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Abstract: We consider the problem of constructing one sparse signal from a few measurements. This problem has been extensively 
addressed in the literature, providing many sub-optimal methods that assure convergence to a locally optimal solution under specific 
conditions. There are a few measurements associated with every signal, where the size of each measurement vector is less than the 
sparse signal’s size. All of the sparse signals have the same unknown support. We generalize an existing algorithm for the recovery of 
one sparse signal from a single measurement to this problem and analyze its performances through simulations. We also compare the 
construction performance with other existing algorithms. Finally, the proposed method also shows advantages over the OMP 
(Orthogonal Matching Pursuit) algorithm in terms of the computational complexity. 
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1. Introduction 

Sparse signal processing is an important problem 

which arises in many different problems such as sparse 

sampling, sparse coding, channel estimation and 

applications related to image processing. In these 

situations, the general problem can be posed as an 

under-determined sparse signal recovery problem. 

There are situations where the desired solution is not 

sparse but a sparse approximation of it exists as in a 

wide-band channel. There are other situations where 

the problem has an equivalent sparse representation in 

another domain. For instance, in the wavelet domain, 

an image can be represented with a sparse signal. All 

these problems fall into the category of a CS 

(compressed sensing) problem. This problem in its 

basic form consists of recovering an unknown sparse 

signal of interest from a measurement vector, referred 

to as the SMV (single measurement vector) problem. It 

has been shown that an exhaustive search to solve this 

problem is NP-hard [1]. A vast majority of literature 

has been dedicated to finding low-complexity 
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approximation algorithms whose solutions are close 

the optimal solution, as well. In the Gaussian noise 

structure, the ݈ଵ-norm minimization [2], LASSO [3] 

and greedy algorithms [4] are some examples. In the 

non-Gaussian noise structure, greedy algorithm [5] and 

Bayesian method [6] are some example approaches.  

On the other hand, in some other applications, such 

as in array processing problems [7], neuromagnetic 

inverse problem that arises in MEG 

(magnetoencephalography) [8], linear inverse problem 

[8] and source location in sensor network [9] that the 

problem is more complex. In these problems, referred 

to as the MMV (Multiple Measurement Vector) model 

[10], the objective is to recover a sparse representation 

of signals from multiple measurement vectors. In this 

class, the signals are assumed to have a common 

sparsity profile. We assume that all of the sparse 

signals share the same support. Therefore, the problem 

is to find the sparse signals ݔ א  ܴ given the 

measurement vectors ݕ א ܴ  for ݅ ൌ 1, 2, . . ., ܰ , 

such that: 

ݕ ൌ ,ݔܣ ݅ ൌ 1, 2, ڮ , ܰ 

where ݉ ൏ ݊, and ܣ are the sensing matrices. 

The majority of the results for the MMV problem are 
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obtained by generalizing the results of the SMV 

problems. For instance, it has been shown that the 

equivalence of ݈ -norm and ݈ଵ -norm under some 

conditions as well as the uniqueness of the solution 

under both norms for the SMV problems extends to 

MMV problems, as well [10]. Likewise, recovery 

methods used for the SMV problems can be extended 

for the MMV problems, as well.  

For instance, it has been shown that for particular 

problems, the OMP (orthogonal matching pursuit) 

algorithm can obtain the sparsest solution for the MMV 

problem [10]. The MP (matching pursuit) and the 

FOCUSS (FOCal underdetermined system solver) 

algorithms for the SMV problem have also been 

extended to MMV models [7, 10]. The convex 

relaxation methods and StOMP (Simultaneous 

Orthogonal Matching Pursuit) methods have been 

extended for MMV model in Ref. [11]. In another 

approach, the MMV prox algorithm has been proposed 

to solve MMV problems [12]. In this method, first the 

dual problem of the primal ሺ2,1ሻ-norm minimization 

problem is derived. Then, the dual optimization is 

reformulated as a minmax problem, and the problem is 

solved using the prox-method [13]. 

In this paper, we propose an algorithm for recovery 

of jointly sparse signals by applying a similar 

procedure as the extension of the OMP algorithm to 

solve the MMV problem for recovery of sparse signals 

with the same support. For this purpose, we use the 

StOMP algorithm as the base algorithm, and extend it 

to our problem of interest. 

2. Method 

In order to expedite recovery of sparse signals, 

greedy algorithms are introduced. For the SMV 

problem, instead of solving an ℓଵ  minimization 

problem through LASSO or linear programming, 

matching pursuit algorithm was introduced. Since the 

convergence condition of the MP is more restrict than 

other methods, it requires more measurements for exact 

recover. However, its computational complexity is 

superior. For instance, the number of iterations 

required for OMP is the same as the sparsity order, and 

each iteration just requires a pseudo-inverse, which has 

the complexity of ܱሺ݇ଷሻ in each step. However, when 

both ݊  and ݇  are large, we are interested in 

algorithms with less computations. 

OMP has been generalized to MMV problem using 

some modification in the support recovery step. In 

SMV, the index which has maximum correlation with 

the residual at each iteration is added to the support. In 

MMV, a summation is applied over all measurement 

vectors, and then the index having maximum 

correlation is selected [10]: 

ܬ ൌ argmax ൭ |ሺܣሻ்ݎ
|

ே

ୀଵ

൱, 

ܶ ൌ  ܶ  ,ܬ

where ݎ
  is the residual of the ݅௧ vector in the ݇௧  

iteration, ܶ is the common support, and we assumed 

that the columns of ܣ have unit norm. Other steps are 

the same as the SMV recovery.  

One way to decrease the complexity of OMP 

recovery method is to reduce the number of iterations 

when ݇ is large. As mentioned earlier, OMP needs ݇ 

iteration to reconstruct the original sparse signal 

completely. It is because of the fact that OMP recovers 

one support in each iteration. Therefore, we design a 

new procedure to add more than one index to the 

support in each iteration. The solution is to specify an 

adaptive threshold, and in every iteration, instead of 

choosing the index that gives the maximum correlation, 

we select all the indexes that their correlation is greater 

than that threshold [14]. This threshold can be a 

function of residual at each iteration. The StOMP 

procedure is summarized in Table 1. 

The difference between StOMP and OMP is the 

threshold block. In fact, OMP picks the largest 

coefficient in each iteration and adds it to the support, 

but StOMP uses a threshold to find the appropriate 

support. In this situation, there is a chance that more 

than one  component be  added to  the support  in each 
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Table 1  The StOMP procedure. 

1. Set ݅ ൌ ݎ ,1 ൌ ܺ ,ݕ ൌ ݐ ,0 ൌ 2.5 and ܶ ൌ ሼሽ; 

2. while ݅  10; 

ܬ .3 ൌ ݂݅݊݀ሺ|ݎ்ܣ|  ݐ
||||మ

√
ሻ; 

4. ܶ ൌ ܶ   ;ܬ 

5. ்ܺ ൌ ሺ்ܣ
்  ;ݎ ሻିଵ்்ܺܣ

ݎ .6 ൌ ݕ െ  ;ܺܣ

7. end while 
 

iteration. For the case that the number of non-zero 

elements, ݇, is large, StOMP needs much less iterations 

to recover the original signal; e.g. 10 iterations. Thus, 

instead of having overall complexity of ܱሺ݇ସሻ  for 

OMP, the StOMP method has ܱሺ݇ଷሻ complexity. 

In order to generalize StOMP to the case of more 

than one sparse vector with common support, we use 

the same technique used for OMP. Based on that, at 

each iteration, instead of recovering support separately, 

we use all the measurement vectors together, which 

only changes step 3 in Table 1 as: 

ܬ ൌ ݂݅݊݀ ቌ |ሺܣሻ்ݎ
|  ଶඨ||ݎ||ݐ

ܰ
݉

 

ே

ୀଵ

ቍ 

Since there is a summation over ܰ  vectors, the 

threshold needs to be modified too, in which case a 

factor of √ܰ is added. Other steps are the same as 

before. 

3. Simulation Result 

In this section, we assess the performance of the 

proposed approaches for reconstruction of jointly 

sparse signals through simulations. For simulations, we 

set the size of the sparse signal to ݊ ൌ  400 and the 

number of measurements for each signal ݉ ൌ  100. 

For different number of non-zero elements and 

different number of sparse signals, we compare the 

probability of perfect reconstruction and simulation 

time. We use OMP [15], Cosamp [16], GHNM [5] and 

SP [17] as the benchmark and compare the 

performance of our method with these methods. In Fig. 

1, we compare the performance of the method for a 

case that there is only one sparse signal. GHNM has the 

best performance in recovery, but its simulation time 

grows with the number of non-zero element. OMP has 

better performance than StOMP. For instance, when 

we have k = 35, both GHNM and StOMP have perfect 

recovery, but StOMP is faster than OMP. Thus, there is 

trade-off between complexity and recovery. 

Fig. 2 compares these methods when there is more 

than one sparse vector. For this figure, the number of 

sparse signals is set to N = 10. It can be observed that 

having more sparse vectors with the same support 

improves the performance of all three methods. It is 
 

 
(a)                                              (b) 

Fig. 1  Comparison of (a) percentage recovery and (b) simulation time of different methods in SMV against different number 
of non-zero elements and 10 sparse signals. 
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(a)                                              (b) 

Fig. 2  Comparison of (a) percentage recovery and (b) simulation time of different methods in MMV against different number 
of non-zero elements and 10 sparse signals. 
 

 
Fig. 3  Comparison of percentage recovery of StOMP in 
MMV against different number of non-zero elements and 
different number of sparse signals. 
 

because of the fact that we used jointly recovery 

algorithms, and recovering every vector separately 

results in the same performance as the case of one 

sparse vector. Again, OMP compared to StOMP has 

better performance and needs more time. From this 

figure, we expect that increasing the number of sparse 

vectors improves the recovery performance. 

To see the effect of increasing the number of sparse 

signals on the recovery performance, in Fig. 3, we 

compared the performance of these methods for 1, 4 

and 10 signals. It is seen that increasing the number of 

sparse signals improves the performance greatly, and 

we need less measurements in order to have the same 

recovery performance as the case of one vector. 

4. Discussion 

As mentioned earlier, recovery of jointly sparse 

signals is an NP-hard problem. A widely-used 

approach is to generalize sparse recovery algorithms to 

more than one sparse signal setting. This procedure has 

been done for some algorithms and we used the same 

technique to generalize another method. In the SMV 

setting, StOMP outperforms some of the existing 

methods in complexity, and since having more sparse 

signals increases complexity of the problem, we are 

interested in some algorithms with less complexity. 

Therefore, we generalized this method for jointly 

sparse recovery problems. These new methods have a 

simple structure and can be implemented easily. 

5. Conclusion 

In this paper, a new algorithm for recovery of jointly 

sparse signals was proposed. This method has been 

used previously for the recovery of one sparse signal, 

and we extended it to the new situation of multiple 

sparse signals with common support. StOMP 

outperforms OMP in terms of the computational 

complexity, but it requires more measurements to have 

the same recovery performance as OMP. Moreover, we 
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observed that more sparse vectors reduce the number of 

required measurements for perfect recovery. 
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