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Abstract: The use of screen-printing biosensors has been updated in this article as a tool to analyze the electron transfer process 
involving redox proteins or enzymes. The aim of this research was to fabricate a simple apparatus which allowed the use of the enzymes 
(in the solid state) to maintain their stability. To prove this concept an enzyme in the solid state was mixed with the carbon ink and this 
mixture was used to print the working electrode. We choose as proving the alcohol dehydrogenase. The first reason is because it 
metabolizes the alcohol, which can be present in biological samples of blood, saliva and urine and also in the beverage; the second is 
that this enzyme is still a challenge to electrochemistry due to having lower stability in sensors. The results show that in this device the 
enzyme was active and stable during all the experiments and in the experimental conditions that could catalyze the ethanol to 
acetaldehyde. These devices have the advantage of being disposable, cheap and are easy to fabricate. And also, they do not need 
expensive tools to be fabricated, they only need 2 µL of electrolyte or sample, and they need lower amounts of enzyme to permit 
electrochemical studies.  
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1. Introduction 

The use of carbon as a base material to construct 
screen-printing devices have been employed, during 
the last decades, because it has adequate properties that 
allows not only its simple use as porous materials, but 
also it permits surface modification and is cheap [5-9]. 
Fabrication of paper-based devices has also been 
developed in the last ten years, but still it is a challenge. 
Paper is an environmental friend material, easily 
manipulated, cheap, and biocompatible; has high 
adaptability for analysis of different substances. These 
properties make paper the perfect physic base for 
introducing microfluidic channels and to be used in 
Point-of-care devices [5, 8-10]. One disadvantage of 

 

The use of disposable and miniaturized biosensors 
that can detect subtract, like glucose and ethanol, in 
biological fluid or in food, with accuracy has been 
developed since the nineties [1-5]. 
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this apparatus is the lower electron transfer rate 
between biosensing elements and the electrode surface. 
Another important disadvantage is the interference of 
temperature and humidity on migration forces of liquid 
in microfluidic channels, which may lead to 
electrochemical signal variations [5]. 

Although there has been a great investment in 
analytical research methods related to dehydrogenases, 
only a few researchers developed sensors based on it, 
since the cofactor regeneration is a limitation [2] and 
the low enzyme stability is still a limitation factor [4]. 
The NAD-dependence and his free-diffusion is also a 
limitation to its use. Some strategies pass through a 
stable immobilization of the cofactor and enzyme in 
sol-gel matrices [11], immobilization of the enzymes 
and cofactor in nano-structured carbon platforms or 
carbon nanotubes modified electrodes [12-14], in 
alginate-silicate hybrid gel [15] and other polymers  
[3, 4, 16]. 

The ADH (alcohol dehydrogenase) is a 
zinc-containing enzyme, usually used in the food 
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industry [17]. The Saccharomyces cerevisiae produced 
three isoenzymes of alcohol dehydrogenase, YADH-1 
(expressed during anaerobic fermentation), YADH-2 
(cytoplasmic form repressed by glucose) and YADH-3 
(found in mitochondria) [17]. ADH belongs to Alcohol: 
NAD+ oxidoreductase class and structurally it is 
constituted by an asymmetric homotetramer with four 
different subunits, organized as analogous dimmers, 
(see in Fig. 1). 

The structural analysis suggests that the dimeric 
subunits asymmetry of the tetramer (that provided two 
structures, in open and closed conformation) may be 
relevant for the catalytic mechanism. Some subunits 
present a close conformation with coenzyme bound to 
the catalytic site, but others subunits present an open 
conformation without coenzyme. Each subunit 
contains a “catalytic” zinc and a “structural” zinc. The 
active site of each subunit contains a zinc atom [18]. In 
the close conformation, the catalytic zinc presents a 
tetrahedral coordination with two reactive sulfhydryl 
groups of Cys-43, Cys-153, with a histidine residue 
(His-66) and a water molecule [18]. Baskar, Ramaswamy, 
 

 
Fig. 1  Structure for ADH1 (alcohol dehydrogenase) 
tetramer (each subunit presents different colour) in the open 
conformation from yeast (Saccharomyces cerevisiae) 
determined by X-ray crystallography [18]. The zinc atoms 
are shown as grey spheres. In the dimer, the catalytic 
subunits of the two subunits in open conformation are 
closely associated with one another. PDB code: 4W6Z. This 
figure was prepared with Viewerlite program.  

and Plapp (2014) have proposed a mechanism by 
which zinc-bound water, in the close conformation, is 
substituted by an alcohol or aldehyde. In the open 
conformation zinc is coordinated with Cys-43, 
Cys-153, His-66, and the carboxylate of Glu-67 [18]. 
In this conformation the zinc coordination in the 
catalytic domain is inverted (relative to the classic 
coordination) and the active site zinc coordination is 
flexible, which facilitates the movements of the zinc 
ligands and helps the approximation of the zinc ion to 
Glu-67 [18]. The other zinc atom (structural zinc) is 
linked to four cysteine residues (97, 100, 103 and 111) 
and it is in an external location protected by disulphide 
bridges. Its function is still unclear, although it seems 
to have an important conformational role, by 
stabilizing the tertiary structure of each subunit [19]. Its 
removal from the enzyme did not reduce the catalytic 
activity, but the enzyme was more susceptible to heat 
denaturation [19].  

This enzyme catalyses the reversible reaction    
[20, 21]: 

NADH → NAD+ +H+ +2e-        (1) 
CH3CH2OH + NAD+ ⇄ CH3CHO + NADH + H+ (2) 

In this reaction, the nicotinamide adenine 
dinucleotide hydrate (NAD+) receives the hydride ion 
from a reduced substrate, but at pH 7 (neutral pH) the 
equilibrium (2) is shifted to the left. ADH, also can use 
glucose and lactate as substrate, as well as it is capable 
to reduce substrates which make it important in biofuel 
cells and biobatteries [21, 22].  

To analyze the presence of alcohol in drinks and its 
influence in the determination of glucose, we 
fabricated a biosensor using the alcohol dehydrogenase 
from Saccharomyces cerevisiae (baker’s yeast). The 
main goal of this project was to develop biosensors that 
could be used to analyze the quantity of ethanol, in the 
presence of glucose, in the blood and alcoholic 
beverages, including beer, wine and spirits. These 
devices allow not only the study of the electron transfer 
process, but also the ethanol detection. 



Achieving Enzyme Stability Using a Simple Fabrication Procedure:  
The Alcohol Dehydrogenase Example 

  

190 

2. Experimental  

2.1 Materials and Methods 

All reagents used were of analytical grade. The 
alcohol dehydrogenase lyophilized powder from 
Saccharomyces cerevisiae (Sigma-Aldrich A7011) 
(ADH) was used with no further purification. This 
enzyme has a molecular weight 141-151 kDa, an 
isoelectric point between 5.4-5.8 and the optimal pH is 
reported to be in the range of 8.6 and 9.0 [17-19]. 
Ethanol (96%), β-D-glucose and potassium chloride 
were acquired from Sigma-Aldrich. All solutions were 
prepared with buffer. All buffers used in this work were 
commercial and purchased from ROTH (Germany). 
The electrolyte was a buffer solution with potassium 
chloride (0.1 M). The carbon ink and Ag/AgCl ink 
were purchased from conductive compounds. 

2.2 Fabrication of the Biosensor 

The fabrication process of the biosensor is very 
simple and reproductive. It has two main parts: first is 
the use wax to do delimitate the microfluidic channel; 
the second is the screen-printing of the electrodes 
above the wax and of the microfluidic channels. 

A Xerox Color Qube 8570 printer from Xerox was 
used to print the hydrophobic region of the devices. 
The paper used was Whatman n.01 chromatographic 
paper, and the wax was obtained from Xerox. After the 
wax printing, the wax was heat treated during 10 s in a 
hot plate (150 °C). After that, the paper, cooled at room 
temperature was ready to perform the screen-printing 
technique. The configuration system designed was a 
three electrode system with an Ag/AgCl reference 
electrode, a carbon counter electrode and a working 
electrode based in carbon ink. Using a mesh the counter 
electrode was deposited above the hydrophobic matrix 
(wax). Then the mesh was removed and the device was 
allowed to heat at hot plate (60 °C) during 8 minutes. 
The other two electrodes had the same screen-printing 
treatment.  

 

2.3 Working Electrode Preparation 

A mixture with an enzyme in the solid state and 
carbon ink was prepared and used to fabricate the 
working electrode.  

2.4 Electrochemical Detection 

The ADH usually metabolizes ethanol to 
acetaldehyde in the presence of NAD+. Our 
experiments were performed without the addition of 
this cofactor to the working electrode or to the 
electrolyte solutions used.  

During the electrochemical measurements, a drop of 
the interest solution (2 µL) spots in the hydrophobic 
channel between the wax-limited zones and dispersed 
through the paper matrix in a few seconds, being in 
contact with the three electrodes. The electrochemical 
behaviour of each electrode was experimentally 
characterized through cyclic voltammetry. 

All electrochemical acquisitions and measurements 
were performed in a Gamry ESA419 data acquisition 
system, using PHE 200 physical electrochemical and 
PV 220 physical electrochemical software coupled 
with a Gamry instruments (reference 600) 
potentiostat/galvanostat (ZRA) and the data analysis 
was processed by Gamry software package. All the 
experimental procedure is performed in normal 
atmosphere in the presence of oxygen. 

3. Results and Discussion 

3.1 Electrochemistry of ADH in Screen-Printing 
Electrodes 

Voltammetric experiments at the screen-printing 
sensor have been performed in the electrolyte 
(phosphate buffer, pH 7) to obtain the ADH 
electrochemical signal, in non-turnover conditions. No 
modification was necessary in order to achieve direct 
electrochemistry of ADH. In the experiments, the 
electrode surface and the active site of the enzyme 
could be  considered as  a donor-acceptor  pair and  it is 
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This result has two meanings, the first one is 
operational—in samples with glucose in a 
concentration higher than 25 mM, it will interfere with 
the measurements of ethanol; the second is 
functional—this enzyme in the open conformation can 
not only catalyse the ethanol but also glucose. The 
implication of this last finding is that it is also possible 
to use glucose as a substrate of the ADH and this 
system can be used to develop biofuel cells and 
biobatteries. This result was also reported by Wang and 
co-workers in 2012 [21].  

3.3 ADH and Ethanol Detection 

The ethanol detection at pH 5 (the typical 
drinks/beverage pH) and pH 7 (blood, pH 7.4) was 
analyzed. This determination pretends to prove the 
ubiquity/utility of the fabrication procedure, which 
allow the stability of the enzyme and its functioning in 
different pH. 

At pH 5, the ip
a catalytic (v = 80 mV⋅s-1) varies linearly 

 

 
Fig. 6  Catalytic current curve variation with the ethanol 
concentration between 2.4% (v/v) and 19.6% (v/v). Cyclic 
voltammograms recorded in buffer solutions (pH 5) with 
KCl (100 mM) (○) and with ethanol prepared in buffer (pH 
5) with KCl (0.1 M), at a screen-printing electrode with a 
three-electrode system configuration with an Ag/AgCl 
reference electrode, a carbon counter electrode and a 
working electrode based in carbon ink (1.0 g) with AHD (14 
mg). The best curve fit in the range of 2.4%-19.2% are ip

a cat 
= 0.029 [ethanol] + 1.023, R² = 0.989. Each point is the 
average of at least two measurements made with different 
screen-printing biosensors. 

with the ethanol concentration in the range of 2.4%-9.6% 
shown in Fig. 6. 

With this sensor it will be possible to quantify the 
ethanol in acid samples like beverage (wine, beer) 
which have an ethanol concentration between 2.4 % 
and 19.2%.  

The variation of the catalytic current with the ethanol 
at pH 7 was also investigated. The curve obtained with 
standard solutions shows a linear variation in the range 
of 0% and 9.6%, and then a higher decrease in Fig. 7.  

This result shows that the sensor can also detect 
ethanol in samples with pH near 7, like blood, in the 
range of 2.4%-9.6%. 

Since glucose in concentration lower 25 mM does 
not interfere with the biossensor, it can be used to 
determine the alcohol in drinks with glucose. It also can 
be used to test alcohol in the blood since the normal 
glucose concentration is under 4.4 mM or below    
6.6 mM [27]. 
 

 
Fig. 7  Variations of the ip

a after/ip
a before ethanol addition 

with the ethanol concentration between 2.4% (v/v) and  
19.6% (v/v). Cyclic voltammograms recorded in PBS buffer 
solutions (pH 7) with KCl (100 mM) and with ethanol 
prepared in PBS buffer (pH 7) with KCl (0.1 M), at a screen 
printing electrode with a three electrode system 
configuration with an Ag/AgCl reference electrode, a carbon 
counter electrode and a working electrode based in carbon 
ink (1.0 g) with AHD (14 mg). The best curve fit in the range 
of 2.4%-9.6% is ip

a cat = 0.664[ethanol] + 1.493, R² = 0.9735. 
Each point is the average of two measurements made with 
different screen-printing biosensors. 
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4. Conclusions 

The main goal of this paper was to present a simple 
and economic biosensor fabrication procedure that 
permits the use of enzymes in the solid state and 
improve their stability. To prove this idea we mixed 
lyophilized powder of ADH with the carbon ink and 
used it to print the working electrode of a biosensor. 
The construction of a working electrode by simply mix 
carbon ink with ADH permits stabilizing the enzyme 
and allows obtaining an electrochemical reversible 
signal. This way it was possible to have stable redox 
signals of the ADH with this sensor, corresponded to 
peaks I and II (Fig. 2).  

The observed electron transfer between the 
electrode-enzyme pair is a diffusion-controlled-process 
that occurs in the formal potential of (-44 ± 3) mV vs. 

Ag/AgCl. These biosensors also sense the presence of 
alcohol. On the basis of the above results, it’s proposed 
that ADH can directly transfer electrons to the 
electrode surface of this sensor, enabling the ethanol 
diffusion from the solution to the electrode surface, 
which has enzymes. Having this in mind it is also 
possible to assume that the enzyme presents a stable 
open conformation which allows its functioning. The 
ethanol will bond directly to the zinc, via glutamic acid, 
and the catalysis will occur. We propose that the peaks 
III and IV (Fig. 3) correspond to another electron 
transfer process that is reversible, but it is not related to 
the catalysis. Our purpose is that the peaks III and IV 
are related to the reversible oxidation/reduction of the 
structural zinc.  

The environment that surrounds the enzyme in the 
carbon ink, facilitate its stability and the permanence of 
the cofactor which are entrapped in the vicinities of the 
active site of the enzyme and does not leave the 
enzyme. The enzyme is enclosed in the carbon ink, 
which does not facilitate the escape of the cofactor by 
free-diffusion to the electrolyte. 

The findings, published in this article suggest that 
this paper device permits the ethanol determination, in 
the range of 2.4-9.6% (v/v) at pH 7 and in the range of 

2.4-19.2% at pH 5 in the presence of glucose (in 
concentrations lower than 25 mM). 

These results encourage further investigations 
concerning the use of this fabrication procedure to 
study electron transfer mechanisms that involve redox 
proteins with more than a redox center and the use of 
this concept to develop biobatteries. 
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