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Abstract: It is well known that the dynamic response of the structure to an earthquake excitation is affected by the interaction with the 
foundation and the soil. The expansion of informatics and development of the computer capacities has helped the scientists to develop 
numerical models for approximate solutions of big variety of problems related to SSI (Soil Structure Interaction). Many of those 
problems involve domain-coupling. In this paper we built numerical model, based on finite differences and we investigate the accuracy 
of the numerical model depending upon the size of the square domain around the source. We tested eight different square sizes and we 
analyzed their accuracy regarding to five different wave periods. The results give recommendations for the implementation of the 
domain-coupling algorithm. 
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1. Introduction 

The Niigita earthquake (1964) was the most extreme 

example that the structure is not isolated system, but 

structure’s response to an earthquake is affected by 

interaction with other two linked systems: soil and 

foundation. This earthquake happened in the period 

when the term “Soil Structure Interaction” (SSI) first 

appeared in the literature [1, 2]. The 1960-es were 

decade in which nuclear power plants were intensively 

designed in USA. Because seismic regions were not 

excluded as location, the Engineering Earthquake 

Research Center in the University of Berkley was fully 

focused on study the SSI effects controlling nuclear 

power plant seismic response. First SSI models were 

based on homogenous half space with surface rigid 

stamp [3]. 

The expansion of informatics and development of 

the computer capacities has helped many scientific 

fields to expand the margins of the problems that they 
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are dealing with. Among the branches that benefit from 

the computer era is the numerical calculus. Analysis 

performed with numerical methods powered by fast 

computer processors are getting more popular. Much 

computational software is developed on basis of the 

Finite element method and the Finite difference 

method and is used for finding approximate solutions 

of big variety of problems.  

Nowadays SSI models are much more complex than 

those before 50 years. The physical properties of the 

materials are not limited only on their linear properties, 

but they can be included with their nonlinear properties 

as well. The soil is usually represented as layered 

medium with well defined interfaces between the 

layers of different type of materials.  

Describing the wave propagation in layered media 

with Finite differences, Alterman and Karal [4] 

originated a domain-coupling algorithm as 

approximation of the source. They introduced source 

square method by defining two independent wave 

fields for identical sources and regional structures, but 

different local structures [5]. This technique originally 
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derived for modeling of point source included in the 

model, later was used by many researches for wide 

range of implementations. It was used for analyzing 

in-plane response of SSI system with point source in 

the model [6], but also for modeling and studying 

out-of-plane response [7-9] and in-plane response [10, 

11] when the source is not included in the model. When 

the source is point source into the model, the incoming 

waves from the source are cylindrical waves, and if the 

source is not into the model, usually the incoming 

waves are approximated by plane waves. In this paper 

we investigate wave propagation from point 

compressional source included into the model. 

Although the source square is theoretically correct, 

the numerical interpretation can cause some errors in 

the results. They are mainly because of the circular 

wave front being approximated with rectangular or 

square shapes. This paper should give an idea how the 

size of the source square affects the results for different 

wavelengths. 

2. Numerical Model and Example 

For better understanding the effects of the size of the 

square that separates the inner and outer field, a 

parametrical numerical model was created. For this 

analysis, only two of many other parameters are of 

interest and are variable, while we keep the others with 

constant values. Those two variable parameters are the 

square’s side size κ, and the wave length λ. 

The numerical model is based on finite difference 

method. It represents homogeneous soil island, 

truncated piece of the infinite half space. The 

truncation is done by use of three artificial transparent 

boundaries of paraxial type P4 [12] and one free 

surface boundary [13]. Usually the corners in 

numerical schemes of this kind are singular points. In 

this model the points where the artificial boundaries 

intersect are rotated P3 boundaries [12]. The 

intersection of the artificial boundaries and the free 

surface is modeled by combination of the formulation 

of both boundaries applied in the corner and first 

neighboring points. 

The bounded soil medium surrounded with the 

artificial boundaries and the free surface numerically is 

represented using the formulation for wave 

propagation in homogeneous media [14]. The distances 

between the computational points in the finite 

difference scheme are same in both orthogonal 

directions and in our example we take it equal to h = 0.5 

m. This distance satisfies the stability condition 

regarding the grid dispersion [15, 16]. According to the 

second stability condition of this scheme, the time 

interval is calculated as a function of the space interval 

h and P wave velocity α as 
2

h
t  [17]. In our 

example we take the P-wave velocity α = 250 3  m/s 

and the SV-wave velocity β = 250 m/s. For this values 

of the space interval and velocities of propagation, we 

get st 410165.8
6250

5.0  and we assume 

t = 0.0008 s. The four parameters, h,    , and  t we 

keep constant in all calculations.  

The soil media is disturbed with vibrations. The 

source of the vibrations is located at the intersection of 

the diagonal of the whole model. The model is of 

square shape with size of 400 m. The numerical 

interpretation of the vibrations is done by application of 

continuous displacement to the source point. The 

displacement is further spread through the whole 

model by propagation of P- and SV-waves computed 

using [14]. As input displacements we take 

monochromatic sine functions with different periods T. 

With this kind of numerical schemes, the explicit 

application of the displacement into the source point is 

valid only if the period of calculation is shorter than the 

time needed for the wave front to pass the distance 

from the source point to the free surface and to come 

back to the source point as reflected wave. For all other 

problems either the source needs to be relocated down, 

further from the free surface and closer to the bottom 

artificial boundary, or the size of the model is going to 

be increased. The first setting can cause serious 
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with waves that have five different wave lengths. The 

wave length, similar like the square size, is introduced 

in the model with dimensionless wavelength

H

T*  . Here T is the period of the sine function 

(the source excitation) and α is the P-wave velocity. 

Both α and H are constant for all combinations of κ and 

η, while T is assumed to be variable with values of 

0.0496 s, 0.133 s, 0.264 s, 0.666 s and 1 s. 

The imperfection of the approximation of the 

circular wave front with square is evaluated by 

computing the relative error of the displacements of the 

free surface point M, calculated with the numerical 

model ( A ) and analytically (A). It is known from 
principle of conservation of energy that cylindrical 

waves attenuate as  

R

r
AA s               (1) 

where, A is the amplitude of the wave at distance R 

from the source, and As is the amplitude of the wave at 

distance r from the source point.  

3. Results 

We performed total of forty numerical simulations 

by combining eight different values of κ and five of η. 

In all these simulations the excitation is generated by 

applying steady state sinusoidal displacement with 

amplitude As = 0.5 m in four neighboring points of the 

physical source. These four points are depicted by 

circles, while the physical source is depicted by x on 

Fig. 1. 

From all combinations of κ and η, we plot the results 

in Figs. 2 to 11. For each period of oscillation, η, there 

are two types of diagrams. The first one illustrates 

(Figs. 2, 4, 6, 8, and 10) the time histories of the 

oscillations of point M generated from source 

approximated with different square size κ. The time 

histories for different κ on these figures are shown with 

different colors. The other five diagrams (Figs. 3, 5, 7, 

9, and 11) show the error estimation as result of the 

approximation of the circular wave front on square grid. 

The error is calculated as relative error regarding the 

analytical solution A = 0.05 calculated with Eq. (1). 

Fig. 2 shows time histories of the oscillation at point 

M, for the shortest period T = 0.0496 s, η = 0.107 and 

κ={0.1, 0.15, 0.2, 0.25, 0.3, 0.38, 0.45, 0.5}. On this 

figure one can barely differ the displacements. Hence 

the difference in the error is very small and varies in 

range of 0.017% for κ = 0.5 up to 0.79% for κ = 0.1 

(Fig. 3). The variation of the error for different κ is 

given in the second figure. According to this eight 

simulations the error generated from all square 

dimensions are negligible. Hence the dimensions of the 

square have not great influence on the exactness of the 

results. However, since the error from the smallest one 

is much greater  relative to  the remaining  seven, and 

increasingκ from 0.1 to 0.15 does not require much 

more computational effort, the smallest square may be 
 

 
Fig. 2  Oscilation of point M with κ = {0.1, 0.15, 0.2, 0.25, 0.3, 0.38, 0.45, 0.5} and η = 0.107.  
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Fig. 3  Relative error of the approximation for κ = {0.1, 0.15, 0.2, 0.25, 0.3, 0.38, 0.45, 0.5} and η = 0.107.  
 

avoided. 

The next two figures are obtained with increased 

period up to T = 0.133 s (η = 0.289), and the same eight 

κ. As one can see from Fig. 4, there is a slight 

difference in the amplitudes for the two smallest 

squares, κ = 0.1 and κ = 0.15. Hence they produce error 

which is relatively bigger compared with the remaining 

six squares. The errors for all dimensionless square 

sizes κ are greater than for the previous η. Like for the 

previous eight simulations the biggest error is produced 

by the smallest square. Despite being biggest, its value 

of 2.3% is inacceptable range of errors. Most precise 

calculations are obtained with dimensionless square 

size κ = 0.2. The error of this square is only 0.17%. 

For the waves with T = 0.264 s (η = 0.571) the 

difference in the amplitudes between the smallest 

considered square, κ = 0.1, and all others are increased 

(Fig. 6), which lead to error of 7.1% for the model with 

the smallest square size. Like for the previous η, the 

second biggest error of 3.25% is at point with κ = 0.3. 

Except for the squares with κ = 0.15 and κ = 0.2, for 

other square sizes the error is increased compared with 

previous combinations of κ and η. For those two 

squares sizes there is decrease in the error and for these 

eight scenarios the smallest error is calculated for κ = 

0.2. While the waves at the remaining six squares have 

smaller amplitudes compared to the previous two 

dimensionless wavelengths η (Figs. 2 and 4), the 

waves that are generated from aforementioned two 

square sizes have slightly greater amplitudes and are 

closer to the exact solution.  

The next group of numerical simulations are done 

for wave period of T = 0.667 s (η =1.442). As bigger 

the period becomes, the greater are the errors of smaller 

squares. From Fig. 9 it can be seen that the error 

decreases with increasing the size of the square. The 

smaller the square is, the bigger the error it produces. 

For the smallest square κ = 0.1, the estimated error is 

36.22%. The largest square κ = 0.5 produces error 

which is only 0.73%. For η = 1.442 the three largest 

squares have negligible error, smaller than 1%, while 

the others have noticeable error. This difference in the 

accuracy is also visible in Fig. 9. The tendency, smaller 

squares to generate waves with smaller amplitudes, is 

easily recognized for larger dimensionless wavelengths, 

η. Fig. 12 is showing the change of the amplitudes for 

all κ and for all η. This figure shows the decrease of the 

amplitudes with increase of the wave period. For each 

square size the amplitude of the shortest period is 

greater than the amplitude of the longest period. 

However, from Fig. 12 one can notice that the 

difference between the biggest amplitude and the 

smallest amplitude for each square separately is much 

smaller for the biggest κ compared to the smallest κ. 

This leads to conclusion that the square with bigger 

size is safer choice. 

On Fig. 10 one can see not only the difference in the 

amplitudes, but also it is clear that the maximal values 

are not appearing at same time, even all eight 

simulations are performed with same geometrical and 

material properties of the model. For the smallest 

square with κ = 0.1 the  maximum of the  second  

peak is at time 2.121 s and for the largest square with  

κ = 0.5 the maximum at the second peak is at 2.188 s. The  
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Fig. 4  Same as Fig. 2 but for η = 0.289.  
 

 
Fig. 5  Same as Fig. 3 but for η = 0.289.  
 

 
Fig. 6  Same as Fig. 2 but for η = 0.571.  
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Fig. 7  Same as Fig. 3 but for η = 0.571.  
 

 
Fig. 8  Same as Fig. 2 but for η = 1.442.  
 

 
Fig. 9  Same as Fig. 3 but for η = 1.442.  
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4. Conclusions 

The obtained results from the simulations that were 

combined of various values of κ and η confirmed that 

the size of the square has influence on the accuracy of 

the results. The error is not dependent only on the 

square size, but on wave period as well.  

For the smallest considered period (shortest wave) 

all squares produce error smaller than 1% which leads 

to conclusion that the square size does not influence 

high frequency waves.  

For intermediate waves with dimensionless 

wavelength up to η = 0.571, the smallest square leads to 

bigger error compared to the remaining seven 

dimensions that have error smaller than 3%. The 

dependence of the error on the dimensionless square 

size κ for these, intermediate waves have oscillatory 

nature (Figs. 5 and 7). 

The simulations with the largest two periods are 

showing that the error is reciprocal with the size of the 

square (Figs. 9 and 11). With increasing the wave 

period the error increases.  

Although the biggest square has its sides closest to 

the free surface and the artificial boundaries, the 

propagated waves with the model utilizing this square 

are most accurate. Because the smallest square having 

the least points at the boundary between inner and outer 

computational domain produces the biggest error, one 

can conclude that the more number of points are used at 

the boundary between the two domains the better the 

approximation is. 

The diagrams that are showing the amplitudes of the 

waves in time are showing that not only the amplitudes 

are differing, but also the times for reaching the 

maximum and completing the period are various. 

Similar like for the amplitude error, for shorter periods 

they barely differ. But for the largest two periods one 

can recognize this difference. This indicates that these 

two deviations are connected and the amplitude error is 

result of not correctly approximated wave by the source 

square.  
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