Interpolated 
mole fractions 

Interpolated 
u/ua 

0.0505 2.600 0.005 4.3 

0.0012 2.750 0.010 3.8 

0.03348 2.905 0.020 3.5 

0.02693 3.0064 0.025 3.10 

0.01712 3.395 0.03 3.00 

0.01351 3.569   

0.0106 3.740   

0.0049 4.297   



Methods for Calculating Activation Energies of Ideal Gases 

  

78

 
Fig. 1  Activation energies for hydrogen at 298.15 K. 
 

ሻכሺܿ݌ ൌ మכெ஻݁ିଵ.ହ௖ܣ

మכܿ
         (17) 

ெ஻ܣ ൌ 6/ሺ1.5ߨሻ଴.ହ           (18)  

where p(c*) is the probability that the value of c* 

occurs and the value of AMB ensures that the 

probabilities are normalised. The expression for p(c*) 

is closely related to the normal distribution. 

The interpolated values for u/ua in Table 4 enable 

the activation energy to be read from the graph, once 

yign has been obtained. The values from the graph are 

probably accurate enough for most purposes. 

Alternatively, a closely spaced table of values for the 

CDF of the MBD for the range important to 
calculating activation energies, of 2.0 < u/ua < 4.5, is 

readily generated from Eqs. (17) and (18). 

6. Discussion 

The values for the activation energies in this paper 

[1] are of interest in themselves in that they are the 

first attempts to calculate activation energies. The 

basic data in the form of accurate heat capacity are not 

available for these calculations to be accurate are 

unfortunate. But these results do show that the 

existing explanation of reactions based on kinetic 

energies of collisions is not sustainable and identify 

the need for accurate heat capacity data at ignition 

temperatures to enable activation energies to be 

calculated accurately. 

It is clear that, for equilibrium states determined by 

the distribution of energies in the MBD, a full 

explanation of those states must account for effects 

caused by the distribution of energies. Explanations 

based solely on averages of the properties of the 

molecules cannot account for these effects. 

Perhaps more important is the demonstration of 

incompleteness of thermodynamic treatments that 

involve kinetic controlled equilibrium. Such kinetic 

controlled equilibriums are metastable states. Standard 

treatments do not explain why these states exist nor 

can they deal with the transition to thermodynamic 

controlled equilibrium. The criteria for the 

propagation of combustion reactions set out in these 

two articles are the first criteria for transitions between 

kinetic and thermodynamic controlled equilibrium. 

The cause of this problem is that kinetic controlled 

equilibrium states arise from the distributions of 

molecular energies and standard treatments are based 

on properties that are averages. They contain no 

information about the distributions of molecular 

energies. All molecular systems have an MBD of 

energies and this must be included in thermodynamic 

treatments that can describe quantitatively both 
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thermodynamic and kinetic controlled equilibrium and 

transitions between these two types of equilibrium. 

Any such treatment will be based on the average 

properties, as is in current treatments, the standard 

deviations of the molecular energies, to account for 

the distribution those energies, and activation 

energies. 

Activation energies of ideal gas reactions have an 

odd status in thermodynamic theory. They control 

reactions and are determined by the equilibrium 

molecular energy distributions and the criteria for 

propagation of the reactions. Together with the criteria 

for propagation they determine what equilibrium will 

occur. They are the only parameters which determine 

thermodynamic equilibrium states which are not 

recognised as a thermodynamic property. Currently, 

there are no ways of calculating them accurately 

accounts no doubt accounts for this. 

7. Conclusions 

Statistical distributions play a central role in the 

behaviour of molecular systems and in 

thermodynamic equilibrium. They determine how 

thermodynamic controlled and kinetic controlled 

equilibriums are related. Chemical theories describing 

molecular systems must include the effects of energy 

distributions as they play an essential role in kinetic 

controlled equilibriums. 

This paper and Ref. [1] give two methods for 

calculating activation energies for the reactions of 

ideal gases. The method based on the MBD and its 

CDF is the most rigorous and has no additional 

assumptions. The simplest way to use it, once yign has 

been calculated, is to read the activation energy from 

Fig. 1. 

The values obtained from the MBD and the ND 

contain additional assumptions and differ by ca. 5-7% 

from those obtained from the MBD and its CDF. 

These differences are probably due to errors in the 

heat capacity data leading to errors in the yign values 

rather than differences in the mathematical procedures. 

The real advantage of the linking the MBD and the 

ND mathematically is that it relates the MBD to the 

central limit theorem. These links provide the basis for 

a simple introduction to statistics and thermodynamics 

for all students of chemistry. 
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