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Abstract: The recovery of phosphorus in eutrophic water bodies is important to ensure water and food security, phosphorus 
adsorption in sawdust can be promoted by Fe(III) oxide-hydroxides biofilms. The main objective of this study was to analyze the 
influence of iron addition in sawdust on phosphorus adsorption. The microcosm experiment was performed with water and sediment 
samples from a eutrophic reservoir located in Barra Bonita/SP. Three control flasks (without bags) and 18 others as treatments (with 
two bags filled with sawdust, with or without previous Fe(II) addition) were assembled. The addition of iron did not promote greater 
phosphorus adsorption, the sawdust without previous iron addition had a total phosphorus concentration of 49 μg·P·g-1, while the 
sawdust with previous iron addition had 14.4 μg·P·g-1. The use of sawdust for the remediation of eutrophic water bodies is interesting, 
especially considering the low-cost and possibility of reuse as fertilizer in agriculture. 
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1. Introduction 

Anthropogenic activity due to rapid urbanization 

has been putting water quality at risk and, 

consequently, endangering the aquatic life of different 

worldwide freshwater ecosystems. Several studies 

have evaluated water quality around the world and the 

contribution of phosphorus to eutrophication of 

aquatic ecosystems and groundwater contamination 

[1-5]. 

This problem in lakes and reservoirs may have 

negative effects on the economy and the environment. 

The main causes are the intensive use of phosphate 

fertilizers and the inadequate disposal of industrial and 

urban sewage in aquatic bodies. Eutrophication is a 

process of degradation of lakes and other natural water 

reservoirs generated mainly by excess nutrients, in 

particular phosphorus and nitrogen [6-10]. 

                                                           
Corresponding author: Pedro Sergio Fadini, Ph.D., main 

research fields: emergent contaminants in water and 
biogeochemistry of mercury. 

 
 

The behavior of phosphorous in aquatic ecosystems 

is often associated with sediments characteristics, this 

compartment can act as a sink or source of nutrients in 

relationship to the water column. Sediment that 

presents a reddish-brown color sometimes indicates 

possibly the presence of biogenic iron oxides, able to 

adsorb phosphorus, in a mechanism where adsorption 

is promoted by an Fe(III) oxide-hydroxides biofilm 

resulting from the oxidation of Fe(II) by 

iron-oxidizing bacteria of the genus Leptothrix [11, 

12]. 

Despite the scenario of eutrophication in water 

bodies, there is great concern about the depletion of 

phosphate rock, which can affect global food security. 

Some studies suggest that phosphate deposits may be 

depleted in the next 20-30 years, other recent 

estimates suggest that there will be resources for the 

next 100 years [13, 14]. Phosphorus is an essential 

nutrient for plant growth and development, so its low 

availability in soil can restrict crop production. The 

overall maintenance of food production depends on 
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the availability and accessibility of phosphorus 

[15-17]. 

The study of phosphorus recovery techniques in 

eutrophic aquatic ecosystems is very important 

considering water scarcity and food production. The 

use of sawdust for removal of this excess from 

eutrophic systems for further use as soil fertilizer is a 

possible solution to ensure water and food security 

[18-20]. 

In eutrophic water bodies, phosphorus can be 

recovered by several techniques, but none has the 

objective of reusing this essential nutrient for 

agriculture. These techniques involve the chemical 

treatment with aluminum or iron salts, injections of 

nitrate in sediment, injections of aluminum chloride 

into the sediment, aluminum hydroxide, 

zeolite/hydrous aluminum oxide and modified clay 

minerals [21-25]. 

In 2016, Brazil had 7.84 million hectares of planted 

forest area, of which 1.6 million ha were of the Pinus 

species [26]. Since the sawdust is generated in large 

volumes by timber industry as organic waste, its use is 

of low cost and easy access. The great advantage of 

this technique for phosphorus adsorption is the 

possible reuse of this element as a fertilizer in 

agriculture. 

The phosphorus adsorption by sawdust is based on 

the formation of Fe(III) oxide-hydroxides, that have a 

high phosphorus adsorption capacity. These are 

compounds of biogenic origin and are formed in the 

water column and in the surface sediments by 

iron-oxidizing bacteria [9, 10]. 

This study aimed to verify if the addition of an 

Fe(II) salt in the sawdust can improve the phosphorus 

adsorption, since the Fe(III) oxide-hydroxides biofilm 

can adsorb phosphorus. 

2. Materials and Methods 

2.1 Study Site 

Barra Bonita reservoir was built to produce 

hydroelectricity, however, over the years it has been 

used for several purposes, among them leisure, fish 

production, irrigation, navigation and urban water 

supply. The reservoir is located in Barra Bonita city, 

São Paulo state, with geographic coordinates (SE 

Brazil, 21°54’20’’-23°57’26’’ S; 

46°39’27’’-48°34’52’’ W). The volume of reservoir is 

3.62 × 109 m3 with total area of 310 km2 [27]. 

The Barra Bonita reservoir was selected considering 

that this region receives water coming from two areas, 

the metropolitan region of São Paulo and the 

metropolitan region of Campinas, via the Tietê river 

basin and all, have serious sanitation problems. The 

trophic state of the Barra Bonita reservoir has been 

reported in several studies [28-31]. 

2.2 Sample Collection 

A Van Dorn bottle was used to collect water 

samples from the sediment-water column interface 

and surface sediment samples were collected with a 

stainless steel Birge-Ekman grab sampler. In the 

laboratory, the interstitial water was extracted from 

the sediment by a centrifugation procedure described 

by Mozeto, A. A., et al. [32]. Water quality 

parameters such as pH, redox potential, turbidity, DO 

(Dissolved Oxygen) and conductivity in water 

samples were determined using a multi-parameter 

probe (YSI 6820 V2-2). 

2.3 Bags with Sawdust 

The polyester bags (7 × 6 cm) filled with 10 g of 

dry biosorbent were immersed in the water column in 

the 18 treatment microcosms. The sawdust used as 

biosorbent was obtained from Pinus species trees. 

2.4 Microcosm Experiments 

The experiments were conducted in 5 L glass jars 

that were assembled with water and sediment, both 

collected at the study site. The microcosm flasks were 

filled with 1 kg of sediment and 4 L of water. After 12 

hours of stabilization, the bags with biosorbent were 

placed in the treatment microcosms 4 cm above the 
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surface of the sediment. The control (water and 

sediment without bags) and treatment (water and 

sediment with bags) microcosms were stored at 22 ± 

2 °C in a temperature-controlled room. 

Experiments were conducted up to 240 days. 

Among the 21 flasks, three were used as controls 

(disassembled only at the end of the experiment), nine 

served as treatment microcosms, containing bags with 

iron previously added in the sawdust and nine as 

treatment microcosms, with bags filled with sawdust 

without iron addition. In the experiments using 

previous addition of iron to the sawdust, the spiked 

amount was 10 mg·Fe·g-1 sawdust. In this procedure, 

after the iron solution addition, the sawdust was dried 

before being placed inside the bags. 

2.5 Physicochemical Parameters 

In the laboratory, the pH and redox potential were 

measured by a Digimed DM-2P pH meter. A YSI 

oximeter was used to measure dissolved oxygen. 

Turbidity was evaluated using a HACH-2100P 

portable turbidimeter. 

2.6 Water Chemical Analyses 

The RSP (Reactive Soluble Phosphorus), sulfate 

and Fe(II) were determined in the water samples, 

before analysis the water samples were filtered 

through cellulose acetate membranes, 0.45 µm 

porosity. In the analysis of reactive soluble 

phosphorus the ascorbic acid method described by 

APHA was used, allowing a LOQ (Limit of 

Quantification) of 2.4 ug·L-1. Sulfate concentration 

was determined by the turbidity method, using a 

HACH DR 2010 spectrophotometer, and the LOQ 

was 8.9 mg·L-1. The phenantroline method was used 

for determination of the Fe(II) concentration, for 

which the LOQ was 0.011 mg·L-1 [33]. 

2.7 Sediment Granulometric and Chemical Analyses 

Granulometric analysis was conducted according to 

ABNT recommendations [34]. The total carbon, total 

nitrogen and total sulfur were measured using a Fisons 

EA1108 Elemental Analyzer. Total phosphorus was 

determined using the method described by Andersen, 

J. M. [35]. The LOQ of total P was 1.7 mg·kg-1. 

Cadmium, chromium, copper, iron, nickel and zinc 

metals were determined according to the USEPA 

3050B method [36]. The concentrations were detected 

by Plasma emission spectrometry (ICP OES) using an 

iCAP 6000 instrument (Thermo Fischer Scientific, 

Waltham, MA, USA). The LOQs were: Cd—0.36, 

Cr—1.77, Cu—0.14, Fe—13.50, Ni—0.40, Pb—1.79 

and Zn—0.37 mg·kg-1 (dry weight). 

2.8 Sawdust Chemical Analyses 

Total phosphorus concentration was determined 

after the persulfate digestion method using the 

ascorbic acid method, with an LOQ of 4.4 µg·g-1 [33]. 

The metals were determined according to the 3050B 

method [36], and LOQs were Cd—0.36, Cr—1.77, 

Cu—0.14, Fe—13.50, Ni—0.40, Pb—1.79 and 

Zn—0.37 mg·kg-1 (dry weight). 

2.9 Statistical Analysis 

ANOVA (Analysis of Variance) was used to find 

significant differences among the means and to 

determine whether the treatment influenced in any 

response variables. 

3. Results and Discussion 

3.1 Physicochemical Parameters Determined in Field 

Parameters determined for water samples are 

presented in Table 1. 
 

Table 1  Parameters determined in situ in water collected 
at Barra Bonita reservoir. 

Parameters Water 

Depth (m) 21.0 

pH 6.5 

EH (mV) -185 

Conductivity (µS·cm-1) 291 

Dissolved oxygen (mg·L-1) 0.14 

Turbidity (NTU) 39 

Temperature (°C) 27.0 
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Fig. 6  Reactive soluble phosphorus concentrations in 
water column and interstitial water. 
 

adsorption is promoted by an Fe(III) oxide-hydroxides 

biofilm resulting from the oxidation of Fe(II) [9]. 

The treatment with the sawdust containing iron 

caused a significant increase (p < 0.05) in Fe(II) 

concentration in the interstitial water, and the higher 

concentration of iron, compared to the values in the 

water column is justified by the high amount of iron 

present in the sediments. 

The reactive soluble phosphorus concentration in 

the water column and interstitial water are presented 

in Fig. 6. 

A higher reactive soluble phosphorus concentration 

was found in the water column and in the interstitial 

water of the treatment microcosms without Fe, 

evidencing a greater internal flow in these microcosms. 

Statistical analyzes showed that treatment with iron 

previously added to sawdust promoted significant 

changes (p < 0.05) in the concentration of RSP present 

in the water column. For the interstitial water samples, 

no significant change (p < 0.05) was provoked by the 

treatments. 

3.4 Total Phosphorus and Metals in Sediment 

Fig. 7 shows TP (Total Phosphorus) concentrations 

in sediment. 

The high TP values found in the sediments of the 

reservoir evidenced the eutrophication of the reservoir 

studied. The total phosphorus concentration in the 

sediment was not significantly (p < 0.05) influenced 

by the proposed treatments. 

Furthermore, even after the entire incubation period, 

the sediment continued to present a large phosphorus 

stock, thus evidencing that this environmental 

compartment could be a source of nutrients for the 

water column for a long time, even after the reduction 

of external nutrient sources. 

Metal concentrations in sediment of the microcosm 

experiments are presented in Table 3. 

The nickel, cadmium, chromium, lead, zinc and 

copper metals had concentration values that did not 

change significantly (p < 0.05), so these metal 

concentrations in the sediment are not influenced by 

the treatment proposed. In treatment microcosms, the 

concentrations vary between 45.11 and 47.42 mg·kg-1 

for Ni; 1.42 and 1.44 mg·kg-1 for Cd; 35.75 and 35.81 

mg·kg-1 for Cr; 15.86 and 15.97 mg·kg-1 for Pb; 0.018 

and 0.044 mg·kg-1 for Zn and 49.92 and 50.23 mg·kg-1 

for Cu. 
 

 
Fig. 7  Total phosphorus concentrations in sediment 
samples. 
 

Table 3  Metal concentrations in sediment of microcosm 
experiments. 

Metals 
(mg·kg-1 ± SD)

Control 
Treatment 

with Fe 
Treatment
without Fe

Cd 
1.47 

± 0.03 
1.42 

± 0.04 
1.44 

± 0.02 

Cr 
34.82 
± 0.96 

35.75 
± 0.63 

35.81 
± 0.40 

Cu 
51.06 
± 0.80 

49.92 
± 0.46 

50.23 
± 0.06 

Ni 
46.86 
± 1.19 

47.11 
± 0.57 

47.42 
± 0.03 

Pb 
15.61 
± 0.23 

15.86 
± 0.08 

15.97 
± 0.24 

Zn < 0.37 < 0.37 < 0.37 

Fe 
53.81 
± 2.24 

52.46 
± 1.64 

48.19 
± 2.01 

SD: standard deviation standard deviation of replicates. 
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The concentrations of iron varied significantly, in 

treatment microcosms the concentrations vary 

between 48.19 and 52.46 mg·kg-1. The concentrations 

in the treatment with previous iron addition were 

significantly higher (p < 0.05) than concentrations in 

the treatment microcosms without iron. 

The metal concentrations determined in sediments 

were compared with the GVSQ (Guide Values of 

Sediment Quality) established by the CCME 

(Canadian Council of Ministers of the Environment) 

[37]. The TEL (Threshold Effect Level) is related to 

the minimal effect range within which adverse effects 

rarely occur, or are not expected. The concentrations 

above the PEL (Probable Effect Level) define the 

level above which adverse effects are expected to 

frequently occur. The TEL and PEL presented in 

Table 4 were used as the GVSQ. 

Observing Table 3, cadmium and copper metal 

concentrations for control and treatment microcosms 

were above the TEL values, the high Cu 

concentrations can be related to the copper sulfate 

addition in the water column used to control 

cyanobacterial blooms. 

The Ni metal concentration values in both 

microcosm experiments were above the PEL. 

Factories that manufacture stainless steel and other 

alloys, nickel-cadmium batteries and electrical 

equipment can be some probable sources of this metal 

[38]. Cr, Pb and Zn metals did not show 

concentrations higher than the threshold effect level 

and probable effect level values. 

3.5 Metals and Phosphorus in Biosorbent 

Metal concentrations determined in sawdust are 

presented in Table 5. 

There is no legislation concerning the disposal of 

sawdust in soils, so the CONAMA No. 375/2006 was 

used to compare the results [39]. This is a Brazilian 

resolution, that defines criteria and procedures for 

agriculture use of sewage sludge generated in 

wastewater treatment plants, was used to evaluate the  

Table 4  Values of TEL and PEL. 

Metal TEL PEL 

Pb 35 91.3 

Ni 18 36 

Cr 37.3 90 

Cu 35.7 197 

Zn 123 315 

Cd 0.6 3.5 
 

Table 5  Metal concentrations determined in sawdust. 

 
In natura With Fe Without Fe 

CONAMA 
No. 375/2006

 Concentrations (mg·kg-1 ± SD, dry weight) 

Cd < 0.36 < 0.36 < 0.36 39 

Cr < 1.77 < 1.77 < 1.77 1,000 

Cu
1.24 

± 0.07 
1.57 

± 0.25 
0.96 

± 0.23 
1,500 

Ni 
0.77 

± 0.06 
3.88 

± 1.38 
1.20 

± 0.12 
420 

Pb < 1.79 < 1.79 < 1.79 2,800 

Zn
5.47 

± 0.78 
11.67 
± 1.05 

4.73 
± 0.53 

300 

Fe 
157.31 
± 27.30 

2.16 
±147 

255.49 
± 47.14 

- 

SD: standard deviation of replicates. 
In natura: sawdust that did not have contact with reservoir 
water. 
 

possibility of biosorbent application as a possible 

fertilizer. 

Analyzing Table 5, cadmium, chromium and lead 

metals had concentrations lower than the LOQ values. 

Copper and nickel were determined in the biosorbent, 

but there was no significant difference (p < 0.05) 

between the adsorbed concentrations, so these metals 

are from in natura sawdust. However, it was possible 

to observe that for the Zn concentration there was a 

significant increase (p < 0.05) in the previous iron 

addition experiments, the concentrations of adsorbed 

zinc in the sawdust was 11.67 mg·kg-1. The iron metal 

shows a significantly increasing concentration (p < 

0.05) in both treatments. 

All metals were at concentrations below the guide 

values established by the CONAMA legislation, so 

the sawdust can be used as a fertilizer without 

restriction in relation the analyzed metals.  

Total phosphorus adsorbed in the biosorbent is 

presented in Fig. 8. 
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Fig. 8  Total phosphorus determined in the sawdust. 
 

Upon analysis, it was possible to verify that the 

addition of iron in the sawdust did not promote higher 

phosphorus adsorption, since the sawdust without 

previous iron addition contained 49 μg·P·g-1 in the 

period of 240 days. There was no significant 

difference (p < 0.05) between the control (15.8 μg·g-1) 

and the treatment (14.4 μg·g-1) containing sawdust 

with previously added iron. 

Considering a mass balance where the maximum 

phosphorus absorbed by sawdust was 49 µg·P·g-1, the 

total volume of the reservoir (3.6 × 1012 L), a mean 

concentration of 30 µg·P-PO4
3-·L-1 in the water 

column, Barra Bonita reservoir has a stock of 108 tons 

of phosphorus in the water column. Such a quantity 

would require the use of 2.2 × 106 tons of sawdust for 

the total removal of all the P present in the water 

column. The values do not show an immediate 

viability of this remediation technique, however, due 

to water scarcity and depletion of phosphate rock 

deposits, the use of sawdust can be considered through 

an increase in phosphorus adsorption. 

Pantano, G., et al. [20] performed a similar study in 

Brazil, and the amount of phosphorus retained reached 

a maximum of 31.9 ug·g-1 at 159 days. It is possible 

that a longer exposure time of the biosorbent in the 

water column favors a higher phosphorus adsorption 

rate. 

Takeda, I., et al. [19] were pioneers in phosphorus 

adsorption studies using sawdust, the adsorption 

varied between 146 and 251 ug·g-1 depending on the 

mass of adsorbent used in the bag. 

In another study, Benyoucef, S. and Armani, M. [40] 

performed phosphorus adsorption experiments using 

sawdust in the laboratory with a synthetic solution. 

Several pre-treatments to the biosorbent performed by 

Benyoucef, S. [40] and collaborators were made 

which can hamper implementation of this technology 

on a large scale. 

4. Conclusion 

Experiments have shown that previous addition of 

iron is not necessary in the way of increased 

phosphorus adsorption in sawdust. This remark, 

coupled with the low-cost, sawdust abundance, 

non-adsorption of the studied toxic metals and mainly 

the possibility of reuse of the biosorbent in agriculture 

could be advantageous compared to other techniques 

for eutrophic environment remediation. 
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