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Abstract: The purpose of ship deperming is to reduce its permanent magnetism to avoid the threat of magnetic sea-mines which 
appeared first in battlefields in World War II and stored by many navies and unanimous groups since then. Magnetic fields for 
deperming are mostly generated by electric current through conductor cable and the intensity of such fields decreases with the distance 
from the cable. In order to impose sufficient field to the ship, the deperming cable is tightly wrapped around the hull of the ship. A cable 
with superconducting material as the conductor is expected to pass high electric current because of its zero-electric resistivity and has 
potential to make deperming coil system more separated from the ship hull. In the previous study, we designed superconducting coil 
system set flat on the seabed for ship deperming by calculating magnetic field generated by the coil based on the characteristic of HTS 
(high temperature superconducting) tape seen in published papers. This time we have kept our design to utilize HTS tape conductors 
that are existing and readily available in the open market. In addition, the limitations of the manufacturing potential and capacity of the 
HTS tape conductor industry have been taken into account for the design. Then we designed the refrigerating system which is to keep 
the superconducting property of the cable materials.  
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1. Introduction  

After the discovery of superconducting phenomenon 
in 1911 by Kammering Onnes [1], its characteristics of 
zero-electric resistivity were expected to lead to many 
attractive applications, such as no loss electric current 
transmission. However, due to the sensitive 
characteristics of the superconducting material 
between its electric, magnetic and temperature 
characteristics, and also due to the low temperature 
requirement for the superconducting phenomenon, 
large-scaled systems were required to incorporate the 
necessary cooling capacity by means of using 
refrigerators. Electric power transmission is among the 
successful trial cases of using HTS cables, with 
extremely low power loss in long distance and 
overcoming refrigeration problem of long cable [2-4]. 
The use of superconducting cables in conjunction with 
high-field magnets has seen its application in multiple 
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areas such as nuclear fusion, material research and 
human diagnosis. This is due to its ultra-low power 
consumption requirements [5, 6]. HTS cable with 
current capacity of 100 kA has been developed for 
fusion reactor magnets [7]. 

Deperming of ship has been operated by many 
navies since World War II and although the magnetic 
fields required is as modest as a few milli-Tesla, in 
order to impose magnetic fields to specimens that are 
physically larger in scale such as ships, a system of a 
larger electric current cable and a power supply with 
higher capacity is needed. By using superconducting 
cable for ship deperming a reduction of the scale of 
power supply is expected even when its refrigeration is 
included. This is made possible with the system we 
designed, the HTS coil system flat on seabed by 
calculating magnetic field inside ship [8]. This design 
enabled that the electric current capacity of one cable is 
100 kA, and one-unit coil of the length is 1,100 m set 
flat at the depth of 12 m. The calculation was based on 
the HTS materials’ characteristic data found in 
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5.3 Power for Refrigeration 

The HTS deperming system using flat coil on seabed 
is only realized by superconducting cables using the 
benefit of its zero-electric resistivity and smaller power 
supply. However, refrigeration system is required for 
better superconducting property. We designed the HTS 
deperming system with liquid nitrogen cooled radiation 
shield and helium gas cooled conductor, and then 
estimated the power consumption for refrigeration.  

According to Watanabe [2], refrigeration system to 
cool their conductor to 70 K consists of two TB 
(Turbo-Brayton) type cryocoolers, two Stirling type 
cryocoolers and three circulation pumps. Cooling 
power of one of the TB types is reported as 2 kW at 66 
K. Other cryocoolers have similar capacities. The 
recent development of TB cryocooler for long power 
transmission line has 10 kW cooling capacity at 70 K 
with power consumption of 170 kW [16].  

Helium gas cooling of the conductor of 1,100 m 
deperming cable to 50 K in a few days needs 23.5 g/s of 
helium gas at 40 K as listed in Table 2. The test results 
of variable temperature helium refrigerator/liquifier for 
nuclear fusion test facility are reported by Hamaguchi 
et al. [17], where the cooling capacity was estimated as 
1.6 kW at 33 g/s with supply and return temperature 40 
K/49.3 K, respectively. With reported power 
consumption of the main compressor to be 239 kW, we 
assume the refrigerator coefficient of performance to 
be 0.03. Overall, the power of helium gas cooling 
system is calculated to be 292 kW. In summary, we 
expect nearly 1 MW power consumption of 
cryocoolers and related equipment for a unit of 
deperming coil to be required. This is comparable to 
the estimated power consumption of the conventional 
deperming system. 

6. Results and Discussion 

The design of the HTS deperming system consists of 
a few units of HTS coil set flat on seabed, cryocooler, 
related equipment and power supply for each coil. 

Maximum current is 100 kA and the length is 1,100 m 
for each coil cable. Our planned conductor of the cable 
consists of four strands of 6 CORC in one cable, 
operated at 50 K. As an optimum heat design of the 
cable, radiation shield is cooled by liquid nitrogen and 
the conductor is cooled by helium gas. Obtaining the 
parameters for heat exchange from the test results of 
1,000 m HTS cable for power transmission line, 
cooling time of the conductor of our deperming coil 
radiation shield is calculated less than 2 hours. Similar 
calculation was conducted for cooling conductor by 
helium gas and cooling time. Duration of a few days 
was the result calculated when the supply of helium gas 
is 9.5 g/s at 40 K. The total power consumption for both 
cryocooler and related equipment was estimated at 
nearly 1 MW, which is comparable to the estimated 
conventional deperming system. 

The advantages of HTS deperming system are easy 
deperming operation without heavy manual load of 
wrapping cable on ship and it is expandable to be used 
for larger ship than the size originally intended to be 
used for when then system is originally designed. 
Comparable power consumption for refrigeration 
system to the power consumption of conventional 
system concludes one of the problems of HTS 
deperming system. Starting from this concept design 
described here, real design of HTS deperming system 
will be proceeded considering costs, maintenance and 
market supply of each equipment. 

One of the other problems of HTS deperming system 
is to design short connection between the supply inlet 
and return outlet of coolant at the cable. This is because 
the conductor forms a loop which is common structure 
of magnets. However, the length between the supply 
port of coolant and return for deperming system, 
careful design of the cooling in this part will be needed.  

7. Conclusions 

We designed a new HTS deperming system for naval 
ship, by first calculating from the magnetic field, and 
next from the refrigeration design. Our designed 
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system is to set flat on seabed, which has easy 
operational load but there are few experimental 
verifications on this status. Considering the market 
supply of HTS conductor, four strands of six CORCs in 
one were selected which is operated at 50 K. Cooling 
system of the conductor was calculated to be realized 
by pressurized helium gas at 40 K with radiation shield 
cooled by liquid nitrogen. The power consumption of 
the cooling system is estimated at nearly 1 MW, which 
is comparable to estimated conventional deperming 
systems. Having cleared one of the main problems of 
HTS deperming systems, we consider proceeding 
further with this project. 
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