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Abstract: A simple device which incorporates three electrodes (working electrode, counter electrode and reference electrode) was 
constructed to be used currently in laboratories without elevated cost. It does not need more than 2 µL of electrolyte, sample or working 
solution, his support material is paper, and the working electrode which is based on carbon ink can incorporate enzymes and cofactors. 
To test this concept we started this investigation using the NADH/NAD+ redox couple which is an omnipresent coenzyme in living 
systems but is also a challenge to electrochemistry. The paper sensor fabrication was simple, rapid and cheaper. NADH was 
incorporated in the carbon ink by mixing both and, this mixture was used to print the working electrode. The direct electrochemical 
system NADH/NAD+ signal obtained, using this device, appeared at low potentials. A quasi-reversible diffusional redox process was 
achieved and regeneration of the NADH after oxidation was reached. This small paper device was not only used to study the redox 
process of NAD+/NADH, but also its behavior in the presence of electroactive (ascorbic acid) and non-eletroactive species (glucose). 
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1. Introduction 

NADH molecule can be oxidized through the 

 

The redox system NADH/NAD+ has been very 
important in nature, not only because it is a ubiquitous 
coenzyme, but also because it participates in many 
cellular reactions. This system is important in 
pharmaceutical and food industry as well as in 
biotechnology industry since it is present in drugs, 
biosensors, but also in biofuel cells and bioreactors 
[1-7], nevertheless is expensive and the redox process 
is usually irreversible [3, 6].  

In the NAD+ reduction, the reversible redox process 
occurs in nicotinamide ring, which accepts two 
electrons from a substrate in the presence of an 
appropriated enzyme, forming NADH: SH2 + NAD+ ⇄ 
S + NADH+ H+ [3]. This reaction is particularly 
important since it allows the identification of 
non-eletroactive substrates that interact with NAD+ and 
take part in its reduction [8]. 
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nicotinamide or adenosine groups [8]. The NADH is 
able to oxidize at potential higher than +0.4 V 
(Ag/AgCl) on carbon paste electrodes [3, 8]. 
Adenosine free in solution is oxidized at +1.2 V     
(vs. SCE, pH 7.0) in carbon electrodes. Nicotinamide 
presents an oxidation peak at +0.45 V (vs. SCE, pH 7.0) 
in carbon electrodes. In the same conditions the peak at 
+1.05 V was attributed to the formation of an adduct 
between phosphate anions and NADH through adenine 
and nicotinamide groups. If in phosphate medium, 
using a glassy carbon electrode, a potential higher than 
+0.9 V is applied to nicotinamide, it promotes the 
surface blocking with adducts [8].  

The oxidation of NADH in bare electrodes occurs 
via radical cation intermediates, which may lead to the 
fouling process and surface poisoning with the 
formation of inactive NAD2 dimers (adsorbed on the 
electrode surface), adducts or the formation NADH 
(active form). As a result of these reactions, low 
sensitivity, selectivity and stability are achieved     
[3, 5, 8, 9]. 

Some research has been done to study the direct 

D 
DAVID  PUBLISHING 



A Simple Procedure to Fabricate Paper Biosensor and Its Applicability—NADH/NAD+ Redox System 

  

176 

electrochemistry of NAD+/NADH and the possible 
causes of the reduction irreversibility, with the 
formation of inactive form NAD2 reported in some 
studies [6, 8, 10]. In one of these researches, it was 
possible to regenerate NAD+ to the active form, 
1,4-NADH, applying a regeneration potential [6]. The 
reduction reaction of NAD+ on glassy carbon was 
irreversible and under diffusion control, at a formal 
potential, E0’ (NAD+/NADH) = -0.885 V (pH 5.8). In 
another article the formal redox potential of 
NAD+/NADH was -0.560 V (vs. SCE), or -0.315 V  
(vs. NHE, pH 7) and the E0’ variation with pH was 
-30.3 mV/pH [5]. For a reversible process, in 
unmodified carbon surfaces, the formal potential of the 
redox coupled NAD+/ NADH was -0.32 V (NHE, pH 7) 
but the heterogeneous kinetic was slower and 
interferences could occur [3, 6]. Using different 
electrochemical techniques, the apparent formal 
heterogeneous electron-transfer rate constant was 
estimated as (6.1 ± 2) × 10-14 cms-1 and (2.5 ± 1) × 
10-14 cms-1 [6]. These low values indicate very slow 
kinetics of the NAD+ reduction reaction on a glassy 
carbon electrode and reflect the over potential 
necessary for the redox reaction which is related to 
both redox kinetics and mass transport. 

One strategy employed to overcome these 
difficulties (fouling and overvoltage and side reactions) 
was the use of mediator-modified electrodes, where the 
mediators are used to shuttle electrons from NADH to 
the electrode surface and allow electron transport 
between them [5, 9-16]. Some mediators 
(electrocatalysts) were immobilized on the electrode 
surface by covalent attachment, electrochemical 
polymerization, incorporation in carbon paste, 
adsorption, self-assembly and via entrapment in 
polymeric matrices [4, 17-19]. Another strategy is 
modification of the electrode surface with a polymeric 
substance, using electrodes modified with carbon 
nanotubes, nanofibers or using enzymatic methods  
that follow bioelectrocatalytic reaction [2, 4, 13, 15, 16, 
 

20-23]. Investigation in this area usually explores the 
mediator use or the surface modification to improve the 
electrochemical detection [15, 21, 24-28]. Some 
literature has been published related to the study of the 
redox couple NADH/NAD+ in screen printing 
electrodes [1, 4, 21, 24-27, 29-34]. The sensor built 
using this technique can incorporate the three 
electrodes (working electrode, reference and counter 
electrode), can be easily produced and miniaturized, 
work with a minimum volume (2 µL), it needs low 
reagent consumption, it can be fabricated in many 
supports (paper, glass) and sensors are disposable 
devices that can be used in many science fields [26, 35]. 
In a screen-printing electrode prototype, the oxidation 
of NADH (0.4 mM) occurred in a potential range from 
+0.18 V to +0.44 V but the signals were not 
well-defined [34]. At a screen-printing electrodes 
modified with MWCNTs (multiwalled carbon 
nanotubes), or AuNPs (gold nanoparticles) or with 
PNRs (polyneutral red films), it was possible to verify 
that the best response of the redox system 
NAD+/NADH was obtained with the modification 
using MWCNTs, which was used as an amperometric 
NADH detector [27].  

The goal of this report is to present a sensor that can 
be easily fabricated, which is cheaper and 
environmentally friend and allows the electrochemical 
study of the redox couple NADH/NAD+. With this aim, 
we present an NADH/ NAD+ biosensor, for sensing 
subtracts that can interact with the cofactor.  

There are significant advantages of using this 
biosensor, the first is that it is possible to obtain the 
oxidation and reduction peak of the redox couple 
NADH/NAD+ in lower potentials, second is the 
possibility to sense either electroactive as 
non-electroactive species, the third is that the 
fabricated device is not time-consuming (is quick and 
simple), the fourth is the low cost of the device, the 
fifth is the ecological approach as this device is made 
with paper. 
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2. Material and Methods 

2.1 Materials  

All reagents used were of analytical grade 
β-nicotinamide adenine dinucleotide, NADH (reduced 
disodium salt hydrate), β-D-glucose, ascorbic acid, 
potassium chloride and potassium ferrocyanide were 
acquired from Sigma-Aldrich. All solutions were 
prepared with buffer. All buffers used in this work were 
commercial and purchased from ROTH (Germany). 
The electrolyte was a buffer solution with potassium 
chloride (0.1 M). 

2.2 Fabrication of the Biosensors 

The fabrication procedure that will be described 
below, is not time consuming (it takes 15 minutes to do 
5 biosensors), is low cost (the price is lower than 0.2 
Euros per electrode) and is ecological (the biosensors is 
constructed with paper, and the silver and carbon ink 
can be removed and recovered).  

The carbon ink and Ag/AgCl ink were purchased 
from Conductive Compounds. The working electrode 
was of carbon ink which was added to the solid 
β-nicotinamide adenine dinucleotide (see Section 2.3 
Working Electrode Preparation).  

A Xerox Color Qube 8570 printer was used to print 
the hydrophobic region of the devices. The paper used 
was Whatman n.0 1 chromatographic paper, and the 
wax was obtained from Xerox. After the wax printing, 
the wax was heat treated during 10 s in a hot plate (150 oC). 
After that, the paper, cooled at room temperature, was 
ready to perform the screen printing technique. The 
configuration system design was a three-electrode 
system with an Ag/AgCl as the reference electrode, a 
carbon counter electrode and a working electrode 
based on carbon ink, Figs. 1A and 1B. 

The counter electrode was printed with conductive 
carbon ink, which was deposited above the 
hydrophobic matrix (wax). Then the mesh was 
removed and the device was allowed to heat at hot plate  

 

 
Fig. 1  Biosensor with a three-electrode configuration system design with an Ag/AgCl reference electrode, a carbon counter 
electrode and a working electrode based in carbon ink (A). SEM (scanning electron microscopy) images of the working 
electrode surface (B). Upper image scale is 1 µm, and down image scale is 100 µm. Observations were carried out using a Carl 
Zeiss AURIGA Cross Beam (FIB-SEM) workstation coupled with energy dispersive X-ray spectroscopy (EDS) from Oxford 
Instruments. The materials have been previously coated with an Ir conductive film for avoiding charge effects. 
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(60 oC) during 5 minutes. Once the construction of the 
counter was concluded, the working electrode was 
printed and dried the same way as described before. 
The reference electrode, fabricated with Ag/AgCl ink 
had the same screen printing treatment.  

2.3 Working Electrode Preparation 

A mixture with the cofactor (NADH) enclosed in the 
carbon ink was prepared and used to make the working 
electrode. 

2.4 Electrochemical Detection 

During the electrochemical measurements, a drop of 
the interest solutions (2 µL) was spotted in the 
hydrophobic channel between the wax-limited zones 
(working area) and it was dispersed through the paper 
matrix in a few seconds, being in contact with the three 
electrodes. The electrochemical behavior of each 
biosensor was experimentally characterized through 
cyclic voltammetry. 

All electrochemical acquisitions and measurements 
were performed in a Gamry ESA419 data acquisition 
system, using PHE 200 physical electrochemical and 
PV 220 physical electrochemical software coupled 
with a Gamry instruments (reference 600) 
potentiostat/galvanostat (ZRA) and the data analysis 
was processed by Gamry software package. All the 
experimental procedures were performed in normal 
atmosphere in the presence of oxygen. 

3. Results and Discussion 

The electrochemical behavior of the redox couple 
NAD+/NADH has been analyzed in the last years due 
to its role as a cofactor, and as an electron carrier in 
living organisms [5, 6, 14].  

In this research work the cofactor electrochemical 
behavior was studied using the PBS buffer (pH 7) with 
KCl (0.1 M) as the electrolyte. This pH was chosen 
because NADH is instable in highly alkaline and acidic 
solutions due to its rapid degradation [27].  

 

3.1 Electrode Surface Area 

The electrochemical characterization of the 
electrodes was made using the standard heterogeneous 
rate constant (k0) and the effective electroactive area. 

To obtain the electrode real surface area, a redox 
model par, potassium ferri(III)cyanide/ 
ferro(II)cyanide, K3/K4Fe(CN)6, was used. The cyclic 
voltammograms were recorded in the sweep between 
20 mV·s-1 and 150 mV·s-1 in PBS buffer (pH 7) with 
100 mM KCl as the supporting electrolyte. From these 
recordings, the peak currents were measured, in Fig. 2.  

The peak potential average of the reduction and 
oxidation, E1/2, is related to the formal potential E0’ by 
Eq. 2, E1/2 = E0’+ (RT/nF)1 ln(Dr/Do). As the diffusion 
coefficient is related to the peak current vs. scan rate 
square root slope, Dr/Do is approximately one and E1/2 = E0’. 
The formal reduction potential can be estimated from 
the average of the reduction and oxidation peak 
potentials and a value of E0’ = (Ep

c+Ep
a)/2.  

The results presented are the medium values 
obtained with two screen-printed electrodes:      
(Ep

a = (+269 ± 1) mV vs. Ag/AgCl; Ep
c = (+163 ± 6) 

mV vs. Ag/AgCl), a midpoint, E0’, of (+216 ± 3) mV 
vs. Ag/AgCl, and peak separation of (+107 ± 7) mV vs.  

Ag/AgCl. Peak currents vary linearly with the square 
root of the scan rate, in the studied rate range, thus 
denoting a diffusion controlled process. 

The peak currents ratio obtained in these 
experiments (|ip

a/ip
c| = +0.72 ± 0.05), and the peak to 

peak separation enable us to conclude that in these 
conditions the potassium ferri(III) cyanide /ferro (II) 
cyanide do not present a reversible behavior as it was 
expected. It is possible to verify that the ratio ip /v1/2 is 
independent of the scan rate (in the range between 150 
mV·s-1 and 20 mV. s-1), ip

a/v1/2 (+29.1 ± 1.2) µA and 
ip

c
 /v1/2 (-20.8 ± 1.3) µA, but Ep varies with the scan 

rate and △Ep also increases with the scan rate 
indicating that in these conditions the redox par 
behaves like a quasi-reversible system.  
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studies with screen-printing electrodes (5.2 ×      
10-6 cm·s-1) [29]. 

In both amperometric biosensors and biofuel cells an 
efficient regeneration of NADH/NAD+ is required. In 
this context we developed a system that allowed the 
regeneration of both species. It is necessary to use 
another carbon ink to increase electron transfer velocity 
between the electrode surface and the redox system. 

A new set of experiments was carried out, using six 
different electrodes, in low scan rate between 10 mV·s-1 
and 150 mV·s-1, to analyze the persistence and the 
reproducibility of the signal. The anodic and cathodic 
current peak varies with the square root of the sweep 
rate, thus denoting the predominance of diffusion 
controlled process [36, 38]. A cathodic peak, Ep

a = 
(+82 ± 4) mV and an anodic peak, Ep

c = (-159 ± 2) mV 
is observed, and a separation of anodic to cathodic peak, 
∆Ep, with a value of (+221 ± 2) mV vs. Ag/AgCl was 
obtained and a formal potential, E0', of (-38 ± 1) mV vs. 

Ag/AgCl was calculated. But a ratio of anodic to 
cathodic peaks current, |ip

a/ip
c| estimated was far from 

unit. In this condition NADH behaves as a 
quasi-reversible system. A linear variation of the 
current peak with the scan rate square root is obtained: 
ip

a = 1.0946 v1/2-0.035 µA, R = 0.99, ip
c = -1.777 v1/2 + 

0.0803 µA, R = 0.99, in Fig. 6. 
It is possible to observe that the cathodic peak 

presents more variation than the anodic peak, and that 
for the smallest scan rate the variation is almost null. 
This may be related to the reduction process and to the 
appearance of some interferent species that have a 
rapid kinetics as the dimer. But the potential 
application before each voltammogram may reduce 
this interferent species, allowing the reduction of 
NAD+ to NADH in slow scan rate. 

In a research using a PPS-modified carbon 
electrodes (poly(phenosafranin)-modified carbon 
electrodes) the regeneration of NADH/NAD+ was 
possible and the formal potential value found was  
(-365 ± 2) mV vs. SHE, pH 7.0 [9]. Comparing this 
result with ours ((-38 ± 1) mV vs. Ag/AgCl, pH 7), it is  
 

 
Fig. 6  Variations of the anodic and cathodic peak current 
with the square root of the sweep rate, in pH 7. The better fit 
equation is: (◌) ip

a = 1.0946 v1/2 - 0.035, R² = 0.988, n = 6; (□) 
ip

c = -1.777 v1/2 + 0.0803, R² = 0.9893, n = 6 (six measures 
which implied six different biosensors).  
 

possible to verify that with our strategy, the results are 
similar. 

A diffusion coefficient for the system NADH/NAD+ 
could not be estimated from the experimental data, 
because its concentration is unknown. In fact, the 
NADH/NAD+ diffusion occurred initially from the 
electrode surface to the electrolyte solution, and it was 
governed by gradient concentration. 

The pH dependence of the redox potential of 
NADH/NAD+ was also analyzed. At pH from 3 to 9 the 
redox potential average, the formal potential was   
(-33 ± 4) mV. This result is not similar to the reported 
in literature, which refer a dependence of -30.3 mV/pH. 
The stability of the formal potential may be related to 
the initial reduction on the electrode surface [5, 32].  

3.3 Influence of Nonelectroactive and Electroactive 
Species in the NADH/NAD+ Redox System Responses  

The presence of some molecules presented in living 
organism was studied with this sensor. The effect of the 
glucose, a non electroactive species, was analyzed, in 
pH 7. At a neutral pH, glucose in the range of 2-15 mM, 
promotes a peak difference of ΔEp = (+235 ± 12) mV 
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vs. Ag/AgCl, and the midpoint potential slight shift 
from (-41 ± 4) mV vs. Ag/AgCl to (-17 ± 5) mV vs. 
Ag/AgCl. The analysis of the ratio between ip

a after and 
ip

a before glucose addition, with the glucose 
concentration is observed, in Fig. 7.  

It is important to highlight that glucose promotes 
higher anodic current peaks, promoting the oxidation 
of NADH to NAD+. So glucose interferes with the 
oxidation of this cofactor. This mechanism may occur 
in biological systems to facilitate the oxidation process 
in the absence of an enzyme. But it is a problem for 
constructing biosensors, because if the electrodes use 
enzyme which need the redox system NADH/NAD+ as 
a cofactor, it may sense glucose and not the specific 
substrate. Also, this may interfere with glucose 
detection, as NADH reacts with glucose, and 
diminishes artificially his quantity.  

The oxidation of NADH signal was also analyzed in 
the presence of an eletroactive species, the ascorbic 
acid at pH 7. For concentration above between 0.75 
mM and 12 mM the voltammograms profile did not 
change. The difference between potential peaks, ΔEp, 
before the addition, (233 ± 7) mV, was similar to the 
 

 
Fig. 7  Variations of the relation between ip

a NADH/NAD+ 

signal after and before the glucose addition with the glucose 
concentration. Cyclic voltammograms recorded at 35 mV/s 
in PBS buffer (pH 7) with KCl (0.1 M). Each point is the 
average of two measurements with different sensors. 
 

one obtained after the addition, (228 ± 15) mV. But 
they change the formal potential from (-35 ± 7) mV to 
(-17 ± 1) mV, as the cathodic peak potential becomes 
more positive Ep

a = (+100 ± 4) mV, and the cathodic 
peak remains near (-135 ± 8) mV. The oxidation 
current peak did not change significantly. 

The NADH signal was also analyzed, at pH 7, in the 
presence of β-3- HBDH (hydroxybutyrate 
dehydrogenase), an enzyme that has as cofactor 
NAD+/NADH, and β-3-HB (hydroxybutyrate). 

To do this study, first, a drop of electrolyte (2 µL) 
was placed in the sensor working area, and recorded 
cyclic voltammograms in scan rate between 10-100 
mV·s-1. Analysis to the cyclic voltammograms shows 
that the NADH behaves as a quasi-reversible system, 
as expected. The voltammetric signal (using three 
different sensors: n=3) is characterized by ∆Ep= (240 ± 8) 
mV vs. Ag/AgCl a formal potential of E0' = (-38 ± 8) 
mV vs. Ag/AgCl. After that, a drop ((2 µL) of HBH 
enzyme solution (0.5 mg/mL), prepared with the 
electrolyte, was added to the working area. The signal 
shape did not change, but the anodic current peak 
diminishes slightly to scan rates lower them 50 mV·s-1, 
and the ∆Ep obtained was (227 ± 2) mV vs. Ag/AgCl  
(n = 3), the formal potential of (-8 ± 15) mV vs. 

Ag/AgCl (n = 3) was obtained. The reduction of the 
anodic currents may be explained due to the 
incorporation of the cofactor (NAD+) in the enzyme, 
with the consequent decrease of NAD+ formed near the 
electrode surface. And the formal potential alteration 
may be related to the vicinity of the NAD/NAD+ 
system in this condition and the presence of the enzyme 
near the electrode surface. 

The addition of HB (10 mM) solution, the enzyme 
catalytic substrate, to the electrode with HBH added by 
casting, cause an increase in the anodic current, but the 
cathodic current did not sense the presence of HBH or 
HB. 

The addition of glucose (10 mM) to the working area 
after the addition of HBH by casting and the 
subsequent electrochemical analysis revealed also an 
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increase in the anodic current, but also a change in the 
E0' to positive values (+6 ± 10) mV vs. Ag/AgCl     
(n = 3)) and a typical ∆Ep = (+229.0 ± 14) mV vs. 

Ag/AgCl (n = 3). 

4. Conclusions 

In this work, we used a simple procedure to fabricate 
a paper device, using wax to limit the hydrophobic and 
hydrophilic areas of the biosensor. We immobilized the 
cofactor in the matrix of the working electrode, which 
was printed on paper. This procedure is easy and quick, 
and does not need any drastic treatment.  

In this work, the electrode electrochemical reaction 
is a complex process, and has many challenges. One of 
them is the increase of the rate of electron transfer 
between the electrode and NAD/NADH system. This 
velocity depends not only on the electron transfer, but 
also on mass transport velocity.  

By comparison of the mass transport velocity and 
charge transference it is possible to identify a 
quasi-reversible reaction where the electrode process is 
governed by kinetics and diffusion. In all situations 
analyzed in this work the system behaved as a 
quasi-reversible. Some characteristics observed here 
were attributed to the nature of the electrode 
(screen-printing) that conditioned kinetics and reduced 
the mass transport velocity, which can be perceived in 
the peak-to-peak separation. One strategy used by 
some researcher is the utilization a solution of 
3-APDES (aminopropyldimethly ethoxysilane) 
prepared with water to improve the hydrophilicity of 
the electrode surface (graphite) and of the paper 
channel and enhance the electron transfer velocity [42]. 

It is important to highlight that even with these 
obstacles, it was possible to obtain the oxidation and 
reduction well defined NAD+/NADH signal that was 
not reported in the literature. It was also possible to test 
this sensor with non-electroactive molecules such as 
glucose, and with eletroactive species as ascorbic acid, 
which shows its versatility. The first one interacts with 
the electrode and promotes higher oxidation currents, 

but the ascorbic acid did not interfere with the 
electrochemical signal. 

In future researches it will be interesting to use this 
approach, and incorporate enzymes relevant to health 
and to the environment, in the carbon ink, to detect 
there subtracts. It will be also important using the 
screen-printing technique and the capability of 
NAD+/NADH interaction with glucose to develop 
cheaper biofuel cell. 
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