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Abstract: In this document, we analytically investigate fluid flow through a deformable tube. The fluid is considered to be Newtonian, 
incompressible and it moves along an elastic and isotropic tube wall. The study provides a review of recent modeling aimed at 
understanding the effects of fluid parameters over the elastic wall behavior. The unsteady fluid flow will be analyzed following the 
asymptotic approach process using to a large Reynolds number and a small aspect radio. Moreover, according to the small 
axisymmetric deformation, the wall is mathematically developed basing on the thin shell theory whose linear approach is applied. 
Lastly, the dynamic behavior of the tube is represented and discussed. 
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1. Introduction 

Studying a fluid flow through a deformable tube is 

due to its occurrence for its diversity practice in many 

industrial systems and its capability to generate a 

variety of instabilities as using a rigid wall has been 

reported by Mehdari et al. [1]. This standing is reflected 

in biology by Grotberg et al. [2], in micro-fluidic 

devices by Squires et al. [3] and Eggert et al. [4] and in 

the renewable energies by Babarit et al. [5]. Recently in 

the field of transporting gaseous materials under 

pressure, Matin [6] studied fracture resistance 

assessment of pipes and in engineering Gilmanova et al. 

[7] and Greenshields et al. [8] have simulated fluid 

structure interaction of flexible thin shells. 

Although much numerical and experimental progress 

has been made during the past decades, studying 

interaction between structure and fluid analytically is not 

absolutely understood yet and remains to be discovered. 

The present work focuses an analytical modeling 

offluid flow through a deformable tube. It consists of 

analyzing the fluid flow aspect and its effect on the 
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wall tube behavior. It is based on asymptotic approach 

followed by a numerical simulation. The small 

parameter   characterizing the aspect ratio of the 

tube governs the fluid asymptotic expansion. Moreover, 

based on linear approach of the thin shell theory, the 

treatment of the wall tube equations motion is 

developed by asymptotic process founded on geodesic 

curvature parameter 2 . 

The rest of this paper is organized as follow. In 

Section 2, a formulation of the problem is presented. 

The linearization process is applied to make an 

analytical solution in Section 3. An application with 

interpretation is given in Section 4 and finally, 

conclusions are drawn in Section 5. 

2. Formulation of the Problem 

2.1 Governing Equations of Fluid Dynamics 

In the presence of gravity force, we analyze an 

unsteady flow of an incompressible, viscous and 
Newtonian fluid.   and  denote respectively the 

fluid density and the kinematic viscosity, L  is the 

tube length, h  is the thickness and R0  is the radius 

at rest. R( z , t )  is the variable radius (radius is a 

function of the longitudinal variable and time). 
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Fig. 1  The deformed domain. 
 

We assume that the tube behaves as a homogenous 

and linear elastic shell with T  being the tube density 

(Fig. 1). 

The physical variables are denoted using primes. At 

this level, we introduce dimensionless variables, 

namely: 

  

r 
r

R
o

  ,  z 
z

L
  ,  t 

t
T

f

,

u 
u

W
o

  ,  w 
w

W
o

  ,  p 
p

 2W
o
2











     (1) 

here, r , z and  t  are respectively radial displacement, 

axial displacement and time. u , w and p  denote 

radial velocity, axial velocity and pressure. 

The above dimensionless parameter accompanied 

by prime describes the corresponding physical 

parameter (with dimension). 

Also, T
f  is the reference time,   R

0
/ L  is the 

aspect ratio and W
o  represents the inlet axial velocity. 

Using system (1), the dimensionless Navier-Stokes 

and continuity equations of the problem, are read as: 
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At large Reynolds number e 
R0W0


 and low 

Strouhal number St 
R0

W0Tf
, the system (2) is valid 

under the asymptotic restrictions: 
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These interactions are the key to respectively 

analyze the coupling between the timescales and the 

fluid nature with space scales. 

2.2 Equation of Motion of the Tube Wall 

According to the thin shell theory used by Anliker et 

al. [9] to develop analytically shell dynamic 

equilibrium filled by fluid, the deformable tube is 

modeled by using the non-linear Kirchhoff-Love 

geometrical assumptions that have been reported by 

Frey et al. [10] and Callegari et al. [11].  

The following system formulates the dimensionless 

variables and parameters. 
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where, P3
*
, P3

*
, Pinstube  and Pouttube  are respectively 

dimensionless pressure gradient, pressure gradient, 

pressure inside the tube and pressure outside the tube. 

TT  is the time reference TT  Tf   and R  is 

dimensionless variable radius. 1  and 2  are the 

Lame constants and u
0.2  is the wall axial 

displacement reference. 

0  ,1 , c  and  f
0
 are constants characterizing the 

problem. 
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In this section, we adopt the “Least Degeneration 

Principle” approach at better modeling the tube wall 

behavior. The Least Degeneration Principle states as 

following asymptotic constraints. 
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where, 1

R

R

z
 is the tube geodesic curvature along the 

fluid flow direction. 

According the system (4), the governing equations 

for the tube motion are stated as the under system:  
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u
2
*
 is the dimensionless wall axial displacement.  

3. Linearized Problems and Resolutions 

This section illustrates the process of solving the 

equations for fluid motion. In fact, we are considering 

linear functions for equations in system (2). These 

functions will be described around the particular 

solution at the inlet of tube. Denoting by  the 

linearization parameter, the Least Degeneration 

Principle provides us the following form: 

u   3u  ; w  1  3w     (7) 

where, u ,w, p  are, respectively, the perturbed radial 
and axial velocities, and pressure.  is fluid 

ambient pressure. 

u  w  p  0 for t  r  z  0     (8) 

Inserting system (4) into system (2), we obtain at order 

 2 included, the non-degenerate equations, namely: 
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The 1st order terms 
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The 2nd order terms 
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At this level, we look for the linearized solutions. So, 

the 1st order terms are neglected. Under this 

assumption, the analytical solution of the pressure is 

obtained.  
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where, the J0  and J1  are the Bessel functions and ω 
is the dimensionless fluid frequency. A1  and A2  are 

the complex numbers with I being the imaginary unit. 

As regards the resolution of the dynamic equilibrium 

wall, let us resolve the equations in system (6). In order 

to do this, we take up the linearization process around 

the initial equilibrium state. We introduce the 

linearized parameters (2
1): 

P3
*  2

1/3P3
0; R  1 2

1/3R1
  (13) 

Inserting system (13) into system (6), the approached 

solution is formulated at the 0th order of 2
1/3

 by:  

          (14) 

This relation analytically presents the linear 

correlated to fluid flow pressure to the wall 
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deformation. This is in totally agreement with many 

numerical and experimental models that have been 

reported by Sochi et al. [12] and Leibinger et al. [13].  

4. Application and Interpretations 

In order to investigate the dynamical behaviors of a 

three-dimensional flexible tube due to fluid-structure 

interaction, the geometrical and numerical parameters 

of the simulation are listed in Table 1. 

With the above parameters, the asymptotic 

restriction (3) and the asymptotic constraints (5) are 

perfectly verified St  0.025,e  188,  0.018  . 
Moreover, the resolution provides a relationship 

between the fluid-structure characteristics and 

dimensionless fluid frequency (Fig. 2). 

Fig. 3 illustrates the elastic deformation, which 

provides an assessment the degree of swelling of a 

rubber tube established by the fluid pressure. These 

results will be beneficial for a good control of the 

prevention of an eventual fatigue damage, also that is 

widely used to prevent or minimize the transmission 

of dynamic oscillations to a supporting structure that 

Sommer [14] has revealed in troubleshooting rubber 

problems. In addition, we observe any stress overtaking 

of elastic limit and slight displacement of the wall. 

With this Buckling factor, Fig. 4 indicates the elastic 

pressure wave’s propagation through the wall in the 

vicinity at the exit. The validity of solution is realized 

by Morgan et al. [15].  
 

Table 1  Geometrical and numerical parameters. 

Parameter Value [Unit] 

Fluid (SAE 50W ): 

Density 902 [kg·m-3] 

Dynamic viscosity 0.86 [Pa·s-1] 

Strouhal number (Tref = 0.05 s) 0. 025 

Tube (Rubber ): 

Density 990 [kg·m-3] 

Young’s modulus 107 [Pa·s] 

Poisson’s ratio 0.4 

Length 0.8 [m] 

Radius (at rest) 1.5 [cm] 

Thickness 2 [mm] 

 
Fig. 2  System characteristics versus fluid frequency. 
 

 
(a) Stress contour plot at t’ = 0.0125 s (t = 0.25) 

 
(b) Displacement of the tube wall at t’ = 0.0125 s (t = 0.25) 

Fig. 3  Three-dimensional tube behavior at Fluid 
frequency FFluid = 20 Hz. 
 

 
Fig. 4  Translational displacement in buckling analysis. 
(Buckling factor = 0.361, t’ = 0.0125 and FFluid = 20 Hz.) 
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5. Conclusions 

In this paper we represented analytically the solution 

of fluid structure interaction for a compressible fluid 

flowing through a deformable tube. Similarity solution 

is developed by Flaherty et al. [16] and Theresa et al. 

[17]. According to these findings, the dynamic 

behavior of a flexible tube used in industrial hydraulic 

systems has been performed.  

As future work, the tube wall behavior will be 

processed considering the axial velocity with a large 

interval frequency. This process will allow us to 

determine the rate limit of wall radial displacement in 

order to validate the asymptotic approach of the model 

as small deformations. 
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