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Abstract: The thermo-mechanical balance equations for a porous material with big irregular pores are derived from the general ones 
for a medium with ellipsoidal microstructure by imposing the kinematical constraint of micro-stretch bounded to the 
macro-deformation: in this case the microstructure disappears apparently (it becomes latent) and the response of the material involves 
higher gradients of the displacement without incurring known constitutive inconsistencies. 
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1. Introduction  

In Giovine [1] the general mechanical balance 
equations for a medium with ellipsoidal microstructure 
were obtained for the case in which each material 
element of the body contains a nano-pore filled by an 
inviscid fluid or an elastic inclusion, both of negligible 
mass, which could have a microstretch different from, 
and independent of, the local affine deformation 
ensuing from the macromotion: then it allows distinct 
microstrains along principal axes of microdeformation, 
in absence of microrotations. Therefore, that theory 
includes, as a particular case, the voids theory of 
Nunziato et al. [2] which describes continua with 
“small” spherical pores which only may contract and 
expand homogeneously: it suffices to constrain the 
microstretch to be spherical. 

The refinement of the Cauchy theory of Giovine [1] 
was necessary to characterize the more complex 
structure (see also Bear et al. [3] and Cowin [4]), even 
if some problems of physical concreteness in Grioli [5] 
or of mathematical hardness in Cieszko [6] came out. 
The volume fraction of the pores in Nunziato et al. [2] 
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was not sufficient to describe the microdeformation of 
the holes when they are large: in fact, the linear voids 
theory of Cowin et al. [7] does not predict size effects 
in torsion of bars in an isotropic material, while they 
occur both in bending and in torsion, as observed by 

Lakes [8] for bones and polymer foam materials. 
Instead the linear theory for a medium with ellipsoidal 
microstructure was used to find solutions of 
micro-vibrations, plane waves and macro-accelerations 
waves (see Giovine [9] and §3 of Giovine [10]). 

In this paper we suppose that the nano-pores in the 
material elements are void of matter, and so we obtain 
the equations of balance for a thermo-elastic porous 
material with big holes by imposing, as an internal 
constraint that the microstate is completely determined 
by the macrostrain, so that only an indirect trace of the 
microstructure remains: it becomes latent (see Capriz 
[11]). The form of the Cauchy’s equation seems the 
classical one, but some traditional tenets are abandoned, 
that is, the stress tensor need not be symmetric and may 
depend on higher derivatives of displacement such as 
acceleration gradients, moreover, the energy flux, 
stress power apart, need not to be equal to the heat flux 
only. The mechanical case was studied by Giovine et al. 
[12], where an application to the propagation of 
asymptotic waves compatible with such a model was 
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also considered: physical situations corresponding to 
an axisymmetric motion either in spherical or 
cylindrical symmetry were considered, and it was 
shown that the time evolution of the wave amplitude 
factor is governed by the spherical and cylindrical 
Korteweg-deVries equations, respectively. 

At the end, the concept of latent microstructure is 
useful in offering an interpretation of constitutive 
prescriptions, involving the higher derivatives of 
displacement, which allows one to circumvent certain 
apparent inconsistencies with the second law of 
thermodynamics. An interpretation which is in line 
with an old remark of Toupin [13] on the possibility of 
viewing hyper-elastic materials of second grade is as 
Cosserat’s continua whose microrotations are 
constrained (see also Refs. [14-18]). 

2. Balance Equations and Jump Conditions 
for a Body with Ellipsoidal Microstructure 

We identify the continuous material body with 
ellipsoidal microstructure B with a fixed homogeneous 
and free of residual stresses region of the three 
dimensional Euclidean space G, called the “natural” 
reference placement B∗ (see, for example, §83 of 
Truesdell et al. [19]). 

We suppose that each material element of the 
continuum contains a nano-pore which is capable to 
have a microstretch different from, and independent of, 
the local affine deformation ensuing from the 
macromotion, as it is the case when the cavity is filled 
by an inviscid fluid or an elastic inclusion, both of 
negligible mass. 

Therefore, if we denote the generic material element 
of B∗ by X, the thermo-mechanical behaviour of B is 
described by three smooth mappings on B∗ × R (R is 
the set of real numbers): 

 The spatial position ݔ א ࣡ , at time τ, of the 
material point which occupied the position X in the 
reference placement B∗

 
; 

 The left Cauchy-Green tensor of the 
micro-deformation ܷ א Symା , at time τ, of the 

associated nano-pore (Sym+ being the collection of 
second-order symmetric and positive definite tensor 
fields); and 

 The absolute positive temperature θ  > 0. 
The spatial position x(X, τ) is a one-to-one 

correspondence, for each τ, between the reference 
placement B∗ and the current placement Bτ = x(B∗, τ) 
of the body B and, so, the deformation gradient 

F ؔ ,xሺX τሻ ൭ൌ
߲x
∂X

ሺX, τሻ൱ 

is a second order tensor with positive determinant. 
Through the inverse mapping X (x, τ) of x, we can 

consider all the relevant fields in the theory as defined 
over the current placement Bτ as well as over the 
reference placement B∗ of the body B. 

Hence, in a continuum with ellipsoidal 
microstructure [1] a rotation ܳ ൌ eିࣟୱ of the observer 
of characteristic vector s, where ࣟ  is the third-order 
Ricci’s permutation tensor (skew with respect to all 
indices) and e the basis of natural logarithms, causes the 
symmetric tensor U to change into Us = QUQT; 
moreover, the infinitesimal generator ࣛ of the group 
of rotations on the microstructure in Sym+ [that is, the 
operator describing the effect of a rotation of the 
observer on the value Us of the microstructure to the 
first order in s (see §3 of Capriz [20])], is given by 

ࣛሺUሻ ؔ  ௗUݏ

ௗୱ
ቚ

௦ୀ
          (1) 

(in components: ࣛ ൌ U ࣟ  ࣟU ); ࣛ 
is a third-order tensor, symmetric and positive definite 
in the first two indices, that is ࣛc א Symା , for all 
vectors c. 

The expression of the kinetic energy density per 
unit mass of microstructured bodies is the sum of two 

terms, the classical one ଵ
ଶ

xሶ ଶ due to the translational 

inertia and the microstructured one ߢ൫U, Uሶ ൯ due to 
the inertia related to the admissible dilatational 
micromotions of the pores’ boundaries (the 
superposed dot denotes material time derivative). 
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This additional term is a non-negative scalar function, 
homogeneous in U, such that ߢሺU, Oሻ ൌ 0  and 

డమச
ப܃ሶ మ ് 0 , and it is related to the kinetic co-energy 

density ߯ሺU, Uሶ ሻ by the Legendre transform 
ப
பUሶ · Uሶ െ ߯ ൌ  (2)            ߢ

The kinetic co-energy χ, as κ, must have the same value 
for all observers at rest, that is, it must be invariant 
under the Galilean group and hence satisfy the 
condition 

ሶכࣛ ப
ப܃ሶ ൌ െ ࣛכ ப

ப܃
            (3) 

where, the third-order tensor A* is defined through 

the relation: 
ሺࣛכCሻ · c ൌ C · ሺࣛcሻ 

for all second-order tensors C and all vectors c. 
The use of Eq. (1) into Eq. (3) and the multiplication 

of both sides by the Ricci’s tensor ࣟ  gives the 
following kinematic compatibility relation: 

skw ቂ Uሶ ப
பUሶ  U ப

பU
ቃ ൌ  0         (4) 

where, “skw” denotes the skew part of a second-order 
tensor: skwሺ·ሻ ൌ 2ିଵ൫ሺ·ሻ െ ሺ·ሻ்൯ (and “sym” the 
symmetric one: symሺ·ሻ ൌ 2ିଵ൫ሺ·ሻ  ሺ·ሻ்൯). 

All the admissible thermo-kinetic processes for 
porous solids with large irregular voids are governed 
by the following general system of balance equations 
proposed by Giovine [1]; they are the mass 
conservation, the Cauchy equation, the 
micro-momentum and moment of momentum balances, 
the extended Neumann energy equation and the 
entropy inequality in the Lagrangian description, 
respectively: 

ρכ ൌ  ρ det F            (5) 
ρכxሷ ൌ  ρכf   Div P         (6) 

ρכ ቂ ௗ
ௗఛ

ቀப
பUሶ ቁ െ ப

பU
ቃ ൌ  ρכH െ Y  Div Λ   (7) 

ࣟሺPF்ሻ ൌ Y כࣛ  ሺכࣛሻ Λ      (8) 
ρߝכሶ ൌ  P · Fሶ  Y · Uሶ  Λ · Uሶ  ρכλ െ Div k   (9) 

where, ρ  is the mass density and כߩ its value in the 
reference placement B∗; Div means the trace of the 
nabla: Div (·):= tr ൫ሺ·ሻ൯; f is the vector body force, P 
the first Piola-Kirchhoff stress tensor, ε the specific 
internal energy density per unit mass, λ the rate of heat 
generation due to irradiation or heating supply and k 
the referential heating flux. 

Moreover, on the left hand side of the balance 
equation of micro-momentum (7) the Lagrangian 
derivative of the kinetic co-energy χ  appears, while, on 
the right hand side, ρכH  and -Y are the resultant 
second-order symmetric tensor densities of external and 
internal microactions, respectively: the first one is 
interpreted as a controlled pore pressure and the other 
one includes interactive forces between the gross and 
fine structures as well as internal dissipative 
contributions due to the stir of the pores’ surface. 
Finally, Λ  is the referential microstress third-order 
tensor, symmetric in the first two indices, which is 
related to the capability of recognizing boundary 
microtractions, even if, in some cases, it expresses 
weakly non-local internal effects due to the 
impossibility of defining a physically significant 
connection on the manifold of the microstructural 
kinetic parameter U (see Capriz et al. [21, 22]). 

The balance of moment of momentum in Eq. (8) 
assumes a more significant expression when we use the 
representation (1) for ࣛ; in fact we have 

skwሺPF்ሻ ൌ 2 skw ሺUY   UۨΛሻ   (10)
where the tensor product ۨ  between third-order 
tensors is so defined: 

ሺUۨΛሻ ؔ U,Λ      (11) 
The imbalance of entropy still applies in the classical 

Clausius-Duhem form: 
ρߟߠכሶ   ρכλ െ Div k  ଵ ሺkିߠ ·  ሻ   (12)ߠ

where η  is the density of entropy per unit mass; 
moreover, if we introduce the Helmholtz free energy 
per unit mass 

 ψ := ε − θη 
 and use in Eq. (9), we obtain a reduced version of this 
inequality, that is, 
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ρכ൫ ሶ߰  ሶ൯ߠߟ   Y · Uሶ  P · Fሶ  Λ · Uሶ െ ୩·ఏ
ఏ

  (13) 

At the end, by using the balance of moment of 
momentum (10), we have an objective version of the 
inequality which is indifferent to changes in observer: 

ρכ൫ ሶ߰  ሶ൯ߠߟ 
k · ߠ

ߠ  Y · ൫Uሶ  UW െ WU൯  

sym ሺPF்ሻ · D  Λ · Uሶൣ െ WU  ሺUሻ௧ W൧ (14) 
where D א Sym is the stretching (that is, the symmetric 

part of the gradient of velocity L ൌ  డ୶ሶ
డ୶

ൌ  Fሶ Fିଵ  ) 

and W א Skw the spin tensor (that is, the skew part), so 
that L = D + W; in Eq. (14) the minor right transposition 
means (·)t

ijl = (·)ilj, while the minor left one is so defined: 
t(·)ijl

  = (·)jil. 
Remark: We observe that the voids theories of 

Nunziato et al. [2] and Capriz et al. [23] are 
immediately recovered when the microstretch U is 
constrained to be spherical (see, also, §5 of Giovine 
[1]). 

In addition to balance Eqs. (5-7) and (9-10), we need 
the balance equations at a surface of discontinuity, 
namely a propagating wave Σ. As it is customary, we 
assume that the smooth movable surface Σ  that 
traverses the body B, is oriented and we denote by n the 
unit normal vector to Σ in the reference placement B∗

 

and by υn the corresponding non-zero normal speed of 
displacement of Σ  at point (X, τ) in the reference 
placement. 

We further assume that some field related to the 
motion of B (excepting x, U and θ) suffers jump 
discontinuity across Σ and so we employ the usual 
notation ۤ·ۥ for jumps, so that 

ۥ݂ۤ ൌ ݂ା െ ݂ି           (15) 
where ݂ା or ݂ି refers to the limit of f as the wave is 
approached from the right or left, respectively. 

Therefore, we can write classical Kotchine’s 
equations, as modified in order to take into account 
microstructural effects, and a relation that restricts the 
jump of micro-momentum (see, also, Capriz et al. [24] 
and Paoletti [25]) as it follows: 

ۤρכሺ߭ െ xሶ · nሻۥ ൌ 0         (16) 
ۤρ߭כxሶ  Pnۥ ൌ 0           (17) 

ቘρ߭כ
பச
பUሶ ൫U, Uሶ ൯  Λn ൌ 0    (18) 

ቢρ߭כ ቆߝ 
1
2 xሶ ଶ  ,൫Uߢ Uሶ ൯ቇባ ൌ 

 ൳൫h െ P்xሶ െ ΛכUሶ ൯ · n൷      (19) 
ۤρ߭כۥߟߠ  ۤh · n(20)         ۥ 

The form of the jumps across a propagating wave of 
higher order time derivatives of principal fields can be 
obtained from the balance Eqs. (5-7) and (9). 

3. The Porous Solid as a Thermoelastic 
Continuum with Strain Gradient Effects 

The porous material with empty large interstices, 
which do not diffuse through the matrix material, is 
depicted as a continuous body whose microstructure U 
is internally constrained to be equal to the left (macro) 
Cauchy-Green tensor B: 

U ൌ B ൌ FF் א  Symା      (21) 
therefore only an indirect trace of the presence of the 
microstructure remains and one dramatic fact emerges: 
the microstructure becomes latent and the Piola stress 
tensor may depend on higher derivatives of 
displacement as well as on acceleration gradients. 

Before to see this, we use the constraint (21) and, 
after, the balance of angular momentum (8) in the 
expression of the density of total power of internal 
actions ࣪௧ to have the following equivalences: 

െ ࣪௧ ൌ  P · Fሶ  Y · Bሶ  Λ · Bሶ ൌ 
ൌ ሾP  2YF  2Λ ٖ ሺF்ሻሿ · Fሶ  2ൣΛ ٖ ൫Fሶ ்൯൧ · F

ൌ 
ൌ ሾPF்  2YB  2Λ ٖ Bሿ · L  2ሾΛ ٖ ሺL்ሻሿ · B ൌ 

ൌ sym ሾPF்  2ሺYB  Λ ٖ Bሻሿ · D  Ω · డమ୶ሶ
డ୶మ  (22) 

where, Ω is the third order tensor of components 
Ω: ൌ  Λ൫FB  BF൯ 

(as the last factor in the left-hand side is symmetric in 
the last two places). 

Moreover, when an internal constraint like (21) is 
present, we follow classical theories and suppose that 
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each quantity, which, in absence of the constraint, is 
ruled by a constitutive prescription (that is P, Y, Λ, k, 
ε, η, ψ) is now the sum of one active and one reactive 
component. 

P ൌ P  P, Y ൌ Y  Y, etc.     (23) 
and only the active component is bound through 
constitutive relations to the independent 
thermo-kinetic variables. 

We wish to observe that, within the classic context, 
no constitutive equation can be proposed for an 
hyperelastic medium involving the second gradient of 
F (or B in the isotropic case) for the known 
incompatibility with the second law of 
thermodynamics, unless, for example, the interstitial 
working of Dunn and Serrin [26] is introduced in the 
balance equations. 

Instead continua of second grade are acceptable if 
they are thought of as continua with latent 
microstructure: in fact, we assume here that, for the 
principle of equipresence, the overall response of the 
isotropic thermo-elastic porous material depends on 
the set ࣭ ؠ ሼB, ,B ,ߠ  .ሽߠ

The additional request that the constraint is perfect, 
that is internally frictionless, is specified by the 
property that the contribution of the reactions to the 
inequality (13) is identically zero for every process 
allowed by the constraint (see Capriz [20]) that is: 

ρכ൫ ሶ߰  ሶ൯ߠߟ   

P · Fሶ  Y · Bሶ  Λ · Bሶ െ ୩ೝ·ఏ
ఏ

    (24) 

If we note that the constraint (21) leaves locally the 
choice of 

ሶߠ , D ቀൌ sym൫Fሶ Fିଵ൯ቁ , 

 
߲ଶxሶ
߲xଶ ቀൌ ቂ൫Fሶ Fିଵ൯்

ቃ Fିଵቁ and ߠ 

totally free, by using the equivalence (22)4, we deduce 
the following relations: 

sym ሾPF்  2ሺYB  Λ ٖ Bሻሿ ൌ 0  
ρߟכ ൌ 0, ρכ ሶ߰ ൌ 0, k ൌ 0      (25) 

and, in components, 

ሺΛሻ൫FB  BF൯ ൌ 0     (26) 
Now, we have to check the compatibility of the 

constitutive prescriptions for the active components 
with the reduced Clausius-Duhem inequality (13); the 
same procedure used for the reactive components 
leads instead to 

߰ ൌ ߰ሺB, ,B ,ሻߠ   Λ ൌ ρכ
߲߰

 ,B߲

sym ሾPF்  2 YBሿ ൌ 2 sym ቀρכ
డటೌ
డB

Bቁ  (27) 

ߟ ൌ െ డటೌ
ߠ߲ , kሺ࣭ሻ · ߠ  0, 

where the usual expression of the entropy η in terms 
of the free energy ψ ensues from Eqs. (25)2,3 and (27)3, 
while the residual Fourier inequality for the heating 
flux Eq. (27)5 holds for every choice of the gradient of 
θ ; we observe that the terms involving the second 
gradient of F in the constitutive equations are here not 
escluded, as within the classical context. 

Now, in addition, we are able to specify the  
energy flux for our model of porous solids. We can 
use the micro-momentum balance (7) to eliminate  
the internal microactions Y from the equation for 
energy (9), then, by using the Legendre transform (2) 
and the constraint (21), we obtain the following 
equation: 

ρ̃ߝכሶ ൌ  P · Fሶ  ρߣכሚ െ Div k෨      (28) 
here we added the kinetic energy κ, due to the 
fluctuations of the pores’ boundary, to the internal 
energy ε, the microstructural contribute H · Bሶ  to   
the radiant heating λ  and the opposite of the  
so-called interstitial work flux vector u ؔ Λ்B ሶ (see 
Dunn et al. [26] and Giovine [27]) to the heat flux k, 
that is, 

̃ߝ ൌ ε  κ , ෩ߣ  ൌ λ  H · Bሶ ,  k෩ ൌ k െ u    (29) 
In particular, when κ and H vanish, we recover the 

energy Eq. (1.14) of Dunn et al. [26] with the energy 
flux equal to the difference of interstitial work and the 
heat flux vectors, the stress power apart. We observe 
that the flux u expresses explicitly his dependence on 
the microstress tensor. 
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4. The Pure Field Equations 

It is possible to use the balance Eqs. (7) and (10) 
and the relations (23) and (25) to eliminate the 
reactive parts of Eqs. (6) and (9) in order to arrive at a 
set of pure, that is reaction-free, consequences which 
alone are sufficient to study the evolution of our solid 
material with big pores. In fact, we have: 

PF் ൌ symሺPF்ሻ  symሺPF்ሻ  
2 skw ሺBY  B ٖ Λሻ ൌ 

ൌ symሾPF் െ 2ሺYB  Λ ٖ Bሻሿ െ 
െ2 skw ሺYB  Λ ٖ B  Λ ٖ B ሻ ൌ 

ൌ symሺPF்  2YBሻ െ 2YB െ 
െ2Λ ٖ B െ 2 skw ሺΛ ٖ  Bሻ    (30)

and, by using the balance Eq. (7) in Eq. (30)3, we 
obtain 
PF் ൌ symሺPF்  2YBሻ  2skw ሺB ٖ Λሻ  

2ρכ 
݀

݀߬
൬

∂χ
∂Bሶ ൰ െ

∂χ
∂B

െ H൨ B െ 

െ2ሺDiv ΛሻB െ 2 ሾDivሺBΛሻሿ்     (31) 
the last term of which, multiplied by Fି்  has the 
divergence that vanishes for the relation (26) and the 
properties of symmetry of B and Λr . 

Hence, with the use of constitutive relations (27), it 
is possible to introduce the reduced Piola stress tensor 
P: 

P: ൌ P  2 ሾFିଵDivሺBΛሻሿ் ൌ 

ൌ 2ρכ ൜
݀

݀߬
൬

∂χ
∂Bሶ ൰ െ

∂χ
∂B

െ H൨ െ Div ൬ 
߲߰

B߲
൰ൠ F  

2ρכ ቂsym ቀడటೌ
డB

Bቁ  skw ቀB ٖ డటೌ
డB

ቁቃ Fି் (32) 

where the first two terms on the right hand side 
represent a tensor of micromomentum flux M due to a 
sort of surface flux of microinertia, the third one a 
tensor flux of external actions N and the remnants a 
partial stress tensor P෨ . Moreover, we observe that the 
expression for PF்  is clearly not symmetric, in 
general. 

The first pure field equation governing the 
processes for a thermo-elastic porous solid is the 
Cauchy’s Eq. (6) 

ρכxሷ ൌ  ρכf   Div P           (33) 

the second one being the balance equation for energy 
(9): in fact, by using the definition of free energy ψ, 
we have 

ρכሺ߰  ሻതതതതതതതതതതതതሶߟߠ ൌ 
ൌ P · Fሶ  Y · Bሶ  Λ · Bሶ  ρכλ െ Div k  (34) 

and then, from relations (25)-(27), we obtain the pure 
equation of evolution for the temperature: 

ρߟߠכሶ ൌ ρכλ െ Div k          (35) 
In Eqs. (33) and (35) there is no trace of effects due 

to the constraint since only the constitutive 
components of the fields appear. 

5. A Constitutive Choice 

To offer a simple example of application we 
consider a centro-symmetric isotropic thermo-elastic 
porous material with a density of kinetic co-energy 
χ  and of active free energy ψa homogeneous and 
quadratic in Bሶ  and in the constitutive variables, 
respectively, of the following forms: 

߯ ؔ  ఞכ
ସ

 Bሶ ڄ  Bሶ             (36) 

߰ ؔ  
ߣ
4

ሺtr Bሻଶ 
ߤ
2  tr ሺBଶሻ 

1
4 Ξ · ሺB ٔ Bሻ  

 ఉ
ସ

 ሺߠ െ ሻଶכߠ  ఊ
ଶ

ሺߠ െ  ሻ tr B      (37)כߠ

where כߠ is the referential value of the temperature; 
 ,λ,  μ,  β, γ  are kinetic and thermo-elastic constants ,כ߯
respectively; Ξ  an isotropic sixth-order tensor 
satisfying the following symmetries: 

Ξே ൌ Ξே ൌ Ξே       (38) 

(see Eq. (4.5) of Suhubi et al. [28] or Eq. (19) of 
Giovine [9]); ٔ the tensor product so defined 

ሺΓ ٔ Σሻே ؔ ΓΣே       (39) 

The heat flux vector ݇  is chosen to satisfy a 
Fourier’s type law, of constant ߦ: 

k ൌ െ(40)            ߠߦ 
With these hypotheses, the Legendre transform (2) 

for ߯  and the relations (27)2,4 furnish the kinetic 
energy ߢ , the active part of the microstress tensor 
Λ  and the symmetric part of the tensor ሺPF் 
2 YBሻ: 
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ߢ ൌ  ఞכ
ସ

 Bሶ ڄ  Bሶ  , Λ ൌ ρכΞB      (41) 

symሺPF்  2 YBሻ ൌ 
ൌ ρכሾߣ tr B  ߠሺߛ െ ሻሿBכߠ  2µBଶ  (42) 

where the Gibbs’ relation (27)4 and the Fourier’s 
inequality (27)5 give: 

ߟ ൌ െ ଵ
ଶ

ሾߛ tr B  ߠሺߚ െ ߦ ሻሿ  andכߠ  0 (43) 

Then, if the reference placement B∗ of the material 
is homogeneous with the density ρכ  constant, the 
micromomentum flux M, the flux of external actions 
N and the partial stress tensor P෨ , defined after 
constitutive expression (32)2 , are given by: 

M ൌ ρכ߯כBሷ F, N ൌ െ2ρכHF     (44) 
P෨ ൌ ρכሼሾߣ tr B  ߠሺߛ െ ሻሿIכߠ  2µB െ DivሺΞBሻሽF  

ρכሾskw ሺB ٖ  ΞBሻሿFି்      (45) 
where we can observe that MFT, NFT and P෨F் are not 
symmetric tensors, in general, and also that P෨F் 
depends on the first and the second gradient of the left 
Cauchy-Green tensor B, and so on those of F; 
therefore, for relation (31)2, the reduced Piola stress 
tensor has the same properties. 

At the end, by supposing the tensor Ξ in Eq. (45) as: 
Ξ୧୨K୪୫N  ൌ  ே          (46)ߜߜߜߙ

where ߙ is a constant and δ is the delta di Kronecker, 
by inserting expressions (44) and (45) in Eq. (32)2 and 
after in Eq. (33) and, further, by inserting relations (40) 
and (43)1 in Eq. (35), Eqs. (33) and (35) reduce to the 
following pure field equations: 

xሷ ൌ  f   Div ൛ሾߣ tr B  ߠሺߛ െ ሻሿIכߠ  2µB െ
െα ∆B  Bሷכ߯ െ 2 HሽF ,        (47) 

ሶߠߚ൫ߠ  tr Bሶ ߛ ൯ ൌ כߩ2
ିଵξ ∆θ െ λ    (48) 

6. Conclusions 

In this work we presented the general 
thermo-mechanical balance equations for a porous 
material with large voids viewed as a continuum with 
latent ellipsoidal microstructure. The tensorial order 
parameters, which describe the microstate, are 
completely constrained to the macrostrain and the 
microstructure disappears apparently. Hence some 

classical results are modified and some 
incompatibilities of the constitutive equations are left 
behind. Into details, the Cauchy stress tensor can be 
not symmetric, in general, and it can depend on higher 
derivatives of displacement and on acceleration 
gradients. Further, in the balance equation of 
momentum, as well as in that of energy, they appear 
fluxes of microstructural origin: in the first one a 
surface micromomentum flux and an external 
microforce flux, in the second one an interstitial work 
flux depending on the microstress. 
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