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Abstract: We will discuss the interplay between the nonlinear and nonlocal
components of the evolution equations. In the particular case of supercritical mul-
tifractal conservation laws (CL) the asymptotic behavior, as t → ∞, is dictated
by the linearized case. For α < 1 , the equations driven by infinitesimal genera-
tors of Levy α-stable diffusions the solution exhibit shocks (for bounded, odd, and
convex on R+, initial data) which disappear over a finite time. For Lévy α-Linnik
diffusions, 0 < α < 2 , the local behavior is strikingly different. The relevant CLs
display shocks that do not dissipate over time. Asymptotic explicit solutions for
some multifractal CLs are also presented.
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1. Introduction: nonlocal conservation laws. Fractal Burgers equations
of the form

ut(t, x) = Dαu(t, x)−∇ · g(u(t, x)), t > 0, x ∈ Rd, ) < α ≤ 2 (1)

where the fractional Laplacian Dα is defined as the Fourier multiplier operator
Dαu = F−1(−|ξ|α)Fu, have been introduced in Biler, Funaki and Woyczynski (xxx).
The operator is nonlocal and can be rewritten as in integral operator with a singular
kernel. The equations describe a variety of physical phenomena. In particular, for
or α = 2, and g(u) = |u|2, Zeldovich et al. (1982) proposed (1), in combination with
the continuity equation, as a model of the Large Scale Structure of the Universe
(see, Fig.1). It was formalized in Molchanov, Surgailis and Woyczynski (1997), and
Slobodrian (2005) suggested extension of the Large Scale Structure models to the
fractal context. .

Figure 1: A simulation of the Large Scale Structure of the Universe using Zeldovich’s
model.

In this presentation we will concentrate on the power nonlinearities of the form,

g(u) = b · u|u|r−1, r > 1, b ∈ Rd. (2)

2. Critical nonlinearity exponent. The behavior of the solutions of (1)
with nonlinearities of the form (2) depends strongly on the relationship between the
fractional parameter α and the power r of the nonlinearity (see, Biler, Karch , and
Woyczynski (2001). If r > rα, where

rα = 1 +
α− 1

n
, α > 1,

is the critical nonlinearity exponent, we have a weakly nonlinear case, asymptotically
behaving linearly:

‖u(t)− etDαu(0)‖Lp −→ 0, t→∞
where etD

α
is the semigroup of operators with Dα as its infinitesimal generator.
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In the critical case, r = rα, nonlinear and diffusive terms are balanced, and there
exists a specific selfsimilar source solution,

U(x, t) = t−n/αU(xt−1/α, 1)

such that, asymptically, for any solution u,

‖u(t)− U(t)‖Lp −→ 0, t→∞, p ≥ 1.

3. Interacting particle approximation. In the case of quadratic nonlin-
earity (r=2) Jourdain, Mélèard, Woyczynski (2005), have demonstrated that the
equation (1) can be viewed as a hydrodynamic limit of an system of interact-
ing particle driven by the fractional diffusion. More precisely, consider a system
{Xn

i (t) ∈ R, i = 1, . . . , n}, of initially statistically independent particles, with initial
probability distribution u0(x)dx, with their dynamic described, for ε > 0, by the
system of stochastic differential equations

dXn
i (t) = dSαi (t) +

1

2n

∑
j 6=i

δε

(
Xn
i (t)−Xn

j (t)
)
dt, i = 1, . . . , n

where Sαi (t) ∈ SαS, 1 < α < 2, are independent α-stable diffusions with independent
and stationary increments, and δε(x) is a regularized Dirac delta δ(x).

It turns out that the empirical distributions (measure-valued) of the particle
positions,

X̄n(t) ≡ 1

n

n∑
i=1

δ(Xn
i (t))

converge weakly, as n→∞, in probability, to a deterministic measure, with density
uε(x, t) dx, solving the fractional Burgers equations with the quadratic nonlinearity,

(uε)t = Dαu−∇
(

(δε ∗ uε) · uε
)
, uε(x, 0) = u0(x).

4. The importance of α-stable vs. α-Linnik probabability distribu-
tions. In the above introductory sections we concentrated on the diffusions with
α-stable distributions but there are other nonlocal fractional diffusions, such as Lin-
nik distributed diffusions, that are also important, and we’ll discuss nonlocal and
nonlinear evolution equations driven by them as well. Here is a brief comparison of
the α-stable and Linnik probability distributions:

For the symmetric α-stable random variable, S, the characteristic function is of
the form,

φS(ξ;α, c) = EeiξS = exp(−|c ξ|α), c > 0, 0 < α ≤ 2.
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For the symmetric α-Linnik random variable, L,

φL(ξ;α, γ) = EeiξL =
1

1 + |γξ|α
, γ > 0, 0 < α ≤ 2.

For α < 2, both probability distribution display fat, power-type tails. In par-
ticular, in the case of the α-Linnik probability density function (PDF) we have the
asymptotic formula,

fL(x;α, 1) ∼ 1

π

{
Γ(1 + α sin

(πα
2

)}
|x|−(1+α), as x→∞.

Figure 2 shows the graphs of α-stable, and α-Linnik PDF for different values of
parameter α. Note that for α < 1, the α-Linnik PDFs display singularities at
the origiin. This is clearly illustrated in the third graph showing the cumulative
distribution function (CDF) for α-Linnik distributions.
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Figure 2: Stable (top left) and Linnik (top right) PDFs and Linnik CDFs (bottom).

The fundamental importance of the above distribution types is illustrated by the
following two Central Limit Theorems:

Theorem 1. If X1, X2, . . . are independent and identically distributed random
variables then Sn = X1 +X2 + · · ·+Xn converge, as n→∞, in distribution (after
some rescaling ) to an α-stable distribution for some α ∈ (0, 2].
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Related to the “stability” property is the fact that if X1, X2, . . . , Xn are sym-
metric α-stable themselves then Y = n−1/α(X1 + X2 + · · · + Xn) has the same
distribution as each of the X ′is .

But in the case of random summation of random variables the Central Limit
Theorem leads to the α-Linnik distributions:

Theorem 2. If X,X1, X2, . . . are independent and identically distributed ran-
dom variables and N is an independent of X1, X2, . . . random variable with the
geometric distribution, that is,

P(N = n) = p(1− p)n−1, n = 1, 2, . . . , 0 < p < 1,

then the following two statements are equivalent:
(i) X is α-stable with respect to geometric summation, i.e.,

p1/α

N∑
i=1

Xi
d
= X,

(ii) X has the α-Linnik distribution.

5. 1-D Conservation laws driven by multifractal α-stable and α-Linnik
diffusions. Mathematical conservation laws are integro-differential evolution equa-
tions, such as Navier-Stokes and Burgers equations, expressing the physical prin-
ciples of conservation of mass, energy, momentum, enstrophy, etc. We’ll consider
equations of the form,

ut + Lu+ (f(u))x = 0, u = u(t, x), u(0, x) = u0(x), (3)

where L is an infinitesimal generator of the semigroup associated with a Lévy process
(see, e.g. Samorodnitsky and Taqqu (1995)), and f : R 7→ R is a (nonlinear)
function. Such equations are often called fractal, or anomalous conservation laws.

Operators L = limh→0 (Ph − P0)/h

Ptf(x) = Ex(f(X(t)) =

∫
R
f(x+ y)P (X(t) ∈ dy)

are best described via their actions in the Fourier domain (Fourier multipliers). For
a general Lévy processes Xt, we have the identity

F(Lf)(ξ) = −ψ(ξ)Ff(ξ). (4)

The ”densities’ v(t, x) = Ptf(x) satisfies the (generalized) Fokker-Planck evolu-
tion equation

vt = Lv.
In the case of the usual Brownian motion the infinitesimal operator L is just the

classical Laplacian ∆ with the multiplier −|ξ|2.
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For the α-stable process with X(1) ∼ S(α, c),

F(Lf)(ξ) = −|cξ|αFf(ξ), (5)

and the infinitesimal generator i L is called the fractional Laplacian.
And, for the α-Linnik process, X(1) ∼ L(α, γ),

F(Lf)(ξ) = − log(1 + |γξ|α)(Ff(ξ), (6)

By solution to the conservation law

ut + Lu+ (f(u))x = 0, u = u(t, x),

we mean a mild solution of the integral equation,

u(t) = e−tLu0 −
∫ t

0

∇ · e−(t−τ)Lf(u)(τ) dτ,

motivated by the classical Duhamel formula. The existence , uniqueness and other
properties related to the probabilistic properties (propagation of chaos)can be found
in e.g. , Biler, Karch, and Woyczynski (2001) , Karch and Woyczynski (2008), and
Jourdain, Méléard, and Woyczynski (2012).

Multifractal stable operator is defined as follows:

L = −a0∆ +
k∑
j=1

aj(−∆)αj/2, (7)

0 < αj < 2, aj > 0, j = 0, 1, . . . , k, where

((−∆)α/2v) = F−1(|ξ|α(Fv)(ξ)). (8)

Similarly, the multifractal Linnik operator will be understood here as the operator
of the form

L = −a0∆ +
k∑
j=1

ajLαj , (9)

where Lαv = F−1(log(1 + |ξ|α)(Fv)(ξ)). Note that the parabolic regularization
was included in both operators. The following results has been demonstrated in
Gunaratnam and Woyczynski (2015).
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Theorem 3. If u is a solution of the multifractal stable, or Linnik, Cauchy
problem (3) with u0 ∈ L1(R) ∩ L∞(R), and f ∈ C1, is supercritical, i.e.,
lim sups→0 |f(s)|/|s|r <∞, for some

r > max((min(α1, . . . , αk), 1)), (10)

then, for every 1 ≤ p ≤ ∞, the relation

lim
t→∞

t(1−1/p)/α‖u(t)− e−tLu0‖p = 0 (11)

holds. Moreover,∥∥∥etL ∗ u0 −
(∫

R
u0(x) dx

)
· pL(t)

∥∥∥
p
≤ t−(1−1/p)/αη(t),

where pL(t) is the kernel of the operator L in (3).

For the critical case the situation is different !!! The first order asymptotics of
solutions to the Cauchy problem for the Burgers equation is :

t(1−1/p)/2‖u(t)− UM(t)‖p → 0, as t→∞,

where

UM(t, x) = t−1/2e−x
2/4t

(
K(M) +

1

2

∫ x/2
√
t

0

e−ξ
2/4 dξ

)−1

is the, so-called, (selfsimilar !!!) source solution such that u(0, x) = Mδ0. The
long time behavior of solutions to the classical Burgers equation is genuinely non-
linear (not determined by the asymptotics of its linearization) It is due to pre-
cisely matched balancing influence of the regularizing Laplacian and the gradient-
steepening quadratic inertial nonlinearity).

Theorem 4. Let u be a solution of the Cauchy problem (3) with L = (−∆)α/2 +K,
1 < α < 2, and K being an infinitesimal generator of a Lévy process whose symbol k
satisfies

lim
ξ→0

k(ξ)/|ξ|α = 0, (12)

and u0 ∈ L1(Rn),
∫

Rd u0(x) dx = M > 0. Assume

lim
s→0

f(s)
s|s|(α−1)/n

∈ R. (13)

Then, for each 1 ≤ p ≤ ∞,

lim
t→∞

tn(1−1/p)/α‖u(t)− U(t)‖p = 0, (14)

where U = UM is the unique selfsimilar solution of the problem (3) with the initial data
Mδ0; U(t, x) = t−n/αU(1, xt−1/α).
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For multifractal critical conservation laws we have the following result:

Theorem 5. All the statements of the above Theorem 4 are valid for conservation
laws driven by multifractal stable, and multifractal Linnik diffusions, with the infinitesimal
generator with the symbol

ψ(ξ) =
n∑
j=1

aj |ξ|αj , aj > 0, j = 1, 2, . . . , n,

in the stable case,

ψ(ξ) =
n∑
j=1

aj log(1 + |ξ|αj ), aj > 0, j = 1, 2, . . . , n,

in the Linnik case, and α = α∗ ≡ min(α1, . . . , αk).

6. Shock creation, persistence and dissolution for α-stable and α-Linnik
Burgers equation: numerical results. In the case of a quadratic nonlinearity, i.e.,
for the 1-D fractal Burgers equation, Alibaud, Droniou, Vovelle (2007) proved that the
solution of the equation (3) can exhibit shocks (i.e., jump discontinuities) for bounded,
odd on R, and convex on R+ initial data when α < 1. No such effect is present in the
case α > 1 , as in that case the fractional Laplacian has a regularizing effect. More
precisely. If α ∈ (0, 1) then , locally in time, shocks in the initial data are preserved,
and with continuous initial data, shocks do appear, also locally in time, if the initial
data and its derivative are simultaneously large; otherwise no shocks are created.

We will consider three types of odd, decreasing, and convex on the positive
half-line initial conditions:

(i) Riemann-type initial data:

u0(x) =

{
1, for x ≤ 0;

−1, for x > 0,

(ii) Piecewise linear (but continuous) data:

u0(x) = min(1,max(−10x,−1)),

(iii) Smooth, infinitely differentiable data:

u0(x) = (−2/π) arctan(x).

Figures 3-9 show the results of numerical experiements for both, stable and Lin-
nik fractional Burgers equations, for different values of parameter α, and different
initial data types described above. The behavior of the solutions is strikingly differ-
ent in the case of stable and Linnik inifinitesimal generators, and they lead to the
following formal conjectures.
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Figure 3. The solutions of fractional, α = 0.3, Burgers equation (quadratic nonlin-
earity) with Riemann initial condition, at times t = 1, 5, 10, 25. Left: stable. Right:
Linnik.
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Figure 4. The solutions of fractional, α = 0.3, Burgers equation (quadratic
nonlinearity) with continuous but nondifferentiable initial conditions, at times t =
1, 5, 10, 25. Left: stable. Right: Linnik.
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Figure 5. The solutions of fractional, α = 0.3, Burgers equation (quadratic nonlin-
earity) with smooth infinitely differentiable initial conditions, at times t = 1, 5, 10, 25.
Left: stable. Right: Linnik.
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Figure 6. The solutions of fractional, α = 1.25, Burgers equation (quadratic
nonlinearity) with Riemann initial condition, at times t = 1, 5, 10, 25. Left: stable.
Right: Linnik.
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Figure 7. The solutions of fractional, α = 1.25, Burgers equation (quadratic nonlin-
earity) with continuous but nondifferentiable initial condition, at times t = 1, 5, 10, 25.
Left: stable. Right: Linnik.
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Figure 8. The solutions of fractional, α = 1.25, Burgers equation (quadratic nonlin-
earity) with smooth infinitely differentiable initial condition, at times t = 1, 5, 10, 25.
Left: stable. Right: Linnik.
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Figure 9. Smooth initial data: Left: In the 0.3-stable case the shock appears at
T ≈ 1, and dissolves by T ≈ 6. Middle: In the 0.3-Linnik case the shock is again
created and its size initially decreases but it stabilizes at T ≈ 6. Right: In the 1.25-
Linnik case , the shock is again created in finite time, and its size initially decreases,
but it stabilizes at T ≈ 5. In the 1.25-stable case there are no shocks even for the
Riemann initial data.

Conjecture 1: For an α-stable (fractional) conservation laws with α < 1, there
exists tc > 0 (obviously greater than the time t0 of shock creation) such that the
solution becomes continuous (and smooth) for all t > tc.

Conjecture 2. For a solution of the α-Linnik conservation law with α < 1,
there exists a time t0 such that, at t > t0, the shock is created and its size begins
decreasing, but at another time ts > t0 the size of the shock stops decreasing.

Conjecture 3. For a solution of the α-Linnik conservation law with α > 1,
there exists a time t0 such that, at t > t0, the shock is created and its size begins
decreasing, but at another time ts > t0 the size of the shock stops decreasing.

7. Explicit Representations: two-sided case. Given the asymptotical
linearized behavior of the solutions of the multifractional conservation laws in the
supercritical case described in Theorem 3, it is of importance to find precise informa-
tion about solutions of the linearized version. In this section we briefly describe an
explicit solution of the linear evolution equation driven by the infinitesimal generator
for which the Fourier multiplier is of the form:

ψ(~α;~β;~γ)(ω) =
n∑
j=1

−γj|ω|αje
iπ
2
βj sgn(ω). (15)

= F [v(~α;~β;~γ)(t, x);ω]

Note that we permit the general asymmetric stable generators in this case. For more
results in this direction, see Gorska and Woyczynski (2015). For simplicity’s sake ,
take ~γ = (1, . . . , 1), and a specific uniform partition of the unit interval,

∆(n, a) =

{
a

n
,
a+ 1

n
, . . . ,

a+ n− 1

n

}
. (0.1)
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For the biscale problem the solution has the representation,

F−1[ṽα1,β1(t, ω) ṽα2,β2(t, ω);x] (16)

= H−(t,−x)Θ(−x) +H+(t, x)Θ(x),

where
H+(t, x) = H+(α1, β1, α2, β2; t, x)

=
Re

π

∫ ∞
0

e−ixω exp
(
−tωα1e

iπ
2
β1 − tωα2e

iπ
2
β2

)
dω,

and
H−(t, x) = H+(α1,−β1, α2,−β2; t, x).

The function Θ(x) is here the usual Heaviside step function.

Figure 10. Multiscale densities H(α1, β1, α2, β2; t, x) for t = 1. Plot I (red) shows
the density H for α1 = α2 = 2, and β1 = β2 = 0 ; Plot II (blue) corresponds to
α1 = 2, β1 = 0, α2 = 1

2
, and β2 = −1

2
; Plot III (green) corresponds to α1 = 2,

β1 = 0, α2 = 3
2
, and β2 = −1

2
.

For rational αj ∈ (1, 2], and βj, j = 1, 2, such that α1 = l
k
, β1 = l−2a

k
, α2 = p

q
,

and β2 = p−2b
q

, where l, k, p, q, a, and b, are integers, we have

H+(x, t) =
1

πM

∞∑
r=0

lp−1∑
j=0

(−1)r+j

r! j!

xj

t
1+j
M

+(m
M
−1)r

×Γ
(1 + j

M
+
m

M
r
)

sin
[
πu

1 + j

M
− πr

(
v − um

M

)]
×1+m1Flp

(
1,∆(m1,

1+j
M

+ m
M
r)

∆(lp, 1 + j)
; (−1)m1u+lp

mm1
1 xlp

tm1(lp)lp

)
,
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where the generalized hypergeometric function F can be represented in terms of the
following series,

pFq

(
a1, . . . , ap
b1, . . . , bq

;x

)
=
∞∑
n=0

xn

n!

∏p
j=1(aj)n∏q
j=1(bj)n

,

where the upper and lower lists of parameters are denoted by (ap) and (bq), respec-
tively, and (a)n = Γ(a + n)/Γ(a) is the Pochhammer symbol. and where u, and v,
are given by u = a

k
, v = b

q
, for α1 > α2, and u = b

q
, v = a

k
, for α1 < α2. and

m = min(l/k, p/q), M = max(l/k, p/q), m1 = min(kp, lq),M1 = max(kp, lq).
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