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Abstract: Modern information technologies require innovations that are based on modeling, analyzing, designing and finally 
implementing new systems. The whole developing process assumes a well-organized team work of experts including 
engineers, computer scientists, mathematicians, physicist just to mention some of them. Modern infocommunication 
networks are one of the most complex systems where the reliability and efficiency of the components play a very important 
role. The aim of the paper is to present a basic method, approaches in a Markovian level for the analysis of not too 
complicated systems by using M/M/1 Queueing systems. Ours experience and advice are that if it is possible solve the same 
problem in different ways and compare the results. In this paper the concrete problem is expected in the laboratory blood 
tests at the hospital in Tetovo (Republic of Macedonia). Basis for achieving results was done an analysis on basis of a 
questionnaire and is studying the phenomenon for three months. From the data provided is concluded that on average 120 
patient counter attainment of services on that day according to the model M / M / 1 represents Poisson's membership ians 
with parameter λ (arrival/time). But at the time of service pose an exponential iansµ (patient/time) of two parameters. 

 

1. Introduction. Queue and Queue Theory 

Basic mathematical model of the so-called "queue" is built as follows: 
• It is a range of consumers expecting  for service 
• On arrival, each customer must counter while virtual absence of services to release, given priority 

to prior arrivals 
• It is assumed that in the middle of inter-arrival time each customer present  independent random 

variables with similar distribution, while  service time are also independent random variables with 
other  common distribution 

The main interest lies in construction so-called  random process which responds to the number of 
consumers in the queue. As a process is taken to include in the same time they who where served and they 
who are waiting for service. In the case where the waiting-times and service-times are random variables 
with the same distribution, the 0)( >ttX  process is called Markov chain continuous in time.  
The basic mathematical model for- queues runs as follows: there is a succession of customers wanting 
service; on arrival each customer must wait until a server is free, giving priority to earlier arrivals; it is 
assumed that the times between arrivals are independent random variables of the same distribution, and the 
times taken to serve customers are also independent random variables, of some other distribution. 

• The arrival process represent random process with special distribution called inter-arrival 
distribution of consumers )(tA , ) timearrival-inter()( tPtA <=  

• The other variable is called the service time random variable with distribution )(xB , 
)  timeservice()( xPxB <=  

The structure and the discipline of service inform us for the number of consumers in the queue, the 
capacity of the queuing system which represent the maximal number of consumer in the queue including 
they who are served in the meantime. 

The service discipline include rules for serving consumers, they are: 
• FIFO (first in, first out) – who comes first, leave first 
• LIFO (last come, first out) – who comes last, leave first 
• RS (random service) – consumer are served randomly 
• Priority 

For simplicity consider first a single-server system Let %, called traffic intensity, be 
defined as 
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The case when 1> ,  the systems is overloaded since the requests arrive faster than as the  reserved. It 
shows that more server are needed. 
Let )(Aχ  be the characteristic function of the event A , then: 
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Theorem 1: Let 0))(( >ttX  be an ergodic Markov chain and )(tXRA ⊆  is a subset of its state space. Then 
with probability 1 
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where )(Am  and )(Am  denote the mean sojourn time of the chain  in A  and A  during a cycle, 

respectively. The ergodic( stationary, steady-state ) distribution of )(tX  is given with iP . 
If we consider now the customers for a tagged customer the waiting and response times are more important 
than the measures defined above. 
Let us define by jj TW , the waiting, response time of the j -th customer, respectively. Clearly the waiting 
time is the time a customer spends in the queue waiting for service, and response time is the time a 
customer spends in the system, that is 

jjj SWT +=  

where jS  denotes its service time. 
Other characteristic of the system is the queue length, and the number of customers in the system. Let the 
random variables ( ) ( )tNtQ ,  denote the number of customers in the queue, in the system at time t , 
respectively. Clearly, in an m -server system we have 

{ }mtNtQ −= )(,0max)(  
Kendall  described a queuing system as follows: 

DnKmBA /////  
where 

• A - distribution function of the inter-arrival times, 
• B - distribution function of the service times, 
• m - number of servers, 
• K - capacity of the system, the maximum number of customers in the system including 
• the one being serviced, 
• n - population size, number of sources of customers, 
• D - service discipline 

 

2. The M/M/1 Queue 

This is the simplest queue of all. The code means: memory-less inter-arrival times / memory-less service 
times / one server. 
An  M/M/1 queuing system is the simplest non-trivial queue where the requests arrive according to a 
Poisson process with rate λ , that is the inter-arrival times are independent, exponentially distributed 
random variables with parameter µ  

Then the number of customers in the queue 0))(( >ttX evolves as a Markov chain with the following 
diagram: 
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Let )(tN  denote the number of customers in the system at time t  and we shall say that the system is at 
state k if ktN =)( .  
In the next step we represent the transition probabilities during the time h  
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By using the independence assumption the first term is the probability that during h  one customer has 
arrived and no service has been finished. The summation term is the probability that during h at least two 
customers has arrived and at the same time at least one has been serviced. It is not difficult to verify the 
second term is )(hο  due to the property of the Poisson process. Thus 

)()(1, hhhP kk ολ +=+  
In the same way we calculate: 

)()(1, hhhP kk οµ +=−  
for non-neighboring states we have: 

)()(, hhP ji ο=  ,   2≥− jk  

In summary, the introduced random process )(tN  is a birth-death process with rates 

,...2,1,0, == kk λλ and ,...3,2,1, == kk µµ  
• Mean number of customers in the system 
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• Variance 
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• Mean number of waiting customers, mean queue length 
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• Distribution of the response time of a customer 

Before investigating the response we show that in any queuing system where the arrivals are Poisson 
distributed ∏= kk ttP )( where )(tPk denotes the probability that at time t  the system is a in state k , and 
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∏k
t  denotes the probability that an arriving customers find the system in state k  at time t . Let 

),( tttA ∆+ denote the event that an arrival occurs in the interval ),( ttt ∆+ . Then: 
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However, in the case of a Poisson process event ( )tttA ∆+, does not depends on the number of customers 
in the system at time t  and even the time t  is irrespective thus we obtain: 

)),(())(|),(( tttAPktNtttAP ∆+==∆+  
In the end we have: 
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From Earlangdistribution  with parameters ),( µn  we have: 
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Applying this theorem into the total probability, the density of response time of distribution is: 
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And the distribution function 
x

T exF )1(1)( −−−= µ  
From those dates mentioned above we conclude that the response time is just one continuous random 
variable with exponential distribution with parameter )1( −µ , then: 
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• Distribution of the waiting time 
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−−−= µµ  denote the density function of the waiting time. According to the 
definitions mentioned above, is easy to calculate: 

µ
1)(

0

NdxxxfW
x

W == ∫  

2

2

2 ))1((
)(1)()(

ρµ
ρ

µ −
=⇒+= WVarWVarTVar  

The formula which connect those components mentioned above is SWT += , and the formulas which 
represent the components of “Little Formula” or so-called “Little Theorem” , they are: 

QWNT == λλ  
Let us consider a modification of an M=M=1 system in which customers are discouraged when more and 
more requests are present at their arrivals. Let us denote by kb  the probability that a customers joints to the 
systems provided there are k customers in the system at the moment of his arrival. It is easy to see, that the 
number of customers in the system is a birth-death process with birth rates  

,...2,1,0, == kbkk λλ  
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There are various candidates for kb  but we have to find such probabilities which result not too 
complicated formulas for the main performance measures: 

,...2,1,0,
1

1
=

+
= k

k
bk  

And:  ,...2,1,0,
! 0 == kP

k
P

k

k
ρ

 

Next we calculate the average and the variance of some fundamental characteristics modified on 
construction of  M / M / 1 system: 
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3. Some own results 
 
Research and collection of data logging was done in the so-called "Home of Health" in Tetova, into the 
department of  laboratory exactly in the first honor. For achieving basis results was done one  basic 
analysis  of one questionnaire and we takes a look a phenomenon studied  about three months. The model 
that will be created does not represent other thing but one  M / M / 1 queue model, because in laboratory  is 
found only one server. From the data provided it is concluded that on average 120 patients in one day 
arriving in the server and according to the model M / M / 1 that represents one random variable with 
Poisson distribution with parameter )/( hourarrivalλ . Service times represent one random variable 
with exponential distribution with parameter )/( hourpatientµ . 
In one period of  6 hours the laboratory accepts patients, courses there arrives 100 patients for day. Those 
data allow us to evaluate  the parameters of Poisson and Exponential distributions as: 

17
6

100
≈=λ , 20=µ and 85,0

20
17

== . 17
6

100
≈=λ tell us that 17 patients arrives for hour, 

20=µ , 20 patients are served for one hour. 
Next Average number of customers in the system 
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Mean number of waiting customers, mean queue length 
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The response time of a customer (exponential distribution with parameter )1( −µ ) 
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Distribution of the waiting time 
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If we want to calculate the probability that the number of patients waiting for service is bigger than 3, we 
have: 
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If the arrival rate grows for 10%, then 1917
100
1017 =+⋅  patients will arrive in one hour and the 

parameter 19=λ . Other calculations of the components which are mentioned above for one M/M/1 
queue system are the same.  
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