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Abstract: The aim of this study was to predict drivers’ drowsy states with high risk of encountering a crash and prevent drivers from 
continuing to drive under such drowsy states with high risk of crash. While the participants were required to carry out a simulated 
driving task, EEG (Electroencephalography) (EEG-MPF and EEG-α/β), ECG (Electrocradiogram) (RRV3), tracking error, and 
subjective rating on drowsiness were measured. On the basis of such measurements, an attempt was made to predict the point in time 
with high crash risk using Bayesian estimation of posterior probability of drowsiness, tracking error, and subjective drowsiness. As a 
result of applying the proposed method to the data of each participant, it was verified that the proposed method could predict the point 
in time with high crash risk before the point in time of crash. 

 
Key words: Bayesian estimation, drowsy driving, simulated driving task, tracking error, physiological measure, crash risk. 
 

1. Introduction 

More and more attention has been paid to the 

importance of monitoring drowsiness during driving. 

The development of the system that can monitor 

drivers’ arousal level and warn drivers of a risk of 

falling asleep is essential for the assurance of safety 

during driving. Advanced vehicle control systems such 

as longitudinal and lateral collision avoidance systems 

or lane keeping systems have been developed to 

enhance safety. Although these systems are effective to 

some extent, effective methods for predicting 

drowsiness and warning drivers of the risk of crash due 

caused by drowsy driving have not been established.  

According to statistics by Japanese National Police 

Agency, the percentage of fatal crashes due to drowsy 

driving during 2015 is the highest and equal to 17.9% 

of all fatal crashes [1]. AAA (American Automobile 

Association) Foundation for Traffic Safety reported 
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that drowsy driving played a role in an average of 

328,000 crashes annually. This total included 109,000 

crashes that resulted in injuries and 6,400 fatal crashes 

[2]. According to FARS (Fatality Analysis Reporting 

System) of the US department of transportation, 

416,000 crashes (fatal, injury, and PDO (property 

damage only)) occurred during five years from 2005 to 

2009 [3]. Advanced vehicle control systems will 

further contribute to the enhanced traffic safety if this is 

used together with drowsiness prediction and warning 

systems. 

Brown et al. [4] classified the methods for assessing 

drowsiness into driver-based and vehicle-based 

approaches. Driver-based approaches include EEG, 

HRV (heart rate variability), and ocular measures such 

as a pupil diameter and the number of blinks [5-14]. 

Lane position, line crossing, and steering wheel inputs 

are included in vehicle-based approaches.  

Dinges et al. [15] and Hanowski et al. [16] showed 

that PERCLOS (percentage eye closure) is more 

reliable across drivers than EEG and eye blinks are. Ji 
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et al. [17] attempted to assess a participant’s 

drowsiness level by integrating the measures of eyelid 

movements, head movements, eye gazes, and facial 

expressions. Ji et al. [18] proposed a model of 

drowsiness generation and attempted to predict 

drowsiness. However, it was difficult to identify the 

point in time at which the likelihood of falling asleep 

increases, although the algorithms could differentiate 

between the drowsy and aroused states. Kusuma and 

Sunitha [19] incorporated a four-step system (face 

detection, eye detection, eye state analysis, and 

drowsiness detection) to detect drowsiness.  

Hanowski et al. [16] showed that a multi-metric 

assessment system of drowsiness using an eye-closure 

measure and lane deviation performance is more robust 

and effective than a single-metric assessment system. 

Murata et al. [20], Murata et al. [21], and Murata et al. 

[22] used multiple behavioral measures such as the 

tracking error in a simulated driving task, back and foot 

pressure, and COP (center of pressure) during sitting 

pressure measurements, and demonstrated that 

multiple behavioral measures are more effective than a 

single behavioral or physiological measure.  

Assessment of reduced arousal level or 

discrimination between arousal and drowsy states has 

been conducted by many studies. Sayed and 

Eskandarian [23] succeeded in achieving an accuracy 

of about 90% in classifying drivers as being sleep 

deprived or non-sleep deprived using driver steering 

data. Samiee et al. [24] evaluated the arousal level 

classified as being alert or drowsy using vehicle 

dynamic data such as vehicle longitudinal position and 

duration of eye closures, and showed that the proposed 

method could differentiate between the alert and the 

drowsy states with an accuracy of more than 87.78%. 

Eskandarian et al. [25] and McDonald et al. [26] 

indicated the effectiveness of such vehicle-based 

measures for assessing drowsiness.  

A few of the past studies on the evaluation, 

classification, or prediction of drowsy states have  

 

attempted to predict the point in time with high 

likelihood of falling asleep; however, as pointed out by 

Sayed et al. [27], no definite and effective methods that 

can determine when the alarm should be presented to 

the driver exist. It is possible to predict the 

psychological rating on drowsiness using behavioral 

and physiological measures [24, 28, 29]. However, 

currently it is impossible to predict the point in time 

with high crash risk (crash in simulated driving) before 

such a crash occurs.  

Murata et al. [30] attempted to predict the risky state 

caused by drowsy driving using a posterior probability 

of drowsiness calculated on the basis of Bayesian 

estimation algorithm. Although the gross relationship 

between the posterior probability P(H1|xj) (H1: drowsy, 

xj: measured data such as EEG-MPF, EEG-α/β (ration 

of the α-wave power to the β-wave power), or RRV3) 

and the subjective rating on drowsiness was identified, 

this study could not predict the point in time with high 

crash risk before an actual crash occurred in the 

simulated driving task. An increased accuracy in the 

prediction of the point in time with high crash risk and 

the automatic warning of drivers of a risky state is 

necessary to prevent drivers from driving under a 

drowsy state that might cause a crash.  

This study attempted to predict the point in time with 

high crash risk in a driving simulator task before a 

virtual crash actually occurred. EEG and ECG during a 

simulated driving task were measured under the low 

arousal (drowsy) state while performing a simulated 

driving task. A method was proposed to predict the 

point in time with high risk of crash before the point in 

time of virtual crash occurs by means of the integration 

of posterior probability of drowsiness obtained by 

applying Bayesian estimation theorem [30], the 

subjective rating on drowsiness, and the tracking error. 

The validity of the proposed method was verified by 

examining whether the proposed method can predict 

the point in time with high crash risk before the point in 

time of virtual crash. 
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2. Method 

2.1 Participants 

Thirteen male graduates or undergraduates (from 21 

to 26 years old) participated in the experiment. They 

were all healthy and had no orthopedic or neurological 

diseases. All had held a driver’s license for 3-4 years, 

and were required to stay up all night and visit our 

laboratory early in the morning (at about five). They 

were not permitted to take drink containing caffeine 

and exercise excessively during the sleep deprivation. 

The screen time such as spending in interacting with a 

PC or a smart phone was also confined to less than one 

hour during the sleep deprivation. In such a way, one 

can induce a condition so that the participants readily 

felt asleep or carry out an experimental task under a 

drowsy or low arousal state. The visual acuity of the 

participants was more than 20/20. All signed the 

informed consent after receiving a brief explanation on 

the aim and the contents of the experiment. 

2.2 Apparatus 

The apparatus, task, design and procedure were the 

same with Murata et al. [20-22]. EEG activities were 

acquired using PowerLab 8/30 (AD Instrument) and 

bio-amplifier ML132 (AD Instrument). Surface EEG 

was recorded using silver/silver chloride surface 

electrodes, and sampled with a sampling frequency of 1 

kHz. According to international 10-20 standard, EEGs 

were led from O1 and O2. ECG was led from V5 using 

Biolabo DL-2000 (S&ME). The outline of display of 

driving simulator, steering wheel, and switch for 

evaluating subjective drowsiness is depicted in Fig. 1. 

2.3 Task, Design and Procedure 

The participants sat on an automobile seat, and were 

required to carry out a simulated driving task using a 

steering wheel shown in Fig. 1. The inside lane in   

Fig. 1 is displayed on the screen 3.2 m in front of the 

participant via a projector (EPSON, EB-S12H). They 

were required to steer a steering wheel and keep their 

own vehicle to the center line in Fig. 1 as much as they 

could. The driving simulator consisted of three inside 

lanes in one direction, and the participants were 

required to run the second lane. The width of each lane 

inside the simulated driving task was assumed to be  

3.6 m. In the simulated driving task, the tracking error 

between the center line in Fig. 1 and the present vehicle 

location (arrow in Fig. 1) was recorded every 1 s. The 

mean tracking error every 1 min was calculated. This 

was used to identify the point in time of virtual crash 

described in Section 3.1.   

 

 
Fig. 1  Outline of display of driving simulator, steering wheel, and switch for evaluating subjective drowsiness. 
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The participants were also asked to evaluate their 

arousal level every 1 min according to the following 

category: 1: arousal; 2: a little bit drowsy; 3: drowsy. It 

is possible to use a more detailed category such as 

7-point (such as SSS (Stanford Sleepiness Scale [31]) 

or 9-point (such as KSS (Karolinska Sleepiness Scale 

[32]) category. The following advantages and 

disadvantages exist in such categorization. While the 

finer categorization enables us to conduct finer 

evaluation of drowsiness, the disadvantage of such 

categorization is that the exact evaluation according to 

finer categories is difficult and suffers from more 

frequent false (ambiguous) evaluation at the boundary 

of arbitrary two categories. Moreover, it is pointed out 

that more choice alternatives are, the less effective the 

choice is [33]. In this study, the participant must report 

their subjective rating on drowsiness every 1 min. The 

more alternatives force the participants to feel it 

difficult to evaluate their feeling, and it is possible that 

the subjective evaluation cannot be carried out properly. 

The subjective rating on drowsiness was not a principal 

means for identifying the point in time with high risk of 

potential crash. Therefore, we adopted 3-point 

categorization of drowsiness. The psychological 

evaluation of drowsiness was incorporated into the 

experimental procedure to help the identification of 

point in time of highly risky state and virtual crash.  

EEG (EEG-MPF, EEG-α/β) and heart rate 

variability (RRV3) while performing a simulated 

driving task were derived to evaluate drowsiness. The 

relation between these measurements and drowsiness 

was analyzed. As well as the physiological measures 

above, the tracking error during a simulated driving 

task was recorded. The psychological rating of 

drowsiness reported every 1 min was used to grasp the 

change of drowsiness over time and detect a highly 

risky state using the tracking error, the subjective rating 

on drowsiness, and the result of Bayesian estimation in 

2.4. The duration of each experiment ranged from 420 s 

to 2,400 s, because the measurement was continued 

until the experimenter made the either of the following 

two judgments: (1) The participant fall asleep and is 

unable to carry out the experimental task any more; (2) 

The participant will not fall asleep if the experiment is 

continued further. Although the participants were 

required to stay up all night and the experiment began 

early in the morning (at about five), there were 

individual differences in the extent of induced 

drowsiness caused by staying up all night. Therefore, 

the duration of experimental measurement differed 

among participants. 

2.4 Definition of Point in Time of Virtual Crash 

A virtual crash was defined as follows. It was judged 

that the participant encountered a crash on the 

simulated driving task when the following two 

conditions were simultaneously satisfied: (1) Mean 

tracking error per minute was more than 1.8 m; (2) The 

participant could not report subjective drowsiness 

using a switch. The check of the two conditions was 

visually carried out by two experimenters. The 

experimenters confirmed that Condition (1) was not 

merely due to an error in steering operation. Only when 

the judgment concerning the satisfaction of (1) and (2) 

above were consistent among the two experimenters, 

this was regarded as a virtual crash. Before carrying out 

the experiment, the two experimenters were trained so 

that the inter-rater (experimenter) reliability of decision 

making was ensured. As shown in Fig. 2, the tracking 

error of 1.8 m corresponds to the half of lane width and 

shows that the vertical location is dispersive to a larger 

extent (This is not judged to be driving normally). 

3. Method for Predicting Point in Time with 
High Risk of Crash 

3.1 Calculation of the Integrated Posterior 

Probabilities P(H1|X) Using Bayesian Theorem [30] 

FFT (Fast Fourier Transform) was carried out every 

1,024 data (1.024s) for EEG. Before the EEG data were 

entered into an FFT program, the data were passed 

through a cosine taper window. On the basis of such an  
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Fig. 2  Procedure for renewing prior probability according to the mean tracking error.  
 

FFT analysis, the mean power frequency (EEG-MPF) 

and EEG-α/β were calculated. EEG-MPF was 

calculated as follows: 
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where, fi and powi correspond to the frequency and the 

corresponding power, respectively. The values of f1 and 

f30 were set to about 1 Hz and 30 Hz, respectively (The 

frequency band was assumed to range from 1 Hz to 30 

Hz). The lower value of EEG-MPF shows that the 

arousal level is decreased. EEG-α/β can be calculated 

as the ration of the sum of α-band (8-12 Hz) power and 

θ-band (4-7 Hz) power to the power of β-band (13-30 

Hz) power. The higher this value is, the lower the 

arousal level gets.  

On the basis of ECG waveform, R-R intervals 

(inter-beat intervals) were obtained by detecting R 

waves. HRV measure RRV3 was derived as follows. 

The moving average per three inter-beta intervals was 

calculated. Variance of past three inter-beat intervals 

was calculated as RRV3, which is regarded to represent 

the functions of parasympathetic nervous systems. The 

reason why RRV3 was used to evaluate the 

parasympathetic system is shown in Fig. 3. The 

transmittance for moving average of three, five, eight, 

and sixteen inter-beat intervals is plotted as a function 

of frequency (1/beat). As shown in Fig. 3, the 

transmittance of RRV3 for the frequency corresponding 

to the respiration frequency (more than 0.25 1/beat) is 

nearly equal to zero. Therefore, RRV3 can be regarded 

to reflect the function of parasympathetic nervous 

system (respiratory sinus arrhythmia). RRV3 increases 

under the low arousal condition due to the dominance 

of parasympathetic nervous system.  

The basic concept of Bayesian theorem [34] is 

depicted in Fig. 4. First, the following definitions are 

made before the detail of Bayesian estimation is 
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described. The prior probabilities of events H1 (drowsy) 

and H2 (arousal) are given by P(H1) and P(H2).    

The conditional probabilities (likelihood) P(xj|H1)      

and P(xj|H2) represent the probabilities of observing the 

data xj given that the hypothesis Hi is true. On the basis 

of measured data such as x1: EEG-MPF, x2: EEG-α/β, 

and x3: RRV3, the probability of event (in this study H1: 

drowsy, H2: arousal) which caused the data  (measurement)  

 

 
Fig. 3  Filter characteristics of RRV3 (transmittance for moving averaged time series of three, five, eight, and sixteen 
inter-beat intervals is plotted as a function of frequency (1/beat)). 
 

 
Fig. 4  Correspondence of effects (measurements x1-x3) and cause (events H1 (drowsy) and H2 (arousal)) in Bayesian 

estimation.  
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given that the measurement is obtained (in this study, 

P(H1|x1), P(H1|x2), P(H1|x3), P(H2|x1), P(H2|x2), and 

P(H2|x3)) is estimated using Bayesian estimation 

method below. The three measures x1, x2, and x3 were 

plotted as an X-bar control chart (see Fig. 5). An X-bar 

control chart of EEG-MPF is demonstrated in Fig. 5. 

Using the X-bar control chart [35], the judgment 

(assessment) of drowsiness of participants was carried 

out according to the procedure mentioned below. 

First, the procedure for calculating the likelihood is 

described (see Fig. 5). In order to apply Bayesian 

estimation method, the likelihood P(xj|Hi) (i = 1, 2;    

j = 1, 2, 3) was calculated as a ratio of the number of 

judgment (assessment) as Hi to the total number of 

judgments (30 judgments) using the X-bar chart of each 

measurement. First, an interval of 30 s was selected. In 

case of EEG-MPF, it was assessed that the arousal 

level was low when more than 10% of data were below 

the threshold (lower control limit) (CL-σ). In case of 

EEG-α/β and RRV3, it was assessed that the arousal 

level was low when more than 10% of data were above 

the threshold (upper control limit) (CL+σ). The 

30s-interval was moved forward by 1 s, and the 

judgment (assessment) of arousal level was carried out 

for the whole analysis interval. In case of EEG-based 

measures such as EEG-MPF and EEG-α/β, 30 s and 1 s 

exactly corresponded to 30.72 s and 1.024 s, 

respectively. As for RRV3, 30 s and 1 s exactly 

corresponded to 30 beats and one beat, respectively. 

Using the following Bayesian theorem, the posterior 

probabilities P(H1(drowsy)|xj) and P(H2(arousal)|xj) (j 

= 1, 2, 3) are calculated using the following formula by 

making use of the likelihood P(xj|Hi) (i = 1, 2; j = 1, 2, 

3) mentioned above (see Fig. 5). An initial value of 

prior probability is usually set to 

)(/)()()( jijiji xPHxPHPxHP     (2) 

where, P(H1) = P(H2) = 1/2, and P(xj) is the probability 

of observing xj. According to the procedure shown in 

Fig. 6, the calculation of P(Hi|X) (estimation of 

integrated posterior probability of drowsiness) 

according to Hershman [36] was carried out. The 

integration formula is given by Eq. (2). As the    

three measures EEG-MPF, EEG-α/β, and RRV3 are not 
 

 
Fig. 5  Procedure for calculating likelihood necessary for Bayesian estimation using X-bar chart.  
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Fig. 6  Explanation for calculating P(H1|xj) and P(H2|xj).  
 

highly correlated, it is possible that the integration of 

three measures corrects for the redundancy of a priori 

probability in each measure, leading to the enhanced 

reliability of drowsiness prediction. 
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where, X = (x1, x2, …, xM). In this study, M and N are 

equal to 3 and 2, respectively.  

Fig. 6 demonstrates the calculated probability 

P(H1|x1), P(H1|x2), P(H1|x3), P(H2|x1), P(H2|x2), and 

P(H2|x3), which are used to calculate the integrated 

posterior probabilities P(H1|X) and P(H2|X). In the 

example in Fig. 6, the value of P(H1|X) is by far larger 

than that of P(H2|X). Here, H1 is estimated as true. 

These values were calculated every second (EEG-MPF 

and EEG-α/β) or inter-beat interval (RRV3).  

Bayesian estimation remains unbiased with sample 

size due to exact estimation. Therefore, one can judge 

that Bayesian estimation can benefit with a limited 

sample size. Moreover, the proposed method 

mentioned in Section 3 is applied to each participant in 

order to predict risky and highly drowsy state of each 

individual. With the elapse of experiment, the data 

usable for Bayesian inference are accumulated. 

Therefore, it can be regarded that a sample size of 13 is 

not so inadequate.  

Although an initial values of prior probability are 

usually set to P(H1) = P(H2) = 0.5, it is necessary to 

renewal the prior probabilities P(H1) and P(H2) so that 

the estimation accuracy is enhanced. Therefore, the 

prior probabilities P(H1) and P(H2) were renewed 

every 1 s or 1 inter-beat interval according to the 
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procedure in Fig. 2. In this manner, the integrated 

posterior probabilities P(H1|X) was calculated in order 

to make use of this for identifying the point in time with 

high crash risk according to the procedure in    

Section 3.2. 

3.2 Procedure for Identifying the Point in Time with 

High Risk of Crash 

The aim of this study was to verify for each 

participant whether it was possible to predict the highly 

risky state of encountering a crucial crash before the 

point in time of virtual crash by means of the integrated 

posterior probability, the subjective rating on 

drowsiness, and the tracking error in a simulated 

driving task.  

The following algorithm was used for identifying the 

point in time with high crash risk. When Conditions 

(1)-(3) below were simultaneously satisfied, one can 

judge that it is highly risky to make the participant 

continue carrying out the simulated driving task:  

(1) The point in time when the probability P(H1|X) is 

above x (= 0.8) occupied more than y %(= 60%) of z-s 

interval (= 30 s); 

(2) The point in time when the mean tracking error is 

more than 1.8 m occupied more than v % (= 20%) of 

w-s interval (= 60 s); 

(3) The rating of drowsiness corresponded to 3 (very 

drowsy) or the missing of response switch pressing. In 

addition to this, the ratings of drowsiness one minute 

before and after this point in time also correspond to 3 

(very drowsy) or the missing of response switch 

pressing.  

This procedure was applied to all participants, and it 

was checked whether the point in time with high crash 

risk was predictable using this procedure. 

4. Results 

4.1 Identification of Point in Time of Virtual Crash 

As a result of checking the data of all participants 

according to the rule described in Section 2.4, the point 

in time of virtual crash was detected in eight out of 

thirteen participants. As for other five participants, no 

definite virtual crash could be identified (see Table 1). 

Using the proposed method, it was explored whether 

the proposed method can predict the point in time with 

high crash risk before a virtual crash actually occurred.  

4.2 Identification of Point in Time with High Crash 

Risk 

Examples of the change of tracking error, P(H1|X), 

and subjective rating on drowsiness over time and the 

identification of highly risky state and virtual crash are 

shown in Figs. 7 (Participant E), and 8 (Participant F). 

The result of prediction of the point in time with high  

 

Table 1  Result of identification of point in time of virtual crash and that with high risk of crash.  

Participant Point in time of virtual crash x Point in time of high crash risk y x  y 
Percentage of drowsiness 
evaluation of 3 or missing 

A No detected No detected - 30% 

B 1,200 s 1,118 s 82 s 57.5% 

C No detected No detected - 48.1% 

D 1,620 s 950 s 670 s 57.5% 

E 360 s 217 s 143 s 66.9% 

F 420 s 150 s 270 s 71.4% 

G 420 s 378 s 42 s 71.7% 

H No detected No detected - 16.1% 

I 1,020 s 986 s 34 s 57.5% 

J No detected No detected - 10% 

K 540 s 351 s 189 s 66.7% 

L No detected No detected - 0% 

M 1,320 s 988s 332 s 68.1% 
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Fig. 7  Change of tracking error and P(H1|X), and subjective rating on drowsiness with time, and point in time with high risk 
of crash and that of virtual crash (Participant E).   
 

 
Fig. 8  Change of tracking error and P(H1|X), and subjective rating on drowsiness with time, and point in time with high risk 
of crash and that of virtual crash (Participant F). 
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crash risk according to the procedure in Section 3.2 is 

summarized in Table 1. 

5. Discussion 

Although Murata et al. [29] proposed a method to 

calculate a posterior probability of drowsiness P(H1|X), 

they did not show a concrete procedure for predicting 

the point in time with high crash risk that might lead to 

a crash if the participant continues a simulated driving 

task. They also did not define and identify the point in 

time of virtual crash. This study aimed at predicting the 

point in time with high crash risk before a virtual crash 

occurs in the simulated driving task. 

As shown in Table 1, the point in time with high risk 

of crash was detected according to the proposed 

procedure mentioned in Section 3.2 for all of eight 

participants for whom the point in time of virtual crash 

was detected according to the procedure mentioned in 

Section 2.4. On the other hand, the point in time with 

high crash risk was not detected for all of the five 

participants for whom a virtual crash did not occur. The 

mean percentages of drowsiness rating 3 or missing of 

reaction were 64.34% and 20.84% for the detected and 

non-detected groups of virtual crash, respectively (see 

Fig. 9). The difference was statistically significant as a 

result of ratio test (|t| = 6.237, p < 0.01). This means 

that the degree of drowsiness is larger for the 

participants whose point in time of virtual crash was 

detected than those for whom the point in time of 

virtual crash was not detected. Therefore, it can be 

judged that the procedure for predicting the point in 

time of high crash risk.  

As for the group in which the virtual crash was 

detected, the time interval between point in the time of 

virtual crash and that of high crash risk (for eight 

participants to whom the virtual crash was detected) 

was obtained to examine whether this has some 

relationship with percentage of drowsiness rating 3 or 

missing for reaction. No definite relationship was 

detected as far as this study is concerned (see Fig. 10). 

The revelation process of drowsiness or fatigue is 

generally said to have a variety of patterns and be 

ruled by individual differences. For example, the risky 

state that eventually makes us fall asleep differs in its 

duration among individuals. To develop a more 

effective prediction system, a further insight into such 

a basic mechanism of drowsiness or fatigue would be 

necessary. 

 

 
Fig. 9  Percentage of 3 or missing as a function of whether a virtual crash was detected or not. 
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Fig. 10  Relationship between x  y and percentage of 3 or missing. 
 

Although McDonald et al. [26] showed that steering 

wheel angle could be used to predict drowsiness related 

lane-departures six seconds before they occurred, they 

only showed the relationship between lane-departures 

and drowsiness. Brookhuis and Waard [10] showed 

that the driver status such as drowsiness due to 

long-hour engagement in driving was measured by 

standard deviation of lateral position or steering wheel 

movement. From Figs.7 and 8, it is clear that the 

tracking error is dispersive and variable throughout the 

experimental duration. On the other hand, the posterior 

probability of drowsiness P(H1|X) was less variable and 

dispersive than the tracking error.  

It must be noted that one cannot visually predict the 

point in time with high risk of crash on the basis of only 

lane-departure measures such as a tracking error, 

although this measure is to some extent effective for 

assessing the drowsy state. As pointed out by 

Hanowski et al. [16], it was judged that only a tracking 

error could not predict the risky state under which 

drivers are confronted with a higher risk of crash. This 

measure was used in combination with other more 

stable and reliable measures. Therefore, as stated in 

Section 3.2, an attempt was made to predict the point in 

time with high crash risk before a crash occurs in the 

simulated driving task by integrating a posterior 

probability P(H1|X), the tracking error, and the 

subjective rating on drowsiness. 

As the aim of this study was to propose a method to 

predict the point in time with high crash risk before the 

point in time of virtual crash using the proposed 

procedure, the proposed procedure was applied to all 

participants so that the effectiveness of the proposed 

procedure can be verified. The point in time with high 

crash risk was not identified for the participants for 

whom the point in time of virtual crash was not 

detected. The point in time with high crash risk was 

identified for only participants for whom the point in 

time of virtual crash was detected (see Table 1). This 

verified the validity of the procedure for predicting the 

point in time with high crash risk.  

The point in time with high crash risk indicates that 

the participant would certainly encounter a crash 

caused by drowsiness if such a state is left alone and no 

countermeasures (such as providing drivers with some 

alarm or warning) are taken. As shown in Table 1, the 

point in time with high crash risk could be detected 

before a virtual crash occurred. This means that the 

virtual crash can be prevented by predicting the point in 

time with high crash risk and simultaneously providing 

0

10

20

30

40

50

60

70

80

0 200 400 600 800

x -y   s

P
er

ce
nt

ag
e 

of
 3

 o
r 

m
is

si
ng

  %



Prediction of Point in Time with High Crash Risk by Integration of Bayesian  
Estimation of Drowsiness, Tracking Error, and Subjective Drowsiness 

  

13

a participant with some alarm, or forcing to stop the 

simulated driving task. The prediction procedure of the 

point in time with high crash risk by means of the 

method using Bayesian estimation, the tracking error, 

and the subjective rating on drowsiness can be made 

use of so as to prevent drowsy driving.  

The driving simulator corresponds to a low fidelity 

one. It is clear that the cognitive workload might be 

different between low and high fidelity simulators. The 

aim of this study was not to evaluate the cognitive load 

but to predict the point in time with high crash risk for 

the sleep-deprivation participants who were required to 

stay up all night and visit our laboratory early in the 

morning (at about five). Therefore, it can be judged that 

the fidelity of the simulator does not have a major 

influence on the findings. 

Although the parameters x (= 0.8), y (= 60%), z (= 

30 s), v (= 20%), and w (= 60 s) were empirically 

determined in this study, future work must explore how 

the parameters x, y, z, v, and w above should be 

systematically determined. As the participants 

consisted of a sample of male university students, this 

might limit the validity of this study. Future research 

should verify whether the proposed method can 

effectively predict the risky and drowsy state in 

advance for a population such as long haul truck 

drivers or lorry drivers. 

6. Conclusions 

The aim of this study was to predict drivers’ risky 

state caused by drowsiness and prepare against a crash. 

While the participants were required to carry out a 

simulated driving task, EEG (MPF and α/β-ratio), ECG 

(RRV3), tracking error, and subjective rating on 

drowsiness were measured. Using these measurements, 

a method to predict the point in time with high crash 

risk was proposed.  

First, it was examined whether this point in time of 

virtual crash was observed for each participant. On the 

basis of such measurements, using the posterior 

probability of drowsiness, tracking error, and subjective 

rating on drowsiness, an attempt was made to predict 

the point in time with high crash risk before a virtual 

crash occurred.  

The proposed procedure could effectively predict the 

point in time with high crash risk for only the 

participants for whom the point in time of virtual crash 

was identified. The corresponding point in time was not 

detected for the participants for whom the proposed 

procedure did not detect the point in time of virtual 

crash. In this manner, the validity of the proposed 

method was demonstrated.  

Future research should further verify the 

effectiveness of the proposed method in more 

real-world environment. Using physiological measures 

such as EEG-MPF, EEG-α/β-ratio, and RRV3 is not 

practical and feasible due to high price (cost) of such 

physiological measurement apparatus. Thus, it should 

be explored whether the application of the proposed 

method to only the behavioral drowsiness evaluation 

measure [20, 21, 29] can also effectively predict the 

point in time with high crash risk. 

Acknowledgments 

This work was partly supported by Grant-in-Aid for 

Scientific Research (B) (22310101, 26282095), Japan 

Society for the Promotion of Science (JSPS). 

References 

[1] Portal Site of Official Statistics of Japan. n.d. “Traffic 
Accidents Situation.” Accessed October 20, 2015. 
http://www.e-stat.go.jp/SG1/estat/eStatTopPortalE.do. 

[2] Sleep Education for School. n.d. “Drowsy Driving 
Statistics.” Accessed June 20, 2016. 
http://school.sleepeducation.com/drowsydrivingstats.aspx
. 

[3] NHTSA (National Highway Traffic Safety 
Administration). 2011. Traffic Safety Facts. Accessed 
July 13, 2017. 
http://www-nrd.nhtsa.dot.gov/Pubs/811449.pdf. 

[4] Brown, D. S., Schaudt, W. A., and Hanowski, R. J. 2012. 
“Advances in Drowsy Driver Assistance Systems through 
Data Fusion.” In Handbook of Intelligent Vehicles, edited 
by Eskandarian, A. Vol. 2. London: Springer, 895-909. 

[5] McGregorm, D. K., and Stern, J. A. 1996. “Time on Task 
and Blink Effects on Saccade Duration.” Ergonomics 39 



Prediction of Point in Time with High Crash Risk by Integration of Bayesian  
Estimation of Drowsiness, Tracking Error, and Subjective Drowsiness 

  

14

(4): 649-60. 
[6] Milosevic, S. 1978. “Vigilance Performance and 

Amplitude of EEG Activity.” Ergonomics 21 (11): 
887-94. 

[7] Piccoli, B., D’orso, M., Zambelli, P. L., Troiano, P., and 
Assint, R. 2001. “Observation Distance and Blinking Rate 
Measurement during On-site Investigation: New 
Electronic Equipment.” Ergonomics 44 (6): 668-76. 

[8] Sharma, S. 2006. “Linear Temporal Characteristics of 
Heart Interbeat Interval as an Index of the Pilot’s 
Perceived Risk.” Ergonomics 49 (9): 874-84. 

[9] Tejero, P., and Choliz, M. 2002. “Driving on the 
Motorway: The Effect of Alternating Speed on Driver’s 
Activation Level and Mental Effort.” Ergonomics 45 (9): 
605-18. 

[10] Brookhuis, K. A., and Waard, D. 1993. “The Use of 
Psychophysiology to Assess Driver Status.” Ergonomics 
36 (9): 1099-110. 

[11] Kecklund, G., and Akersted, T. 1993. “Sleepiness in Long 
Distance Truck Driving: An Ambulatory EEG Study of 
Night Driving.” Ergonomics 36 (9): 1007-17. 

[12] Galley, N. 1993. “The Evaluation of the Electrooculogram 
as a Psycho-physiological Measuring Instrument in the 
Driver Study of Driver Behavior.” Ergonomics 36 (9): 
1063-70. 

[13] Wright, N., and McGown, A. 2001. “Vigilance on the 
Civil Flight Deck: Incidence of Sleepiness and Sleep 
during Long-Haul Flights and Associated Changes in 
Physiological Parameters.” Ergonomics 44 (1): 82-106. 

[14] Skipper, J. H., and Wierwillie, W. W. 1986. “Drowsy 
Driver Detection Using Discrimination Analysis.” Human 
Factors 28 (5): 527-40. 

[15] Dinges, D. F., Mallis, M. M., Maislin, G., and Powell, J. 
W. 1998. Final Report: Evaluation of Techniques for 
Ocular Measurement as an Index of Fatigue and as the 
Basis for Alertness Management. National Highway 
Traffic Safety Administration. 

[16] Hanowski, R. J., Bowman, D., Alden, A., Wierwille, W. 
W., and Carroll, R. 2008. “PERCLOS+: Moving beyond 
Single-metric Drowsiness Monitors.” SAE Technical 
Paper 2008-01-2692. 

[17] Ji, Q., Zu, Z., and Lan, P. 2004. “Real-Time Nonintrusive 
Monitoring and Prediction of Driver Fatigue.” IEEE Trans. 
on Vehicle Technology 53 (4): 1052-68. 

[18] Ji, Q., Lan, P., and Looney, C. 2006. “A Probabilistic 
Framework for Modeling and Real-Time Monitoring 
Human Fatigue.” IEEE Trans. on System, Man, and 
Cybernetics, Part A: Systems and Humans 36 (5): 862-75. 

[19] Kusuma, K. B. M., and Sunitha, K. M. 2014. “Non 
Intrusive Drowsy Driver Detection.” International 
Journal of Advanced Trends in Computer Science and 
Engineering 3 (2): 32-5. 

[20] Murata, T. K., Ohkubo, Y., and Moriwaka, M. 2013. 
“Verification of Physiological or Behavioral Evaluation 
Measures Suitable for Predicting Drivers’ Drowsiness.” In 
Proceedings of SICE2013, 1766-71. 

[21] Murata, A., Nakatsuka, A., and Moriwaka, M. 2013. 
“Effectiveness of Back and Foot Pressures for Assessing 
Drowsiness of Drivers.” In Proceedings of SICE2013, 
1754-9. 

[22] Murata, A., Urakami, Y., Koriyama, T., and Ikeda, M. 
2013. “Evaluation of Drowsiness of Driver Based on 
Change of Sitting Pressure Center.” In Proceedings of 
SICE2013, 1760-5. 

[23] Sayed, R., and Eskandarian, A. 2001. “Unobtrusive 
Drowsiness Detection by Neural Network Learning of 
Driver Steering.” Proc. of the Institution of Mechanical 
Engineers Part D: Journal of Automobile Engineering 215 
(D9): 969-75. 

[24] Samiee, S., Azadi, S., Kazemi, R., Nahvi, A., and 
Eichberger, A. 2014. “Data Fusion to Develop a Driver 
Drowsiness Detection System with Robustness to Signal 
Loss.” Sensors 14: 17832-47.  

[25] Eskandarian, A., Mortazavi, A., and Sayed, R. K. 2012. 
“Drowsy and Fatigue Driving Problem Significance and 
Detection Based on Driver Control Functions.” In 
Handbook of Intelligent Vehicles, edited by Eskandarian, 
A. Vol. 2. London: Springer, 941-74. 

[26] McDonald, A. D., Schwartz, C., Lee, J. D., and Brown, T. 
L. 2012. “Real-Time Detection of Drowsiness Related 
Lane Departures Using Steering Wheel Angle.” In 
Proceedings of the Human Factors and Ergonomic 
Society 56th Annual Meeting, 2201-5. 

[27] Sayed, R. A., Eskandarian, A., and Mortazavi, A. 2012. 
“Drowsy and Fatigued Driver Warning, Counter Measures, 
and Assistance.” In Handbook of Intelligent Vehicles, 
edited by Eskandarian, A. Vol. 2. London: Springer, 
977-90. 

[28] Murata, A., Ohkubo, Y., Moriwaka, M., and Hayami, T. 
2011. “Prediction of Drowsiness Using Multivariate 
Analysis of Biological Information and Driving 
Performance.” In Proceedings of SICE2011, 52-7. 

[29] Murata, A., and Koriyama, T. 2012. “Basic Study on the 
Prevention of Drowsy Driving using the Change of Neck 
Bending Angle and the Sitting Pressure Distribution.” In 
Proceedings of SICE2012, 274-9. 

[30] Murata, A. 2016. “Prediction of High Risk of Drowsy 
Driving by a Bayesian Estimation Method—An Attempt 
to Prevent Traffic Accidents due to Drowsy Driving.” In 
Ergonomics and Human Factors in Safety Management, 
edited by Carvalho, P., and Arezes, P. Boca Raton, USA: 
CRC Press, 354-71. 

[31] Hoddes, E., Zarcone, V., Smythe, H., Phillips, R., and 
Dement, W. C. 1973. “Quantification of Sleepiness: A 



Prediction of Point in Time with High Crash Risk by Integration of Bayesian  
Estimation of Drowsiness, Tracking Error, and Subjective Drowsiness 

  

15

New Approach.” Psychophysiology 10: 431-6. 
[32] Åkerstedt, T., and Gillberg, M. 1990. “Subjective and 

Objective Sleepiness in the Active Individual.” 
International Journal of Neuroscience 52: 29-37. 

[33] Schwartz, B. 2005. The Paradox of Choice: Why More Is 
Less. NY: New York, Harper Perennial.  

[34] Swinburne, R. 2002. Bayes’s Theorem. New York: 
Oxford University Press. 

[35] Stamatis, D. H. 2002. Six Sigma and beyond—Design for 
Six Sigma. Boca Raton: St.Lucie Press, 273-5. 

[36] Hershman, R. L. 1971. “A Rule for the Integration of 
Bayesian Options.” Human Factors 13 (3): 255-9. 

 
 


