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Abstract: It is presented a buckling analysis of multilayered plates by the finite elements method with mixed unknowns (displacement 
and rotations, and transverse interlaminar stresses). In the mixed model, each layer is analyzed as a single plate, where the continuity of 
displacement is ensured by Lagrange multipliers which represent static variables. This procedure is easy to be implemented from the 
computational point of view. A methodology to solve the eigen problem is presented based on the inverse iteration method. The model 
is verified successfully with results obtained by other authors. 
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1. Introduction  

Advanced composite materials are widely used in 

many engineering branches such as civil engineering, 

naval engineering and aerospace engineering because 

of their high strength-to-weight ratio, excellent 

corrosion resistance, good fatigue behavior and other 

superior properties with respect to conventional 

materials. 

Within the different types of composite materials, 

laminates are the most popular due to their variety of 

structural applications in situations where high 

membrane resistance and flexural strength are required. 

The composite laminates are basically plates formed by 

several sheets that are perfectly joined together, 

presenting an anisotropic behavior. Each sheet is 

composed of fibers embedded in a matrix. These fibers 

give high mechanical properties to the sheet in the 

direction of the fiber, while the matrix holds them 

together. The sheets are placed one on top of the other 

oriented according to the design requirements, in order 

to optimize the use of the material. Their increasing use 

demands the development of efficient and precise 

numerical methods to adequately predict their complex 

behavior. 
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In the present article, a solution, based on a layered 

model, is proposed for the determination of the critical 

buckling load from finite elements with mixed 

variables (kinematic and static). 

2. Problem Formulation  

Let a plate composed of ݊  layers of height ݄ , 
perfectly connected and whose mechanical properties 

may differ, define a particular Cartesian coordinate 

system ሼݖఈ, ߙ ൌ 1, 2, 3ሽ  for each layer on its 

respective mean surface Ω , where ሺݖଵ, ଶሻݖ are the 

coordinates in the plane, ሺݖଷሻ is the transverse 

coordinate. The upper face of each is in ݖଷ ൌ െ݄ 2	⁄  

and the lower face in, ݖଷ ൌ ݄ 2⁄ . 

The kinematics of each layer is modeled 

independently by adopting the FSDT (first-order shear 

deformation theory). Thus, the field of displacement of 

a point ሼݖఈሽ of a generic layer ݅ is given by: ݑଵሺݖଵ, ,ଶݖ ଷሻݖ ൌ ,ଵݖଵሺݑ ଶሻݖ െ ,ଵݖଵሺߚଷݖ ,ଵݖଶሺݑଶሻݖ ,ଶݖ ଷሻݖ ൌ ,ଵݖଶሺݑ ଶሻݖ െ ,ଵݖଶሺߚଷݖ ,ଵݖଷሺݑଶሻݖ ,ଶݖ ଷሻݖ ൌ ,ଵݖሺݓ ଶሻݖ   (1) 

where, ࢛ ൌ ሾݑଵ,  ଶሿ are axial displacements in theݑ

middle surface of the layer, ࢼ ൌ ሾߚଵ, ଶሿߚ  are 

rotations of the transverse (assumed inextensible) 

normal around the axes ݖଶ,  is ݓ ଵ, respectively, andݖ

the constant transverse displacements in the thickness. 

The joint behavior of the sheets that make up the 
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multilayer system necessarily supposes the continuity 

of displacements between adjacent layers (Fig. 1), for 

which it is imposed: 

(1) The displacements in the plane of the lower 

fibers of the top layer ݅ must be equal to those of the 

upper fibers of the bottom plate ݅  ଵ〈〉ݑ :1 ቀݖଵ, ,ଶݖ  ଶ ቁ ൌ ଵ〈ାଵ〉ݑ ቀݖଵ, ,ଶݖ െ శభଶ ቁݑଶ〈〉 ቀݖଵ, ,ଶݖ  ଶ ቁ ൌ ଶ〈ାଵ〉ݑ ቀݖଵ, ,ଶݖ െ శభଶ ቁ   (2) 

(2) The transverse displacements in the upper layer i 

must be the same as those of the lower plate ݅  ,ଵݖሺ〈〉ݓ :1 ଶሻݖ ൌ ,ଵݖሺ〈ାଵ〉ݓ  ଶሻ  (3)ݖ

The functional of the total potential energy of the 

multilayer system is presented as an superposition of n 

simple plates where the kinematic constraints are 

mathematically ensured from the incorporation of 

Lagrange multipliers ࣅ〈〉 ൌ ቂߣଵ〈〉, 	ଶ〈〉ቃߣ and µ〈〉 
which represent the static variables at interface ݆ 
(interlaminar transverse stresses): 

Π ൌቊ12݄ܽ൫࢛〈〉, ൯〈〉࢛  12݄ଷ12 ܽ൫ࢼ〈〉, ൯〈〉ࢼ
ୀଵ 12݄ܾ൫સݓ〈〉 െ ,〈〉ࢼ સݓ〈〉 െ ൯〈〉ࢼ െ ܹ௫௧〈〉 ൠ  

∑ ቄ 〈ାଵ〉ࣅ ∙ ቂቀ࢛〈〉 െ ೕଶ ቁ〈〉ࢼ െ ቀ࢛〈ାଵ〉  ೕశభଶ ቁቃ〈ାଵ〉ࢼ ݀Ωௌ〈ೕశభ〉 ିଵୀଵ  ൫ݓ〈〉 െ ൯µ〈ାଵ〉݀Ωௌ〈ೕశభ〉〈ାଵ〉ݓ ቅ (4) 

 

 
Fig. 1  Displacements field through the thickness of the multilayer plate.  
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where, ܽ൫࢛〈〉, ൯〈〉࢛  and ܽ൫ࢼ〈〉, ൯〈〉ࢼ  are the 

membrane and flexural energy for each layer, 

respectively, while ܾ൫સݓ〈〉 െ ,〈〉ࢼ સݓ〈〉 െ ൯〈〉ࢼ  is 

the deformation shear energy. The total external work 

in each layer is named ܹ௫௧〈〉 . Only the work of the 

forces in the plane is considered due to the transversal 

deflection: 

ܹ௫௧〈〉 ൌ 	 ଵଶ સݓ〈〉 ∙ 〈〉ۼ ∙ સݓ〈〉݀Ω
Ω   (5) 

with, ۼ〈〉 ൌ ቈߟଵଵ〈〉Nଵଵ ଶଶ〈〉Nଶଶߟଵଶ〈〉Nଵଶߟ  ଶଶ〈〉Nଶଶ    (6)ߟ

સݓ〈〉 ൌ ଵ〈〉,ݓൣ  ଶ〈〉൧   (7),ݓ

where, ൫Nଵଵ, Nଶଶ൯ and Nଵଶ  represent the axial and 

the shear forces on the plane.The coefficient ߟఈఊ〈〉 ሺߙ, ߛ ൌ 1,2ሻ relates the global buckling load with 

each layer one (see Appendix A). The comma indicates 

the partial derivative with respect to the position in 

space.  

The physical justification of Lagrange multipliers  

is given by Alliney and Carnicer [1], and Carnicer      

et al. [2]. 

3. Discretization by Finite Elements 

The equations that govern the problem are obtained 

by taking the variation of the Eq. (4) ࢛ߜ〈〉: ݄ܽ൫࢛〈〉, ൯〈〉࢛ߜ െ  〈〉࢛ߜ ∙ Ω݀〈〉ࣅ  〈〉࢛ߜ ∙ Ω݀〈ାଵ〉ࣅ ൌ 0     (8) 

:〈〉ݓߜ ݄ܾ൫સݓ〈〉 െ ,〈〉ࢼ ൯〈〉ݓસߜ െ න µ〈〉݀Ω〈〉ݓߜ
Ω  න µ〈ାଵ〉݀Ω〈ାଵ〉ݓߜ

Ω  

െ	 δસݓ〈〉 ∙ 〈〉ۼ ∙ સݓ〈〉݀Ω
Ω ൌ 0                               (9) 

:〈〉ࢼߜ ݄ଷ12 ܽ൫ࢼ〈〉, ൯〈〉ࢼߜ  ݄ܾ൫સݓ〈〉 െ ,〈〉ࢼ െࢼߜ〈〉൯  െ ଶ 〈〉ࢼߜ ∙ ΩΩ݀〈〉ࣅ െ  ଶ 〈〉ࢼߜ ∙ ΩΩ݀〈〉ࣅ ൌ 0      (10) 

〈〉ࣅߜ 	: 〈ାଵ〉ࣅߜ ∙ ቂቀ࢛〈ିଵ〉 െ ೕషభଶ ቁ〈ିଵ〉ࢼ െ ቀ࢛〈ାଵ〉  ೕଶ ቁቃ〈〉ࢼ ݀Ωௌ〈ೕశభ〉 ൌ 0    (11) 

 :µ〈〉ߜ ൫ݓ〈ିଵ〉 െ µ〈〉݀Ωௌ〈ೕశభ〉ߜ൯〈〉ݓ ൌ 0        (12) 

where, ݅ ൌ 1,… , ݊; 	݆ ൌ 2,… , ݊ . The Greek letter ߜ 

symbolizes the variational operator. 

The kinematic variables require continuity C0 when 

only their first derivatives appear in the Eqs. (8)-(12), 

whereas the variables can be discontinuous (continuity 

C-1). However, the same interpolation is used for all the 

unknowns for simplicity.  

Using isoparametric finite elements [3], ൫࢛〈〉, ,〈〉ݓ ,〈〉ࢼ ,µ〈〉,〈〉ࣅ ൯ࢠ ൌ ∑ ܰ൫࢛ෝ〈〉, ,ෝ〈〉ݓ ,〈〉ࢼ ,〈〉,µෝ〈〉ࣅ ො൯ேேୀଵࢠ    (13) 

where, NN represents the number of nodes of the 

element and Nk are the interpolation functions 

associated with node ݇ . The circumflex tilde (^) 

indicates nodal variable. 

Incorporating Eq. (13) into Eqs. (8)-(12) gives the 

finite element model: 
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	ෝ〈〉࢛ߜ ∙ ቂۯ〈〉 ∙ ෝ〈〉࢛ െ ۰〈ାଵ〉 ∙ ૃ 〈ାଵ〉  ۰〈〉 ∙ ૃ 〈〉ቃ ൌ 0	     (14) 

ෝ〈〉࢝ߜ ∙ ቂ۵〈〉 ∙ ෝ〈〉࢝ െ ۳〈〉	 ∙ 〈〉ࢼ െ ۶〈〉 ∙ µෝ〈〉 െ ۶〈ାଵ〉 ∙ µෝ〈ାଵ〉 െ 〈〉ܓ߉ ∙ ෝ〈〉ቃ࢝ ൌ 0  (15) 

〈〉ࢼߜ ∙ ቂۯ〈〉 ∙ 〈〉ࢼ െ ۳〈〉 ∙ ෝ〈〉࢝  ۲〈〉 ∙ 〈〉ࢼ െ ۱〈〉 ∙ ૃ 〈〉 െ ۱〈ାଵ〉 ∙ ૃ 〈ାଵ〉ቃ ൌ 0    (16) 

δࣅ〈〉	 ∙ ቂ۰ିଵ〈〉 ∙ ෝ〈ିଵ〉࢛ െ ۱ିଵ〈〉 ∙ 〈ିଵ〉ࢼ െ ۰〈〉 ∙ ෝ〈〉࢛ െ ۱〈〉 ∙ 〈〉ቃࢼ ൌ 0    (17) 

µෝ〈〉ߜ ∙ ቂ۶ିଵ〈〉࢝ෝ〈ିଵ〉 െ ۶〈〉࢝ෝ〈〉ቃ ൌ 0       (18) 

For a 3-layer system, the matrix representation in compact form is presented below: 

ۈۉ
ተተۇۈۈ
۱ଵଵۿଵଶ ଶଶۿଵଶۿ

ଶଷۿଶଶ۱ଶଶۿ
ۿଶଷۿଷଷ ଷଷ۱ଷଷۿ ተ

ተ െ ߉ ተ
ተ ۵ଵଵ 

۵ଶଶ
 ۵ଷଷ ተ

ተ
ۋی
	ۊۋۋ ∙ ተተ

ෝଷ࢞ૃଷ	ෝଶ࢞ૃଶ	ෝଵ࢞ ተ
ተ ൌ ተ

ተ  ተ
ተ
   (19) 

where, ࢞ෝ  are the nodal kinematic variables, ૃ   are 

the nodal static variables, ሺ۱, ۵ሻ  are the 

contributions of mechanical and geometric rigidity of 

each layer, respectively, and ൫ۿ, ൯ۿ  are the 

matrices resulting from the constraint Lagrangian 

problem. The factor ߉  is the critical buckling load 

parameter, defined as: ߉ ൌ ೝభభ ൌ ೝమమ ൌ ೝభమ       (20) 

The no trivial solution from Eq. (10) requires:  ݀݁ݐሺ۹ െ ۹۵ሻ߉ ൌ 0       (21) 
after applying the boundering conditions.  

4. Eigen Value Problem Solution  

As is characteristic of mixed formulations, the 

mechanical stiffness matrix is not positively definite, 

nor is the geometric stiffness matrix. In addition, the 

number of unknowns increases rapidly as more layers 

are added to the model, so that the determination of the 

eigenvalue problem is difficult. In this section, a simple 

solution methodology is proposed based on the inverse 

iteration [4]. 

The procedure is to initially establish a test vector. 

Subsequently, the term involving the geometric 

stiffness matrix is evaluated. Since the eigenvectors 

can only be determined within a scale factor, the choice ߉ does not affect the result, so it is assumed ߉ ൌ 1. In 

this way, it is obtained the equivalent load vector 

shown in Eq. (22). 

ተ
ተ ۵ଵଵ 

۵ଶଶ
 ۵ଷଷ ተ

ተ ∙ ተ
ተ࢞ෝଵ,ࣅଶ,࢞ෝଶ,ࣅଷ,࢞ෝଷ,ተ

ተ ൌ ተ
ተ۵ଵଵ. .ෝଵ,۵ଶଶ࢞ .ෝଶ,۵ଷଷ࢞ ෝଷ,ተ࢞

ተ
       (22) 

Since the initial vector is arbitrarily defined, Eq. (19) 

is generally not true (if satisfied, the test vector is an 

eigenvector), so the following system of equations 

must be solved:  
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ተተ
۱ଵଵۿଵଶ ଶଶۿଵଶۿ

ଶଷۿଶଶ۱ଶଶۿ
ۿଶଷۿଷଷ ଷଷ۱ଷଷۿ ተ

ተ ∙ ተ
ተ࢞ෝଵ,ାଵࣅଶ,ାଵ࢞ෝଶ,ାଵࣅଷ,ାଵ࢞ෝଷ,ାଵተ

ተ ൌ ተ
ተ۵ଵଵ. .ෝଵ,۵ଶଶ࢞ .ෝଶ,۵ଷଷ࢞ ෝଷ,ተ࢞

ተ
     (23) 

From Eq. (23), it results: ۱ଵଵ࢞ෝଵ,ାଵ ൌ ۵ଵଵ࢞ෝଵ, െ ଵଶۿ ෝଶ,ାଵ࢞ଶ,ାଵ۱ଶଶࣅ ൌ ۵ଶଶ࢞ෝଶ, െ ଶ,ାଵࣅଶଶۿ െ ଶଷۿ ෝଷ,ାଵ࢞ଷ,ାଵ۱ଷଷࣅ ൌ ۵ଷଷ࢞ෝଷ, െ ଷ,ାଵࣅଷଷۿ      (24) 

Replacing the displacements in the remaining equations yields the reduced matrix shown in Eq. (25): 

ቮۿଵଶ. ۱ଵଵିଵ. ଵଶۿ  ଶଶۿ . ۱ଶଶିଵ. .ଶଷۿଶଶۿ ۱ଶଶିଵ. ଶଶۿ
ଶଶۿ . ۱ଶଶିଵ. .ଶଷۿଶଷۿ ۱ଶଶିଵ. ଶଷۿ  ଷଷۿ . ۱ଷଷିଵ. ଷଷቮۿ ∙ ቮ

ଷ,ାଵቮࣅଶ,ାଵࣅ ൌ 

ൌ ቮۿଵଶ. ۱ଵଵିଵ. ۵ଵଵ. ෝଵ,࢞ െ ଶଶۿ . ۱ଵଵିଵ. ۵ଶଶ. .ଶଷۿෝଶ,࢞ ۱ଶଶିଵ. ۵ଶଶ. ෝଶ,࢞ െ ଷଷۿ . ۱ଷଷିଵ. ۵ଷଷ.  ෝଷ,ቮ       (25)࢞

 

Thus, the kinematic variables are determined from 

the static variables, solving the “mixed problem”. 

The sufficient but not necessary condition for 

solving the system Eq. (25) results: ݊࢞  ݊ૃ    (26) 

where, ݊࢞  and ݊ࣅ  are the number of degrees of 

freedom of the corresponding variables [5].  

The correspondent eigenvalue is computed applying 

the Rayleigh Coefficient: ߉ାଵ ൌ ∑ୀଵ ෝ,ೖశభ࢞ ∙	۵	∙	࢞ෝ,ೖ࢞ෝ,ೖశభ ∙	۵	∙	࢞ෝ,ೖశభ  (27) 

Then the resultant vector is normalized in order that 

the new vector satisfies:  ∑ ෝ,ାଵ்࢞ 	 ∙ ۵ ∙ ෝ,ାଵୀଵ࢞	 ൌ 1  (28) 

Normalization maintains vector elements with 

similar values during each iteration. If it is not done, 

the values of the elements grow and decrease at each 

step, which can cause numeric problems. 

The convergence check is specified by comparing 

two successive values of the eigenvalue: ቚ௸ೖశభି௸ೖ௸ೖశభ ቚ   (29)   ܽ݅ܿ݊ܽݎ݈݁ݐ

If the convergence criterion is not satisfied, a new 

iteration is started using the test vector obtained when 

solving the system Eq. (23). The procedure is repeated 

until the established convergence is reached. As the 

number of iterations increases, the eigenvalue and 

eigenvector are lowered.  

5. Numerican Results 

From the presented model, a code is implemented in 

the GNU Octave program for the determination of 

critical loads of composite plate buckling. The effects 

of the material and the thickness/side ratio on the 

collapse load are studied. In addition, the variation 

through the thickness of the transverse stresses 

associated with the buckling mode is presented. 

The analyzed plates have a rectangular geometry 

with dimensions a, b coincident with the x, y directions 

respectively (see Fig. 2). In all the examples, for 

reasons of symmetry, only one quarter of a plate is 

modeled with a mesh of 6 × 6 quadrilateral four-node 

isoparametric elements with linear interpolation. The 

numerical evaluation of the integrals is carried out 

using the  Gauss quadrature  method, using 2 × 2 points 
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Fig. 2  Plate representation and typical mesh used in the 
model.  
 

for the membrane terms, flexion, while 1 × 1 points for 

geometry and geometric stiffness. The tolerance to 

accept the solution in the problem of eigenvalues was 

established in 1e-6. 

The edge conditions used are: ሺݔ	, 0ሻ:	ݓ ൌ ௫ݑ ൌ ௫ߚ ൌ 0ሺ0	, ݓ	:ሻݕ ൌ ௬ݑ ൌ ௬ߚ ൌ 0ሺݔ	, ܾ 2⁄ ሻ:	ݑ௬ ൌ ௬ߚ ൌ 0ሺܽ 2⁄ , ௫ݑ	:ሻݕ ൌ ௫ߚ ൌ 0    (30) 

The elastic properties of the materials are:  ீమయாమ ൌ 0.6 ீభమாమ ൌ ீభయாమ ൌ 0.5 ଵଶߥ ൌ 0.25 (31) 

where, the ratio E1/E2 is specific for each particular 

example. The value of E2 is arbitrary because of the 

dimensionlessness used:  

Nഥ ൌ ۼ߉ మாమయ   (32) 

Table 1 shows the uni-axial critical buckling load for 

a laminated square plate (0°/90°/0°) with a 

thickness/side h/a = 0.10 ratio and different E1/E2 

ratios. The obtained results are contrasted with the 

solution of the elasticity 3D5, noting an excellent 

correlation. It is noted that as the number of calculation 

layers is increased, the solution presented is refined as a 

direct consequence of computing more realistically 

strain energy by cutting through the thickness, which is 

assumed constant in each layer. 

The effect of the thickness/side ratio on the critical 

buckling load is studied in Table 2. A laminated square 

plate (0°/90°) with an E1/E2 = 40 ratio under uni-axial 

loading is analyzed. Each individual sheet was 

discretized in four calculation layers. The results are 

compared with those of other authors.  

Finally, the physical meaning of the Lagrange 

multipliers is evident. The variation along the thickness 

of the transverse interlaminar stresses associated with 

the failure mode in Fig. 3 for the plate of the first 

example with relation E1/E2 = 40 is plotted, while in 

Fig. 4 for the plate of the second case with ratio h/a = 

0.10. The values obtained are divided by their 

maximum absolute value. The distribution obtained is 
 
Table1  Individual layer orthotropic degree effect on the buckling axial critic load of a square plate ሺ°/ૢ°/°ሻ, simple 
support with h/a = 0.10.  

Reference Thickness discretization 
Relation E1/E2 

3 10 20 30 40 

Current 

3 layers 5.4972 10.0842 15.3656 19.5699 23.0107 

9 layers 5.4720 9.9811 15.1017 19.1299 22.3981 

15 layers 5.4698 9.9720 15.0782 19.0902 22.3418 

Noor [6]  5.3044 9.7621 15.0191 19.3040 22.8807 

Singh et al. [7]  5.2284 9.6259 14.6458 18.6158 21.8527 

Reddy and Pan [8]  5.3933 9.9406 15.2980 19.6740 22.3400 
 

Table 2  Buckling axial critic load for a square laminated plate ሺ°/ૢ°ሻ, simple support varying h/a.  

Relation h/a Singh et al. [7] Reddy and Pan [8] Van et al. [9] 
Chakrabarti and 
Sheikh [10] 

Current 

0.10 11.310 11.563 11.360 11.349 11.275 

0.05 12.427 12.577 12.551 12.510 12.642 

0.02 12.800 12.895 12.906 12.879 13.091 

0.01 12.873 12.942 13.039 12.934 13.158 
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Fig. 3  Transversal shear stress variation through the depth ࣌ഥ ቀ, ࢈ , ഥ࣌ തቁ and transversal norlam stressࢠ ቀࢇ , ࢈ ,  തቁࢠ

normalized for a square laminated plate ሺ°/ૢ°ሻ simple supported ሺࢎ ⁄ࢇ ൌ .  െ ࡱ ⁄ࡱ ൌ  െ 	࢙࢘ࢋ࢟ࢇሻ: (a) XZ; (b) 
ZZ. 
 

 
Fig. 4  Transversal shear stress variation through the depth ࣌ഥ ቀ, ࢈ , ഥ࣌ തቁ and transversal norlam stressࢠ ቀࢇ , ࢈ ,  തቁࢠ

normalized for a square laminated plate ሺ°/ૢ°ሻ simple supported ሺࢎ ⁄ࢇ ൌ .  െ ࡱ ⁄ࡱ ൌ  െ 	࢙࢘ࢋ࢟ࢇሻ: (a) XZ; (b) 
ZZ. 
 

as expected, with the contour conditions at the upper 

and lower edges being met. 

6. Conclusions 

A mixed finite element model is presented to 

determine the critical buckling load of multilayer plates. 

The continuity of the displacements as well as the 

transverse stresses is ensured along the thickness of the 

plate from the inclusion of Lagrange multipliers. The 

mixed formulation allows a direct evaluation of the 

transverse stresses without the need to integrate the 

equilibrium equations that imply losses of precision, 

resulting in a point of great interest in the study of the 

response of composite laminates. A methodology is 

implemented from the inverse iteration method to solve 

the problem of eigenvalues with satisfactory results. 

The accuracy of the model is demonstrated along a 

series of problems where the results found resemble 

those available in the literature. 
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Appendix A: Buckling Coefficients 

When each layer is modeled independently, it is necessary to distribute the critical buckling load of the plate in the different layers. 

For this purpose, the set of layers is considered as a system of springs in parallel (see Fig. 5).  
 

 
Fig. 5  Load distribution by layer: parallel spring analogy.  

 

For a general layer , ߝଵଵ ൌ 1݄ ሺݏଵଵNଵଵ  ଵଶNଶଶݏ  ଶଶߝ ଵNଵଶሻݏ ൌ 	 ଵ ሺݏଵଶNଵଵ  ଶଶNଶଶݏ  ଵଶߝ ଶNଵଶሻ        (33)ݏ ൌ 	 1݄ ሺݏଵNଵଵ  ଶNଶଶݏ   Nଵଶሻݏ
where, ሺߝଵଵ , ଶଶߝ , ଵଶߝ ሻ are the membranal strains in the layer plane, while ݏఈఊሺߙ, ߛ ൌ 1,2,6ሻ are the coefficients of the inverse marix 

of the elastic coefficients.  

From Eq. (33),  Nଵଵ ൌ ଵଵݏ݄ 	 ܽଵଵݏଵଶ 	 ܾଵଵݏଵ ଵଵߝ  Nଶଶ	 ൌ మమ௦భమ	ା	௦మమ	ାమమ௦మల ଶଶߝ          (34) Nଵଶ ൌ ݄ܽଵଶݏଵ 	 ܾଵଶݏଶ 		ݏ ଵଶߝ  

where, ܽଵଵ ൌ మమభభ  ܾଵଵ ൌ భమభభ ܽଶଶ ൌ భభమమ  ܾଶଶ ൌ భమమమ         (35) ܽଵଶ ൌ భభభమ  ܾଵଶ ൌ మమభమ 
Assuming that the springs (layers) have the same deformation, after some algebra, we get: ߟଵଵ〈〉 ൌ Nଵଵ〈〉Nଵଵ ൌ ݄ݏଵଵ〈〉 	 ܽଵଵ〈〉ݏଵଶ〈〉 	 ܾଵଵ〈〉ݏଵ〈〉൝ݏଵଵ〈〉 	 ܽଵଵ〈〉ݏଵଶ〈〉 	 ܾଵଵ〈〉ݏଵ〈〉݄ ൡ

ୀଵ  

ଶଶ〈〉ߟ ൌ మమ〈〉మమ ൌ మమ〈〉௦భమ〈〉	ା	௦మమ〈〉	ାమమ〈〉௦మల〈〉 ∑ ൜మమ〈〉௦భమ〈〉	ା	௦మమ〈〉	ାమమ〈〉௦మల〈〉 ൠୀଵ        (36) 

ଵଶ〈〉ߟ ൌ Nଵଶ〈〉Nଶଶ ൌ ݄ܽଵଶ〈〉ݏଵ〈〉 	 ܾଵଶ〈〉ݏଶ〈〉 	 ଵ〈〉ݏ〈〉൝ܽଵଶ〈〉ݏ	 	 ܾଵଶ〈〉ݏଶ〈〉 	 〈〉݄ݏ	 ൡ
ୀଵ  

 


