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Abstract: The bio-mechanism of the spread of tumor cells in a biological tissue is highly complicated and a potent source of 
controversy. The study of this mechanism is considered partially as a diffusion process for both normal and tumor cells. A 3D 
computer model is introduced to simulate the stochastic growth of living cells in a homogeneous nutrient medium. The model 
follows the cytokinetic rules of living cell division. Cell-cell interactions have been formulated and developed for both types. The 
term BDC (biological diffusion coefficient) is introduced as a new measure to assess the tumor progression in a normal tissue. The 
BDC of normal and tumor cells is calculated as a function of time and loss factor. The results show that the existence of normal cells 
acts as a stochastic resistance to the malignant growth. Moreover, the biological diffusion coefficient of tumor cell increases with 
time explaining the apparent acceleration and penetration of tumor cells through a normal tissue. 
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1. Introduction1
 

Cancer is a complex process, in which genetic 

mutations occurring at a sub-cellular level manifest 

themselves as functional and morphological changes 

at the cellular and tissue scale. The importance of 

interactions between tumor cells and their 

microenvironment is currently of great interest in 

experimental as well as in computational modeling. 

Many scientists have attempted to provide appropriate 

computer models to describe the cell population 

dynamics and tumor growth pattern.  

In a series of publications, Düchting et al. have 

produced several models for cellular growth 

simulation and cell-cell interactions [1-5]. Kansal et al. 

introduced a three-dimensional cellular automaton 

model of the brain tumor which predicted that the 

tumor growth dynamics follows a Gompertz function 

[6, 7].  

Anderson et al. introduced a multi-scale 

mathematical model for cancer invasion, which 

considers cellular and micro-environmental factors 
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simultaneously and interactively [8, 9]. In addition, 

they have also used three different modelling 

approaches at two different spatial scales; they also 

examined the impact of nutrient availability as a 

driving force for tumor invasion [10]. Specifically, 

they investigated how cell metabolism influences the 

tumor growth. They concluded that the tumor 

population is driven by extreme changes in nutrient 

supply during tumor progress. 

Drasdo et al. examined a model in which cells are 

represented as simple particles which are 

parameterized mainly by their physical properties [11]. 

A new mathematical model of tumor spheroid growth 

that incorporates both continuum and cell-level 

descriptions were proposed [12]. 

Monte Carlo methods were also used to study 

tumor proliferation. These techniques were 

implemented by one of us to study the spatial 

considerations of cellular distribution that affects the 

overall asynchronous process of population growth 

[13]. Tuckwell et al. have developed a Monte Carlo 

model to simulate tumor cell propagation in the head 

and the neck squamous cell carcinoma [14]. The 

model aims to eventually provide a tool for radiation 
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oncology that helps in planning patient treatment 

schedules. A cellular automaton model for the growth 

of an avascular tumor on a two-dimensional square 

lattice was presented [15]. The pattern formation and 

the growth of the cell population were investigated by 

using a Monte Carlo simulation.  

A generic 3D multi-cell simulation of a vascular 

tumor growth which described the interaction with the 

tumor and the host tissues was presented by 

Shirinifard [16]. Although their work omitted many 

biological details, but nonetheless, it provided a very 

useful starting point to more realistic modelling.  

The present work accommodates a stochastic 

dynamic three dimensional lattice model describing 

the growth of biological cells in a homogenous 

nutrient media. The model is based on the assumption 

that the most dominant factor that regulates the 

cytokinetics of cellular growth is the presence of 

enough space for division. We considered the problem 

of biological cellular growth as a diffusion process. 

Despite of the differences between the diffusion 

mechanism of living cells and other phases of dead 

matter, yet both are a random walk process. 

Accordingly, a new concept for evaluating the growth 

is indicated by the biological diffusion coefficient 

“BDC (biological diffusion coefficient)”. Hence the 

tumor biological diffusion coefficient is calculated as 

a function of time for different loss factors. A 

computer simulation model for living cells is 

developed that considers the stochastic nature of 

cellular division for both normal and tumor cells.  

2. Cellular Growth Mechanism 

The present model introduces a 3D matrix (200 × 

200 × 200) that simulates a piece of a living tissue 

(Fig. 1). The string of each element of the matrix 

contains data stating the cell type (normal, malignant 

or vacancy), cell phase (proliferative, differentiated, 

resting, or necrosis), and the lifespan of each phase.  

Cell cytokinetic rules of division of cells are 

applied to each element obeying a modified cell cycle 

[13, 17] such that cellular growth is simulated and 

monitored with time in accordance with the following 

rules: 

 A central element is surrounded by 12 

neighbouring sites at approximately equal distances in 

a closed-pack arrangement as shown in Fig. 1. Some 

of these sites could be vacant. 

 The distance between two neighbouring cells 

equals to the average diameter of the cells.  

 The division of a normal cell only occurs if it 

reaches its mitotic phase and finds at least two 

adjacent vacant sites in its immediate vicinity. Two 

vacancies are the appropriate space for division 

without disturbing the surrounding cells. 

 The tumour cells divide regardless of the 

existence of nearby vacancies.  

 The daughter cell pushes the adjacent cells and 

occupies its location.  

 The cyclic time of the tumour cell is shorter than 

the normal one. 

 The nutrient is homogeneously distributed over 

the tissue and the effect of the immune system is 

neutralized.  
 

 
Fig. 1  A schematic representation of an ideal closely 
packed cell distribution showing the nearest neighbors of 
equal distance. 

 The stochastic nature of growth as well as the 

spatial randomization of cells and vacancies is 

employed. 

 The loss factor is simulated by removing a 

certain percentage of the cellular population from the 
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matrix (tissue) and eventually their locations become 

vacant. The spatial distribution of these lost cells is 

taken at random. 

In this work two cases are reported: firstly, Free 

growth is simulated by starting with only one cell in 

the center of the matrix (the tissue) while the rest of 

the sites are vacant. Secondly, competitive growth 

assumes the existence of normal and tumor cells in the 

same tissue. 

3. Biological Diffusion Coefficient 

The spread of cells in a tissue is the result of a 

random occupation of vacancies under a stochastic 

biological mechanism. This process is similar to the 

classical diffusion process in solids. The main 

differences are: firstly, the number of diffusing 

particles in solids is kept constant, while the number 

of living cells varies with time. Secondly, as a 

percentage of cells dying with time (loss factor), the 

creation of vacancies varies dynamically. Thirdly, the 

daughter cell jumps to one of the available vacancies 

conditionally when the mother cell has ended its 

mitotic phase.  

Calculating the BDC, which indicates the cells 

growth rate, allows comparing the results of different 

growth rates for normal and tumor cells. The average 

radius of cellular expansion of the growing cells is 

taken as the rms of the maximum radial distance Ri 

after a certain time t: 

ܴ௔௩௘௥௔௚௘ ൌ ට∑ ࢏ࡾ
૛ࡺ

࢏

ࡺ
           (1) 

where, N is the number of iterations. Hence the 

biological diffusion coefficient BDC is calculated 

accordingly as 

ܥܦܤ ൌ ටோೌೡ೐ೝೌ೒೐
మ

଺௧
           (2) 

The program considers that the average cell cyclic 

time (Tc) as 24 time steps, with 10% standard 

deviation, σ, as illustrated in Table 1. Each cycle 

corresponds to one day. Hence, the number of 

iterations in the program is correlated to time in days 

so that one day corresponds to 24 iterations. 

On the other hand, considering the average cyclic 

time for tumour cells being 12 hours (12 iterations) 

with a standard deviation σ = 10%, the possible 

different timings for the different phases are listed in 

Table 2.  

4. Results and Discussion 

An element that represents a single normal cell is 

assumed to occupy the center of a 3D matrix 

 

Table 1  Assumed normal cells cyclic durations (iterations) with its four cyclic times.  

Tc TG1 TS TG2 TM 

22 10 7 4 1 

23 10 8 4 1 

24 11 8 4 1 

25 12 8 4 1 

26 12 9 4 1 
 

Table 2  Assumed tumour cells cyclic durations (iterations).  

Tc TG1 TS TG2 TM 

10 5 2 2 1 

11 5 3 2 1 

12 6 3 2 1 

13 7 3 2 1 

14 7 4 2 1 
 

(200 × 200 × 200). This virtual cell follows the cytokinetics of division and follows through a number 
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of iterations that simulate the growth for an equivalent 

of 20 days. During its growth the cellular population 

was subjected to loss factors of 0% and 0.01%. 

Fig. 2 shows the increase in the number of normal 

cells with time; as they divide in a homogenous 

medium with all positions that are available for 

division. Apparently, the growth rate follows the 

Gompertzian model with minimal effect of the growth 

factor. Fig. 3 illustrates the variation of the biological 

diffusion coefficient BDC of the normal cells versus 

time. In this case, the average radius of the spherical 

growth was calculated in accordance with Eqs. (1) and 

(2). 

 

 
Fig. 2  Total number N vs. time for the 3D normal free growth for two loss factors. The solid lines represent the best fit of 
the data. 
 

 
Fig. 3  The BDC vs. time for the 3D normal free growth for two loss factors. The solid lines represent the best fit.  
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On the other hand, the free growth of a virtual 

single tumor cell is simulated in a 3D matrix (200 × 

200 × 200) as a function of time (for the equivalent of 

20 days). Fig. 4 shows the increase in the total number 

of cells versus time. The average radius of growth is 

illustrated in Fig. 5. The pattern of growth is 

consistent with the theoretical expectations. 

Despite the fact that the mitotic time of the tumor 

cells is only half of that of the normal cells, the results 

show that within the same period of time the number 

of tumor cells is 100 folds greater than that of the 

normal cells. The increase of the BDC of tumor cells 

with time is depicted in Fig. 6. It is noteworthy that 

unlike the conventional diffusion coefficient, the BDC 

increases drastically. This is attributed to the 

progressive increase in the number of diffusing 

elements and the dynamics of vacancy creation and 

occupation. 

Moreover, we studied the case when the biological 

tissue has initially normal cells occupying almost all  

 
Fig. 4  Total number N vs. time for the 3D tumor free growth.  
 

 
Fig. 5  Ravg vs. time for the 3D tumor free growth.  
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The increase in the average radius of growth versus 

time for the abovementioned three cases is illustrated 

in Fig. 10. The volume of the tumor cells that grows 

freely has an average radius of 39 × 10-6 m. However, 

due to the existence of normal cells the radius drops to 

21 × 10-6 m after 20 days. A reduction of about 30% 

in the size of the tumor is achieved. 

Moreover, the values of the BDC for those three 

cases are plotted versus time in Fig. 11. It is apparent 

that when the tumor cells are left to spread in a 

medium in which all the surroundings are available; 

the spread is three times greater than the case when 

the normal cells surround and resist its propagation. 

The value of BDC is approximately reduced from 19 

× 10-14 to 6 × 10-14 m2/s. 

 

 
Fig. 10  Comparison between the average radius of growth vs. time of the three cases of cellular growth in 3D lattice.  
 

 
Fig. 11  Comparison between the BDC of growth vs. time of the three cases of cellular growth in 3D lattice.  
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5. Conclusions 

This work is a continuation of the consistent efforts 

to put a theoretical and logical understanding of a very 

complicated and mysterious phenomenon of tumor 

growth. 

A new measure of the spread of the malignant cells 

in living tissues is introduced, specifically the 

biological diffusion coefficient “BDC”. Comparing 

the BDC to the diffusion in non-living media such as 

solids and liquids, the present work reaches the 

following conclusions:  

The range of the BDC as measured 

(2×10-14-20×10-14 m2/s) is comparable with that of the 

solid state of some materials [18]. However, the 

biological diffusion mechanism differs considerably 

from that observed in matter. Unlike the conventional 

diffusion mechanism, the number of diffusing 

elements (cells) is time dependent. Also, the creation 

and occupation of vacancies complicate the 

differences between the two mechanisms.  

The birth of a daughter cell is discrete and follows a 

completely different mechanism than the conventional 

diffusion in matter; this is illustrated in the jerkiness 

of the graphs. 

Since the body temperature is constant, the BDC is 

temperature independent. 

From the results obtained in this work, it is obvious 

that the creation of vacancies increases the probability 

of tumor progression. Hence surgical intervention is 

likely to enhance the recurrence of tumor dominance 

which results from the creation of a considerable 

number of neighboring vacancies; any minute number 

of malignant cells left will exploit the existence of 

extra vacancies for their fast division.  

On the other hand, chemotherapy must specifically 

address the mitotic phase of the tumor cells, otherwise 

it will destroy the resisting normal cells and thus 

creating more vacancies available for tumor growth.  

In all cases the calculations of the BDC would act 

as a good measure to assess and examine the 

progression and regression of tumor under the 

differently medical treatments. 
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