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Abstract: The paper addresses the formulation of rate equations, via objective time derivatives, within continuum physics. The 
concept of objectivity is reviewed and distinction is made with material frame-indifference whose meaning is restricted to the 
invariance of the balance equations relative to Galilean frames. Objective time derivatives are defined to leave the tensor character of 
the appropriate field invariant within the set of Euclidean frames. Rate equations are required to involve objective time derivatives 
and to be consistent with the second law of thermodynamics. Here the general structure of objective time derivatives is established 
and the known derivatives of the physical literature are shown to be particular cases. Next, to fix ideas, a rate equation is considered 
for the model of heat conduction via a generalization of the Maxwell-Cattaneo equation with higher-order gradients as in the 
Guyer-Krumhansl equation. The thermodynamic restrictions are investigated and the expected effects, of the selected derivative of 
the heat flux, on the stress tensor are derived. 
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1 Introduction 

Evolution (or rate) equations are commonly used 

for modelling material behaviours such as memory 

and/or delay effects. Usually they are expressed by 

relating the time derivative of proper fields to a set of 

state variables. As any constitutive equation, rate 

equations are required to comply with the principles of 

continuum physics and hence with objectivity (frame 

indifference) and consistency with the second law of 

thermodynamics. In this sense we need to clarify the 

general structure of objective time derivatives and to 

investigate how to establish the compatibility, of the 

whole set of constitutive equations, with the second 

law of thermodynamics. 

The physical literature shows a number of contexts 

where the mathematical modeling is based on rate 

equations. Rheological models motivate rate equations 

for the stress tensor T in terms of the infinitesimal 

strain E or the stretching D in the form [1] 

߬લሶ    લ ൌ  ݇۳ 

                                                           
Corresponding author: Angelo Morro, professor, research 

field: continuum physics.  

ሶ܂߬   ൌ ܂   ݇ଵ۳   ݇ଶ۳ሶ  
ሶ܂߬   ൌ ܂   2u൫۲   ξ۲ሶ ൯ 

the superposed dot denoting the total (or material) 

time derivative. These equations are referred to as 

Maxwell model, standard or Wiechert model, and 

Jeffreys model. They are examples of rate equations 

of the form 

ሶ܂  ൌ ,܂ሺ܂  ۳, … ሻ 

the dots representing additional variables. 

In nonequilibrium thermodynamics the evolution of 

appropriate fields is governed by rate equations. 

Perhaps the best known rate equation in 

thermodynamics is the Maxwell-Cattaneo equation for 

the heat flux q, 

ሶܙ߬  ൌ ܙ   െ (1)            ߢ 

where g is the temperature gradient [2]. 

The evolution of the polarization P in ferroelectrets 

and that of the magnetization M in ferromagnets is 

described by a variety of rate equations. For instance, 

the well known Landau-Lifshitz-Gilbert equation 

describes the evolution of M in the form [3] 

ሶۻ  ൌ  െγۻ ൈ  ۶ୣ  െ  λۻ ൈ ሺۻ ൈ  ۶ୣሻ 

where Heff is the effective magnetic field. 
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A drawback of these equations is that the time 

derivative is not objective (or frame indifferent) [4]. 

Since these equations are considered as physically 

sound, it is natural to ask about the improvements of 

the time derivative so that the resulting equations 

prove to be objective. A further question arises about 

the thermodynamic consistency of the (objective) rate 

equations [5]. Both objectivity of the rate equations 

and compatibility with thermodynamics are the 

subject of this paper. 

First the concept of objectivity is reviewed and 

distinction is made with material frame-indifference 

whose meaning is restricted to the invariance of the 

balance equations relative to Galilean frames. Next the 

general structure of objective time derivatives is 

established and the known derivatives of the literature 

are shown to be particular cases. 

Owing to the kinematical fields occurring in the 

time derivative, the chosen time derivative may induce 

effects on the constitutive equation for the stress 

tensor. For definiteness, in this paper we address 

attention to a generalization of Eq. (1) with higher 

order gradients as in the Guyer-Krumhansl equation 

[6]. The thermodynamic restrictions are investigated 

and the expected effects, of the selected derivative of 

q, on the stress tensor are derived. 

Notation. We consider a body occupying a 

time-dependent three-dimensional region ࣬௧ . The 

points of the body are labelled by their position vector 

X in a reference configuration ࣬ while x = X(X, t) is 

the position vector of X in ࣬௧, at time t. Throughout 

we use Cartesian components. We denote by F the 

deformation gradient, relative to ࣬, ࣻܨ   ൌ  ߲xxࣻ , 

and by C = ۴்۴  the Cauchy-Green tensor, the 

superscript T meaning transpose. Moreover, v is the 

velocity, L is the velocity gradient, ࣻܮढ़  ൌ  ߲ईढ़߭ࣻ, D is 

the stretching tensor and W is the spin tensor so that L 

= D + W. Also,  is the gradient in the current 

configuration. We let ߠ be the absolute temperature 

and g = ߠ is the temperature gradient. Also, Sym is 

the set of symmetric tensors. For any vector, u say, 

 .ଶ stands for the inner product u · uܝ

2. Objectivity and Material 
Frame-Indifference 

It is asserted as a fundamental principle of classical 

physics that material properties are independent of the 

frame of reference or observer. Often, in the literature, 

this principle is referred to as the principle of material 

frame-indifference1 ([7], §19) though objectivity and 

material frame-indifference are regarded as synonyms. 

Earlier Noll [8] used the term principle of 

objectivity to express that processes related by a 

change of frame must be compatible with the same 

constitutive equation. Accordingly, the material 

properties of a body should not depend on the 

observer, no matter how he moves. In Ref. [7] (§19) 

the statement is referred to as principle of material 

frame indifference. Seemingly it was Truesdell that 

preferred the use of frame indifference in that observer 

might be easily misinterpreted whereas frame of 

reference is a much better term [9]. 

Let ࣠ כ࣠ ,  be two frames of reference. The 

position vectors x and כܠ of a point, relative to ࣠ 

and ࣠כ, are related by the Euclidean transformation1 

(see [7], §19) 

כܠ  ൌ ሻݐሺ܋     (2)          ܠሻݐሺۿ 

where ܋ሺݐሻ is an arbitrary vector-valued function of 

א ݐ  Թ  while ۿሺݐሻ  is a proper orthogonal tensor 

function, det Q = 1. Hence Q represents a rotation. 

Galilean frames are related by a linear function ܋ሺݐሻ 

and a constant rotation Q. 

Conceptually it seems convenient to have two 

concepts at our disposal by letting objectivity and 

material frame-indifference be two distinct concepts. 

This view is not new in the literature (see, e.g., [10, 

11]) and is made formal as follows. 

The balance equations are invariant relative to 

Galilean frames and hence the material properties 

should be the same in all of the set of Galilean frames. 

Accordingly we expect that, e.g., stress and heat flux 

                                                           
1 For simplicity we let כݐ  ൌ  .ݐ 
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are frame independent within the set of Galilean 

frames but they might be frame dependent relative to 

the set of non-inertial (Euclidean) frames. This point 

is investigated, e.g., in Ref. [12] within a kinetic 

theory approach and the conclusion is that stress and 

heat flux are frame dependent because the 

corresponding relations contain the spin tensor W. 

Since the material properties may be affected by the 

motion of the body, it seems natural to assume that 

material properties are independent of the frame of 

reference within the set of Galilean frames. This 

might be the content of material frame-indifference. 

We then confine objectivity to the constitutive 

equations viewed as the mathematical description of 

material behaviour. As a statement of the principle of 

objectivity we assume that the constitutive equations 

are form-invariant for any change of frame. To make 

it formal the content of objectivity, we let ࣠, ࣠כ be 

Euclidean frames related by Eq. (2). The vector u and 

the tensors T, K are transformed into 

כܝ  ൌ כ܂ ,ܝۿ   ൌ כ۹ ,்ۿ܂ۿ   ൌ  ்ۿ۹ۿ 

while scalars, say ߶ , remain unchanged. If 

લ ሺ߶, ,ܝ ۹ሻ  is the constitutive equation for T the 

objectivity requires that 

כ܂  ൌ ,߶ሺ܂ۿ  ,ܝ ۹ሻ்ۿ  ൌ ,߶ሺ܂  ,ܝۿ ሻ்ۿ۹ۿ  

ൌ ,כ߶ሺ܂  ,כܝ  ሻכ۹

and the like for vector functions, for any proper 

orthogonal tensor function Q(t). 

If both objectivity and material frame-indifference 

are related to Euclidean frames then we might find 

that some material properties are objective but 

frame-dependent [13]. 

3. Objective Time Derivatives 

For any function f (X, t), where א ܆  ࣬  and 

א ݐ  Թ, we let 

݂ሶ  ൌ  ߲௧݂ሺ܆,  .ሻݐ

If, instead, ݂ ൌ  መ݂ሺܠ, ,ሻݐ א ܠ  ࣬௧, then 

݂ሶ  ൌ  ߲௧
መ݂    ܞ    መ݂ . 

Throughout a superposed dot denotes the material 

time derivative, that is the derivative with X fixed. 

We denote by ષ the spin tensor associated with Q, 

ષ  ሶۿ  ்ۿ  ൌ  െષ். 

Let K be any tensor. The values ۹כ in ࣠כ and K 

in ࣠ are related by 

כ۹  ൌ  .்ۿ۹ۿ 

We let K = K(X, t), ሺ܆, ሻݐ א  ࣬ ൈ Թ, so that 

തതതത ሶכ۹ ൌ  ષ۹כ   ષ்כ۹    ۹ሶۿ   .்ۿ

Accordingly ۹ሶ  is not a tensor relative to Euclidean 

frames. Likewise, if u is a vector function, on ࣬ ൈ Թ, 

then 

כܝ  ൌ  ܝۿ 

and hence 

തതത ሶכܝ  ൌ  ષכܝ   ሶܝۿ  . 
A derivation [14, 15] ߲ of a vector algebra ࣰ , 

over Թ, is a rule ߲   ࣰ ՜  ࣰ such that, for every ܝ, 

w א  ࣰ and α, β א  Թ, 

߲ሺαܝ   βܟ ሻ  ൌ  ܝ߲ߙ   β߲ܟ, 

߲ሺܝ ٔ ሻܟ   ൌ  ሺ߲ܝሻ  ٔ  ܟ   .ሻܟሺ߲ ٔ ܝ 

These conditions are referred to as the linearity and 

the Leibnitz rule. 

For any vector u the derivative ߲ܝ is taken in the 

form 

ൌ ܝ߲ ሶܝ   െ  (3)             ܝۯ 

where ۯ   ࣰ ՜  ࣰ  is a function on ࣬ ൈ Թ . 

Accordingly, 

߲ሺܝ ٔ ሻܟ   ൌ  ሺ߲ܝሻ  ٔ  ܟ  ሻܟሺ߲ ٔ ܝ   ൌ

 ሺܝሶ  െ ሻܝۯ   ٔ  ܟ  ሶܟሺ ٔ ܝ   െ  Aܟሻ. 

A derivative ߲ܝ is objective if, under the change of 

frame ࣠ ՜   of Eq. (2), it is כ ࣠ 

ൌ ܝ߲ۿ  ሺ߲ܝሻ כ  ൌ  ߲ሺכܝሻ  ൌ  ߲ሺܝۿሻ , א ܝ  ࣰ . 

The following statement characterizes the set of 

functions A guaranteeing the objectivity of Eq. (3). 

Proposition 1. The derivative (3) of a vector u is 

objective if and only if 

כۯ  ൌ ்ۿۯۿ     ષ           (4) 

Proof. If ߲ܝ ൌ ሶܝ   –  then objectivity requires ܝۯ 

that 

തതതത ሶܝۿ  െ ܝۿכۯ  ൌ כܝ߲   ൌ  ሺ߲ܝሻ כ  ൌ ሶܝሺۿ   െ  .ሻܝۯ 
Hence we have 

ሶۿ െ ܝ ൌ ܝۿ כۯ   െܝۯۿ . 
The arbitrariness of u implies that 
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ൌ ۿכۯ  ۯۿ  ሶۿ  . 
Right multiplication by ்ۿ  gives Eq. (4). 

Conversely, by Eq. (4), 

തതത ሶכܝ  െ כܝכۯ   ൌ തതതത ሶܝۿ   െ – ܝۿ்ۿۯۿ   ષܝۿ 
ൌ ሶܝሺۿ   െ  ሻܝۯ 

whence the conclusion ߲ሺכܝሻ  ൌ  ሺ߲ܝሻ כ.        □ 

We now examine the derivative of a dyadic product 

ٔ ܝ  ,ܟ 

߲ሺܝ ٔ ሻܞ   ൌ  
ሺܝሶ  െ ٔ ሻܝۯ   ܟ  ሶܟሺ ٔ  ܝ   െ  ሻ.    (5)ܟۯ 

Proposition 2. The derivative (5) is objective if and 

only if (4) holds. 

Proof. The objectivity requirement  

ሾ߲ሺܝ ٔ כሻሿܟ   ൌ  ߲ሺכܝ  ٔ  ሻ   (6)כܟ 

gives 

ሶܝሺۿ  െ ٔ ሻܝۯ   ܟۿ  ٔ ܝۿ  ሶܟሺۿ   െ ሻܟۯ   ൌ

 ቀܝۿതതതത ሶ  െ ٔ ቁܝۿכۯ   ܟۿ  തതതതത ሶܟۿቀ ٔ ܝۿ   െ   ቁܟۿכۯ 

whence 

ሶۿൣ – ܝ  ܝۿכۯ ൧ܝۯۿ   ٔ   ܟۿ 

 ܝۿ ٔ ሶۿൣ  െ ܟ  ܟۿכۯ  ൧ܟۯۿ   ൌ 0. 

By the arbitrariness of u and w this condition holds 

if 

ሶۿ െ ܝ ܝۿכۯ   ൌ ܝۯۿ  0, 

whence Eq. (4) follows. Conversely, if Eq. (4) holds 

then the objectivity requirement (6) is satisfied.   □ 

The derivation of a tensor K is defined by 

generalizing the particular case K = ܝ ٔ  Since .ܟ 

ٔ ܝۯ  ܟ  ٔ ܝ   ܟۯ 

ൌ ٔ ܝሺۯ  ሻܟ     ሺܝ ٔ  ்ۯሻܟ 

then we let 

߲۹ ൌ  ۹ሶ  െ െ ۹ۯ   (7)       . ்ۯ۹ 

A direct check proves the following. 

Proposition 3. If A satisfies (4) then the derivative 

(7) is objective. 

Proof. We have to show that ሺ߲۹ሻכ  ൌ  ߲ሺ۹כሻ . 

Since 

߲ሺ۹כሻ  ൌ തതതത ሶכ۹   െ כ۹כۯ   െ ்כۯכ۹   

ൌ തതതതതതതത ሶ்ۿ۹ۿ   െ ்ۿ۹ۯۿ   െ  ષ்ۿ۹ۿ  
െ ்ۿ்ۯ۹ۿ   െ  ષ்்ۿ۹ۿ 

then 

߲ሺ۹כሻ  ൌ ൫۹ሶۿ   – – ۹ۯ    ்ۿ൯்ۯ۹ 

 ൫ۿሶ  െ  ષۿ൯۹்ۿ   ሶۿ۹൫ۿ  ்  െ ષ்൯்ۿ   ൌ

 .்ۿሺ߲۹ሻۿ 

Hence 

߲ሺ۹כሻ  ൌ  ሺ߲۹ሻכ.              □ 

It is worth pointing out that the derivatives 

ൌ ܝ߲ ሶܝ   െ ൌ ۹߲ ,ܝۯ   ۹ሶ  െ ۹ െۯ  ۯ۹ 
் , 

with ۯभ, भ = 1, 2, 3, subject to 

भۯ
כ  ൌ ்ۿभۯۿ     ષ, 

are objective. The proof parallels the steps of 

Propositions 1 to 3 and shows that ۯ, ۯ, ۯ need 

not be related to each other. Now, while known 

derivatives involve ۯ  ൌ  , we will see that theۯ 

Truesdell derivative is such that ۯ  ് ۯ   ൌ  .ۯ 

If ۯ and ۯ satisfy (4) then 

ሺۯ   כሻۯ   ൌ ۯሺۿ    ்ۿሻۯ     2ષ 

and hence ۯ     does not satisfy (4). Instead, theۯ 

following statement provides a generalization of the 

structure of objective time derivatives via an 

appropriate splitting of A. 

Proposition 4. If ۯ෩ satisfies the transformation law 

(4) and ۰෩ is any tensor, that is 

כ෩ۯ  ൌ ்ۿ෩ۯۿ     ષ,  ۰෩כ  ൌ  ,்ۿ۰෩ۿ 
then  

ൌ ۯ ෩ۯ     ۰෩             (8) 

too satisfies (4) and the derivatives 

߲۹ ൌ  ۹ሶ  െ െ ۹ۯ  ൌ ܝ߲ ,்ۯ۹  ሶܝ   –  (9)  ܝۯ 

are objective. 

Proof. By definition 

כۯ  ൌ  ൫ۯ෩    ۰෩൯
כ

 ൌ  כ෩ۯ   ۰෩כ  

ൌ ்ۿ෩ۯۿ     ષ  ்ۿ۰෩ۿ   
ൌ ෩ۯ൫ۿ     ۰෩൯்ۿ    ષ ൌ  ்ۿۯۿ 

and hence A satisfies (4). Consequently, by 

Propositions 1 and 3 the derivatives (9), subject to 

ൌ ۯ ෩ۯ     ۰෩, are objective.                   □ 

4. Objective Derivatives in Continuum 
Physics 

By Proposition 4, any function A, on ࣬ ൈ Թ , 

possibly in the form ۯ ൌ ෩ۯ     ۰෩, that transforms to 

כۯ  according to (4) determines an objective time 
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derivative. We then look for physically remarkable 

objective time derivatives characterized by A subject 

to (4). 

It is known (see, e.g., [4], §20.3) that the velocity 

gradient L transforms according to (4), 

כۺ  ൌ ்ۿۺۿ     ષ.  

It follows that 

כ܅  ൌ ்ۿ܅ۿ    ષ,  ۲כ  ൌ  .்ۿ۲ۿ 

Hence A = W satisfies (4) whereas D is a tensor 

(relative to the change ࣠ ՜  .(כ ࣠ 

Now let Q = R be the rotation provided by the polar 

decomposition theorem so that 

ൌ ܀ ܃ ,ି܃۴   ൌ  .۴ࢀ۴ 
Since ۴כ  ൌ כ܃ ,and U is invariant ۴ۿ   ൌ  then ,܃ 

כ܀  ൌ ି܃כ۴   ൌ ି܃۴ۿ   ൌ  .܀ۿ 
Hence it follows 

തതത ሶכ܀ ்כ܀  ൌ ሶۿ  ்ۿࢀ܀܀   ሶ܀ۿ  ்ۿࢀ܀  ൌ  ષ  ሶ܀ۿ   .்ۿ்܀
As a consequence ۯ ൌ ሶ܀   satisfies (4). To save ்܀

writing we let Z :  ൌ ሶ܀  ்܀  be the spin tensor 

associated with R. 

Remarkable examples of ۯ෩  and ۰෩  are ۯ෩  ൌ  ,܅ 

Z and ۰෩  ൌ  ۲, ሺસ   ሻ. Henceܞ 

ൌ ۯ  ܅   λ۲   ߭ሺસ   ,ሻܞ 

ൌ ۯ    ܈   λ۲   ߭ሺસ   ,ሻܞ 

where λ and ߭ are real-valued invariants, satisfy (8). 

By Proposition 3 it follows that the derivatives (9) 

with ۯ ൌ ܅  ൌ ۯ , ܈  ൌ ۯ , – ܅   ۲ െ  ሺસ  ሻܞ  , 

and ۯ ൌ  are objective. Indeed, they are known ۺ 

derivatives in the literature and referred to as the 

corotational or Jaumann-Zaremba derivative [7], 

 

the Green-Naghdi derivative [16], 

 

the Cotter-Rivlin derivative [4], 

 

and the Oldroyd derivative [17], 

 
Within the modelling of monatomic gases, Muller 

and Ruggeri [17] consider the derivative 

ሶܝ  –  ܝ܅   ܝ۲

for u = q/ ߩ . This amounts to considering the 

derivative 

ሶܙ  –  ܙ܅  ܙ۲  ሺસ   ܙሻܞ 

for the heat flux q. As Muller and Ruggeri point out, 

the derivative is objective. Indeed, we observe that the 

derivative of u = q/ ρ  is just the Cotter-Rivlin 

derivative whereas 

    (10) 

is a further derivative that corresponds to ۯ ൌ

– ܅   ۲ െ  ሺસ   .ሻ [18]ܞ 

The Truesdell derivative for tensors and vectors 

[19], 

 

 

corresponds to selecting ۯ ൌ  ܅   ۲ െ



ሺસ   ሻܞ 

and ۯ ൌ  ܅   ۲ െ  ሺસ   .ሻ, respectivelyܞ 

If K, and analogously u, is given in the Eulerian 

description then 

ൌ   ߲௧۹   ܞ   સ۹ െ െ ۹ۺ   .ࢀۺ۹

Since 

ख۹ܞ ൌ  ܞ   સ۹ – – ۹ۺ  ࢀۺ۹ 

is the Lie derivative of K with respect to the vector 

field v [20] then we see that the Oldroyd derivative 

differs from the Lie derivative ख۹ܞ by the partial 

time derivative ߲௧۹. That is why sometimes  is 
referred to as Lie-Oldroyd derivative. If K is a tensor 

density then, apart from ߲௧۹, the Lie derivative takes 

the form of the Truesdell derivative  [21]. 
There is an obvious equivalence between rate 

equations with different objective time derivatives. To 

fix ideas, let 

       (11) 

be the rate equation of K. Since 
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Then 

ൌ  ۹ሺ۹, ,ߠ ሻߩ െ  ۲۹ െ ۹۲  

is equivalent to Eq. (11). In the following 

thermodynamic analysis it is understood that we 

examine inequivalent rate equations. 

We now consider the time derivatives, occurring in 

the continuum physics literature, for an objective 

vector u and an objective tensor K. They are denoted 

and represented as follows. 
 

 Derivative of vectors Derivative of tensors 

Jaumann-Zaremba ൌ ۹ሶ െ ۹܅  െ  ࢀ܅۹

Green-Naghdi ൌ ۹ሶ െ ۹܈ െ  ࢀ܈۹

Cotter-Rivlin ൌ ۹ሶ  ۹ࢀۺ    ۺ۹
Oldroyd ൌ ۹ሶ െ ۹ۺ െ  ࢀۺ۹

Truesdell ൌ ۹ሶ െ ۹ۺ െ ࢀۺ۹  ሺસ   ሻ۹ܞ
 

In view of Proposition 4, we recognize that the 

given derivatives are objective in that they are 

associated with ۯ෩ and ۰෩ as shown in the following 

table. 
 

 Derivative of vectors Derivative of tensors 
Jaumann-Zaremba ۯ෩ ൌ ۰෩ ,܅ ൌ ෩ۯ 0 ൌ ۰෩ ,܅ ൌ 0 
Green-Naghdi ۯ෩ ൌ ષ, ۰෩ ൌ ෩ۯ 0 ൌ ષ, ۰෩ ൌ 0 
Cotter-Rivlin ۯ෩ ൌ ۰෩ ,܅ ൌ െ۲ ۯ෩ ൌ ۰෩ ,܅ ൌ െ۲ 
Oldroyd ۯ෩ ൌ ۰෩ ,܅ ൌ ෩ۯ ۲ ൌ ۰෩ ,܅ ൌ ۲ 

Truesdell ۯ෩ ൌ ۰෩ ,܅ ൌ ۲ െ ሺસ  ሻܞ ෩ۯ  ൌ ۰෩ ,܅ ൌ ۲ െ



ሺસ   ሻܞ 

 

The principle of objectivity requires that the time 

derivatives within constitutive equations, and hence in 

the rate equations, have to be objective. It is then 

natural to wonder which derivative is the appropriate 

one for the constitutive equations at hand. 

Answers to this question arise by framing the whole 

model of the pertinent material in a thermodynamic 

scheme where all of the set of constitutive equations 

comply with the second law of thermodynamics. 

Indeed, as we see in a moment, different objective 

time derivatives in the rate equations induce 

significant terms on the other constitutive equations 

especially in the one of the stress tensors. 

5. Entropy Inequality and Second Law 

Let ߝ be the energy density (per unit mass) and ߩ 

the mass density. The balance of energy is written in 

the form 

ሶߝߩ  ൌ  ܂   ۲ െ  સ   ܙ   (12)     ݎߩ 

with ݎ being the heat supply. Let ߟ be the entropy 

density. Let ߶ be the entropy flux so that the entropy 

inequality is expressed as 

ሶߟߩ        ߶ െ  
ݎߩ
ߠ

  0. 

For technical convenience let 

߶ ൌ  
ܙ
ߠ

   ܓ 

k being regarded as the extra-entropy flux. Hence we 

can write the entropy inequality in the form 

ሶߟߠߩ   સ  – ܙ  െ ݎߩ   
1
ߠ

 ܙ    ߠ     ܓ  0. 

Substitution of સ  – ܙ   from (12) and use of ݎߩ 

the Helmholtz free energy density ߰ ൌ – ߝ   ߟߠ 

allow the entropy inequality to be written in the form 

– ൫ߩ  ሶ߰   ሶ൯ߠߟ     ܂   ۲ – 
ଵ

ఏ
 ܙ    ߠ    ܓ 0 

(13) 

The second law is stated by saying that inequality 

(13) has to hold for any thermodynamic process 

compatible with the balance equations (mass, 

momentum, and energy). 
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6. Constitutive Equations for Thermoelastic 
Solids 

To give evidence to the different consequences, on 

the constitutive model, of the choice of the objective 

time derivative we look at a generalized thermoelastic 

solid where the heat flux is governed by a rate 

equation of the Guyer-Krumhansl type. To see the 

different consequences we examine the rate equation 

in a form that comprises the known derivatives 

occurring in the literature. 

Eq. (1) is generalized by letting q be governed by 

 ܙ߲߬ ൌ ܙ   െߢ  ሺᇞߙ  ܙ  2  ሻ  (14) ܙ 

where ߲ܙ denotes the chosen time derivative. For 

generality we let 

ൌ ܙ߲ ሶܙ   െ  ܙ܅   u۲ܙ   ሺݒ   .ܙሻܞ 

The derivatives provided in §3 are obtained with 

appropriate values of the parameters ݒ ,ݑ or, for the 

Green-Naghdi derivative, by replacing W with Z and 

letting 0 = ݒ ,0 = ݑ. 

Based on Eq. (14) we model a generalized 

thermoelastic solid by letting 

Γ ൌ  ሺ۴, ,ߠ , ,ܙ ,ܙ  ሻ ܙ

be the set of state variables. Hence we let ߰, ߟ, and T 

be functions of Γ, ߰ being differentiable, while q 

satisfies the rate Eq. (14). 

Some restrictions follow at once from the 

objectivity requirements. The invariance of the free 

energy ߰ under the change of frame (2) implies that 

߰ሺ۴, ,ߠ , ,ܙ ,ܙ ሻ ܙ  

ൌ  ߰൫۴ۿ, ,ߠ ,ۿ ,ܙۿ ሺۿሻሺܙۿሻ, ሺۿሻሺۿሻሺܙۿሻ൯. 

Owing to the polar decomposition, F = RU, letting 

ൌ ۿ  we find ்܀ 

߰ሺ۴, ,ߠ , ,ܙ ,ܙ ሻ ܙ  ൌ

 ߰൫܃, ,ߠ ,்܀ ,ܙ்܀ ሺ்܀ሻሺܙ்܀ሻ, ሺ்܀ሻሺ்܀ሻሺܙ்܀ሻ൯. 

for any rotation R. Accordingly we let ߰ depend on 

F only through U and hence through C. Moreover we 

let ߰ depend on g, q, ܙ,  via invariants under ܙ

the change of frame. With this in mind we let 

߰ ൌ  ߰ሺ۱, ,ߠ , ,ܙ ,ܙ  .ሻܙ

6.1 Thermodynamic Restrictions 

We now examine the thermodynamic restrictions 

placed by the second law on the constitutive functions 

 and T. Upon evaluation of ߰ and substitution ,ߟ ,߰

in Eq. (13) we have 

– ቀ߲۱߰ߩ    ۱ሶ    ߲ఏ߰ߠሶ   ߲߰  ሶ    ߰ܙ߲   ሶܙ   

 ߰ܙ߲   തതതത ሶܙ   ߰ܙ߲   തതതതതത ሶܙ ൯  

െ ߠߟߩሶ    ܂   ۲ െ  
ଵ

ఏ
 ܙ    ߠ     ܓ  0 (15) 

The term ܙതതതതതത ሶ  comprises ܙሶ  and hence, in 
view of Eq. (14), gives fourth-order gradients of q. 

Likewise ܙതതതത ሶ  comprises ܙሶ  and hence gives 
third-order gradients of q. The arbitrariness and the 

linearity of these terms imply that 

ൌ ߰ܙ߲ 0, ൌ ߰ܙ߲     0. 

Moreover the arbitrariness and the linearity of ߠሶ ሶ ,  
in Eq. (15) imply that 

– ൌ ߟ ߲ఏ߰, ൌ ߲߰      0. 

Now observe 

۱ሶ  ൌ 2۴்۲۴ 

and then 

߲۱߰   ۱ሶ  ൌ 2ሺ۴߲۱߰۴்ሻ   ۲. 

Upon dividing by ߠ we can write the remaining 

inequality in the form 

1
ߠ

ሺ܂ െ ۴߲C߰۴்ሻߩ2   ۲ – 
ߩ
ߠ

߰ܙ߲  ሶܙ    

െ
ଵ

ఏమ  ܙ          ܓ  0   (16) 

Let 

ൌ ܘ  െ 
ߩ
ߠ

 .߰ܙ߲

By Eq. (14) we find 

 ܘ ሶܙ   ൌ  ܘ   ܙ܅ – – ܙ۲ݑ   ሺݒ   – ܙሻܞ 
1
߬

 – ܙ
ߢ
߬

 

  
ߙ
߬

ሺᇞ  ܙ  2 ሻ൨ܙ   ൌ  

ٔ ܘ  ܙ   ሾ܅ – ۲ݑ  െ tr۲ሿݒ  െ  
1
߬

 ܘ  ܙ 

െ 


ఛ
 ܘ      

ఈ

ఛ
 ܘ  ሺᇞ  ܙ 2     .ሻܙ 
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Owing to the form of inequality (16), we have to 

investigate the possible definiteness of ሺα ߬⁄ ሻܘ 

 ሺᇞ  ܙ 2    ሻ within a divergence term. Assumeܙ 

ఈ

ఛ
ൌ ܘ  െγ(17)             ܙ 

γ being a parameter, and observe 

െγܙ  ᇞ ൌ ܙ  െ   ൬
1
2
γܙଶ൰    γሺܙሻ    ሺܙሻ, 

െγܙ  ሺ  ሻܙ   ൌ  െ   ሺγܙ   ሻܙ     γሺ    .ሻଶܙ 

We can then write inequality (16) in the form 

1
ߠ

ቀ܂ െ ۴߲C߰۴்ߩ2    
ߩݑ
ߠ

߰ܙ߲ ٔ  ܙ   
ߩݒ
ߠ

ܙ߲  1ቁܙ 

  ۲ – 
ߩ
ߠ

߰ܙ߲ ٔ ܙ   ܅   
ߩ

߬ߠ
߰ܙ߲    ܙ 

                          ൬
ߢߩ
߬ߠ

െ ߰ܙ߲
1

ଶߠ ൰ܙ      

      ൬ܓ െ  
1
2
γܙଶ  െ  γܙ   ൰ܙ   

 γሾሺ   ሻଶܙ     ሺܙሻ    ሺܙሻሿ   0 

Accordingly we let 

ൌ ܓ  
ଵ

ଶ
γܙଶ    γܙ    (18)          .ܙ 

The linearity and the arbitrariness of W, D, g imply 

that 

߰ܙ߲ ٔ א ܙ   Sym,            (19) 

ൌ ܂ ۴߲C߰۴்ߩ2  െ  
ߩݑ
ߠ

߰ܙ߲ ٔ െ ܙ   
ߩݒ
ߠ

߰ܙ߲   ,ܙ 

ൌ ߰ܙ߲  
ఛ

ఘఏ
 (20)             .ܙ

Since ߰  is independent of q  the remaining 

inequality splits into the two conditions 

߰ܙ߲   ܙ  0,             (21) 

γሾሺ  ሻଶܙ     ሺܙሻ    ሺܙሻሿ   0.     (22) 

Incidentally, by Eq. (22) it follows that γ  0. 

The result (18), subject to γ  0, coincides with the 

entropy flux determined in Ref. [22]. Moreover, the 

assumption (17) is consistent with Eq. (20) provided 

ൌ ߙ  γߠߢଶ 

We know that ߠ ,ߩ, ߬ are positive-valued. Hence 

substitution of Eq. (20) in Eq. (21) results in 

ଵ


ଶܙ  0. 

This implies the expected condition that the 

conductivity ߢ is positive. 

Now, Eq. (20) shows that (19) holds identically. 

Moreover a direct integration of Eq. (20) provides the 

free energy ߰ in the form 

 

߰ ൌ  Ψሺ۱, ሻߠ    
ఛ

ଶఘఏ
 ଶ.        (23)ܙ

By replacing ߲߰ܙ we find that T takes the form 

ൌ ܂ ۴߲C߰۴்ߩ2  െ  
௨ఛ

ఏమ ܙ ٔ െ ܙ   
௩ఛ

ఏమ  ଶ. (24)ܙ

Some comments on Eq. (24) are in order. The stress 

T is the sum of the (formally) elastic term 2۴߲ߩC߰۴் 

and  

െ 
௨ఛ

ఏమ ܙ ٔ െ ܙ   
௩ఛ

ఏమ  ଶ.        (25)ܙ

The additional terms (25) are nonzero with the 

Cotter-Rivlin derivative ሺݑ ൌ  െ1, ൌ ݒ  0ሻ , the 

Oldroyd derivative ሺݑ ൌ  1, ൌ ݒ  0ሻ , and the 

Truesdell derivative ሺݑ ൌ  1, ൌ ݒ  െ1ሻ. Instead they 

vanish if the Jaumann-Zaremba derivative and the 

Green-Naghdi derivatives are involved. Yet, also with 

these derivatives we can have a dependence of T on 

ଶܙ . To fix ideas, let ߬ ⁄ߢߩ  depend on the mass 

density ߩ, say 
߬

ߢߩ
 ൌ  ݂ ሺߠ,  .ሻߩ

Now, 

ൌ ߩ  
ோߩ

݀ଵ ଶ⁄ , 

where ߩோ  is the mass density in the reference 

configuration and ݀ ൌ  det۱.  Since ߲۱݀ ൌ  ݀۱ିଵ 

then we find that 

߲۱
߬

ߢߠߩ2
ଶܙ  ൌ  െ

ߩ
ߠ4 ఘ߲݂ܙଶ۱ିଵ. 

Since ۴۱ିଵ۴்  ൌ 1 we obtain 

۴߲۱߰۴்ߩ2  ൌ ۴߲۱Ψ۴்ߩ2   െ  
ଶߩ

ߠ2 ఘ߲݂ܙଶ. 

If, further, ߬ ⁄ߢ  is independent of ߩ  then 

ఘ߲݂ ൌ  െ ߬ ⁄ߢ  ଶ andߩ
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۴߲۱߰۴்ߩ2  ൌ ۴߲۱Ψ۴்ߩ2    
߬

ߢߠ2
 .ଶܙ

It is worth remarking that the results so derived 

hold formally unchanged if W in the chosen derivative 

is replaced with ܈ ൌ ሶ܀  in that the only feature of ்܀

W used in the thermodynamic analysis is the 

skew-symmetry. 

 

7. Conclusions 

The paper deals with the formulation of rate 

equations within continuum physics. Two main results 

emerge from the present developments. 

Rate equations have to involve objective time 

derivatives and the general structure of objective time 

derivatives is given by Eq. (3) where the linear 

operator A satisfies the transformation law 

כۯ  ൌ ்ۿۯۿ    ሶۿ   ்ۿ

Q being the time dependent rotation between the 

corresponding Euclidean frames ࣠  and ࣠כ . As 

expected, the familiar objective time derivatives, 

appeared in the literature, turn out to be particular 

cases with A taking the forms given in §4. 

As any constitutive equation, rate equations are 

required to be consistent with thermodynamics. To fix 

ideas, here a rate equation for the heat flux is 

considered with non-local properties as in the 

Guyer-Krumhansl equation and with a general 

objective derivative of the form 

ൌ ܙ߲  ሶܙ   –  ܙ܅   ܙ۲ݑ   λሺtr۲ሻܙ 

for the heat flux q. The thermodynamic consistency 

holds if the stress tensor is affected by a dependence 

on q as is shown by Eq. (24). 
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