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Abstract: The inverse problems of wave equation to recover unknown space-time dependent functions of wave speed and wave 
source are solved in this paper, without needing of initial conditions and no internal measurement of data being required. After a 
homogenization technique, a sequence of spatial boundary functions at least the fourth-order polynomials are derived, which satisfy 
the homogeneous boundary conditions. The boundary functions and the zero element constitute a linear space, and then a new 
boundary functional is proved in the linear space, of which the energy is preserved for each dynamic energetic boundary function. 
The linear systems and iterative algorithms used to recover unknown wave speed and wave source functions with the dynamic 
energetic boundary functions as bases are developed, which converge fast at each time step. The input data are parsimonious, merely 
the measured boundary strains and the boundary values and slopes of unknown functions to be recovered. The accuracy and 
robustness of present methods are confirmed by comparing exact solutions with estimated results under large noises up to 20%. 
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1. Introduction  

Studying the wave motions is a very important 
topic for many physical and engineering problems, for 
instance the stress wave in solids, the wave 
propagation in fluids, the scattering problems of 
electromagnetic waves, and the sound wave 
propagation in media. For the direct problems of wave 
equations there are many available methods and the 
techniques are matured; for example, Lin et al. [1] 
have developed a fast solver of the three-dimensional 
wave equation by using the sparse scheme of the 
method of fundamental solutions, and Liu et al. [2] 
have developed a multiple-direction Trefftz method 
for solving the three-dimensional wave equation in 
arbitrary spatial domain. 

In contrast, the parameter characterizing of material 
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property distributed in a solid medium may be quite 
complicated, which depends on time and position. The 
inverse scattering technique is how we can obtain a 
large part of our information about the constituent. We 
know about the interior structure of the earth by 
solving the inverse problem of determining the sound 
speed by measuring the travel times of seismic waves. 
The inverse scattering technique is also used in the 
non-destructive testing of structures to find cracks and 
corrosion. 

For the problems of material property identification 
of wave equations there are two kinds of approaches: 
time-independent approach and time-dependent 
approach. In fact, most often the inverse scattering 
problems are stated in a time-independent formulation 
after taking a Fourier transformation in the time 
variable, or inserting a time-harmonic plane wave into 
the wave equations. However, when the material is 
time aging, such as the viscoelastic material, whose 
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coefficient may be time-dependent, and hence the 
time-independent approach is not valid for the 
identification of time-dependent material coefficient. 
In the time-domain approach of the inverse scattering 
problems, there is some literature related to the 
present issue, to name a few, Baev [3-5], Tadi [6-8], 
and Na and Kallivokas [9]. 

The parameter identification in partial differential 
equations from over-specified data is widely 
encountered in the modelling of physical phenomena. 
First, we consider an inverse coefficient problem to 
recover an unknown parameter ),( txα  in a 
one-dimensional wave equation, of which one needs 
to find displacement ),( txu  as well as the wave 
speed function ),( txα  that simultaneously satisfy: 
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l<< x0 , ftt ≤<0       (1) 

where, ),( txH  is a given source function. For Eq. 
(1), there is another inverse problem to identify the 
wave source function ),( txH , which is the next 
issue to be solved in this paper. When both the inverse 
problems are solved without providing internal 
measurements of data and initial conditions, none is a 
simple and easily solved inverse problem. 

Because the above problem has an unknown 
function ),( txα  and gives no initial conditions, it 
cannot be solved directly to find ),( txu . In order to 
recover ),( txα  we give over-specified data of 

)(),0( 0 tFtu = , )(),( tFtu ll = ,  

)(),0( 0 tQtux = , )(),( tQtux ll =    (2) 

)(),0( 0 tt αα = , )(),( tt ll αα = , 

)(),0( 0 tt αα ′=′ , )(),( tt ll αα ′=′     (3) 

where, )(0 tF  and )(tFl  are respectively the given 
functions of left-boundary value and right-boundary 
value of ),( txu , and )(0 tQ  and )(tQl  are 

respectively the given strains on left-boundary and 
right-boundary. It can be seen that the extra data 
required to recover ),( txα  are parsimonious, merely 
the measured boundary strains and the boundary 
values and slopes of unknown functions to be recovered. 

The inverse problems are those in which one would 
like to determine the causes for an observed effect, 
which are usually ill-posed. For the present inverse 
problem, the observed effect is the boundary strains. 
We are interested to search the unknown coefficient  

),( txα  in Eq. (1), which causes the effect we 
observe through the measurement of boundary strains 
in time. 

However, using Eqs. (1)-(3) to recover the 
unknown space-time wave speed ),( txα  is a very 
difficult task, because the system in Eqs. (1)-(3) is 
seriously under-determined, and the resulting inverse 
problem is severely ill-posed. For this inverse wave 
speed problem, the measurement error may lead to a 
large discrepancy from the true cause. The numerical 
methods for solving the wave speed identification 
problems have been examined by many researchers, 
for example Refs. [10-15]. Note that we do not need 
the data from the initial displacement and initial 
velocity, which are drastically different from that in 
the above numerical methods. 

It is known that the wave equation constitutes a 
hyperbolic system, of which there are some works on 
the identifications of the point sources [16-20]. This 
study has important application in the seismology 
detection, which could be regarded as an 
approximation of elastic waves generated from the 
point dislocation. The excitation force is assumed to 
have known time profile, and the problem is to 
determine the spatial variation from supplementary 
measurements. 

Here we attempt to accurately and quickly identify 
the wave speed function and wave source function 
sequentially in time by solving the inverse wave 
propagation problems without needing of initial 
conditions, final time displacement, and internal 
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measurements of displacement data. This 
identification technique can find some wide range 
applications in engineering and science, since it is 
often easier to measure the boundary strains in time, 
rather than that to directly measure the displacement 
inside the propagating material. Due to its importance 
on the knowledge to the wave propagation properties 
and wave sources for new materials used in many 
system analyses, these inverse problems have attracted 
much attention. 

The remainder of this paper is arranged as follows. 
In Section 2 we introduce a new idea of the boundary 
functional in terms of energetic boundary functions, 
which constitute a linear space of all polynomial 

functions with at least the fourth-order, to 
automatically satisfy the homogeneous boundary 
conditions. In Section 3 we derive the iterative 
algorithm to recover the unknown wave speed 
functions and four examples are given in Section 4. 
Then, we derive the iterative algorithm to recover the 
unknown space-time dependent wave source functions 
in Section 5, where three numerical examples are 
given. Finally, the conclusions are drawn in Section 6. 

2. Dynamic Energetic Functional of 
Boundary Functions 

Multiplying both sides of Eq. (1) by ),( txu , we 
have: 
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Integrating it from 0=x  to l=x  and using the integration by parts one time we can derive 

∫ ∫ ∫−′+
l l l

&&
0 0 0

2 ),(),(),(),(),(),( dxtxutxHdxtxutxdxtxutxu α  

)(:)()()()()()( 000 tFtFtQttFtQt =−= αα lll               (4) 

where, the boundary conditions in Eqs. (2) and (3) were used. The above the superimposed dot denotes the time 
differential, while a prime denotes the spatial differential. The resulting equation is a dynamic energy equation 
due to its time-dependence. This encourages us to use the energy functional as a mathematical tool to identify 

),( txα . 
Usually, the given data in Eq. (2) are not zero, which leaves us an obstacle to set up a linear space to be 

introduced below. Before embarking the analysis of wave speed we seek a variable transformation by 

),(),(),( 0 txBtxutxv −=                                (5) 

where, 

[ ] 3
0030 )()()(2)(21),( xtQtQtFtFtxB ll

l
ll ++−= [ ])()(2)(3)(31 2

002 xtQtQtFtF ++−− ll
l

ll  

)()( 00 tFxtQ ++                                             (6) 

is a homogenization function, such that we have a new energy functional in terms of ),( txv  with the 
homogeneous boundary conditions for ),( txv : 

[ ][ ] [ ]∫ ∫ ′+′+++
l l&&&&

0 0

2
000 ),(),(),( ),(),( ),(),( dxtxBtxvtxdxtxBtxvtxBtxv α  

[ ] )(),(),(),(
0 0 tFdxtxBtxvtxH =+− ∫
l

           (7) 

0),0( =tv , 0),( =tv l , 0),0( =tvx , 0),( =tvx l                    (8) 
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We cannot exactly know ),( txv  in Eq. (7), 
because ),( txα  is an unknown function to be 
determined. However, we can set up some functions to 
approximate ),( txv . First, we can derive the 
boundary function which automatically satisfies the 
homogeneous boundary conditions in Eq. (8): 

( ) 12234 2)( −+−= j
j xxxxxB ll , 1≥j   (9) 

They are at least the fourth-order polynomial 
boundary functions, satisfying the following 
homogeneous boundary conditions: 

0)0( =jB , 0)( =ljB  

0)0( =′jB , 0)( =′ ljB          (10) 

From Eqs. (9) and (10) it is obvious that when 
)(xBj  is a boundary function, )(ljBβ , R∈β  is 

also a boundary function, and when )(xBj  and 

)(xBk are boundary functions, )()( xBxB kj + is 
also a boundary function. The boundary functions are 
closure under a scalar multiplication and addition. So, 
the set of 

{ })(xBj , 1≥j           (11) 

and the zero element constitute a linear space of 
boundary functions, denoted by B. 

The following result is important to help us identify 
the unknown wave speed function ),( txα . 

Theorem 1. In the linear space B there exist 
homogeneous boundary functions: 

)()()( 1 xBxBxE jjjj ++= γ , 

1≥j , j not summed            (12) 

such that ),( txα  is a solution of the following 
functional in terms of  

[ ][ ] [ ]∫ ∫ =′+′+−+
l l&&

0 0

2
000 ),(),()(),(),(),( ),(),( tFdxtxBxEtxdxtxHtxBtxBtxE jj α    (13) 
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Proof. Because )(xBj , ∈+ )(1 xBj B are elements 
in the linear space B, the linear combination in Eq. (12) 
renders ∈)(xE j B an element in the linear space B, 
which satisfies the homogeneous boundary conditions: 

0)0( =jE , 0)( =ljE , 

0)0( =′jE , 0)( =′ ljE         (16) 

due to Eq. (10). 
Because )(xE j already satisfies the boundary 

conditions in Eq. (16), we turn our attention to the 

energy identity Eq. (7), from which we can 
approximate ),( txv  by )(xE j  and derive Eq. (13), 
which is a dynamic energetic functional of )(xE j  
defined in the linear space. 

Inserting Eq. (12) for )(xE j  and 

)()()( 1 xBxBxE jjjj +′+′=′ γ       (17) 

for )(xE j′  into Eq. (13) we can derive a quadratic 
equation for determining the multiplier jγ  by 

001
2

2 =++ aaa jj γγ         (18)  

which is time-dependent due to ),(0 txB  and )(tF , 
and the coefficients 0a , 1a , 2a are defined in Eq. (14). 
Then the solution of jγ  is derived in Eq. (15). This 
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ends the proof of this theorem.  
The above context, it seems unreasonable that we 

replace the function ),( txv of ),( tx  by a function 
)(xE j  of x. Later, it will be clear that the function 
)(xE j  is an implicit function of t due to the 

dependence of jγ  on t. The linear element )(xE j  
in Eq. (12) upon equipping with the above jγ  is an 
implicit function of time and is a dynamic energetic 
boundary function, which not only satisfies the 
boundary conditions, but also preserves the dynamic 
energy in Eq. (13). 

Up to here it is witnessed to determine the 
multiplier jγ  by using the energy functional in Eq. 
(13). Due to this reason )(xE j  is called a dynamic 
energetic boundary function, and correspondingly the 
numerical method based on )(xE j  to be introduced 
below is a BFM (boundary functional method). 

3. Recovering the Wave Speed 

3.1 Series Expansion of ),( txα  

Because the boundary data of ),( txα  are 
supplemented in Eq. (3), we can introduce the 
following translation function: 

[ ] 3
003 )()()(2)(21),( xtttttxd ll

l
ll αααα ′+′+−=  

[ ])()(2)(3)(31 2
002 xtttt αααα ′+′+−− ll

l
ll  

)()( 00 txt αα +′+            (19) 

such that we have 

)(),0( 0 ttd α= , )(),( ttd ll α= , 

)(),0( 0 ttd α ′=′ , )(),( ttd ll α ′=′    (20) 

We suppose that the unknown wave speed function 
),( txα  can be expanded in terms of the bases 

functions )(xEk : 

∑
=

+=
m

k
kk xEbtxdtx

1
)(),(),(α ,    (21) 

which automatically satisfies )(),0( 0 tt αα = , 
)(),( tt ll αα = , )(),0( 0 tt αα ′=′  and 

)(),( tt ll αα ′=′ , due to Eqs. (16) and (20). 
Then, with an initial guess of kb  we use the above 

),( txα  to set up the linear elements system )(xE j  
by the method in Section 2. During the iteration 
process, )(xE j  are modified by ),( txα  which is 
varying step-by-step. 

We can derive a system of linear algebraic 
equations by inserting ),( txα  of Eq. (21) and 
different )(xE j  with mj ,,1K=  into Eq. (13): 

[ ]∫ ′+′
l

0

2
0 )(),()( dxxEtxBxEb kjk  

[ ][ ]∫ +−+=
l &&

0 00 ),()( ),(),()( dxtxBxEtxBtxHtF j  

[ ]∫ ′+′−
l

0

2
0 .),()(),( dxtxBxEtxd j     (22) 

Solving this linear system we can determine the 
expansion coefficients kb , mk ,,1K= . Then, we 
can estimate ),( txα  by Eq. (21). 

3.2 Iterative Algorithm to Recover ),( txα  

The numerical procedures of BFM are summarized 
as follows. 

(i)  Give t in a time interval of ],0( ftt ∈ , and 
give m, ε , and an initial guess of 

( ) 0b0 == T
1 ,, mbb K  and 0=jγ . 

(ii)  For ,,1,0 K=k  calculate: 

)()()( 1 xBxBxE jjjj ++= γ , 

∑
=

+=
m

j
j

k
j xEbtxdtx

1
)(),(),(α , 

(iii)  Calculate 2a , 1a , 0a in Eq. (14) and jγ  by 

Eq. (15), 

)()()( 1 xBxBxE jjjj ++= γ , 

)()()( 1 xBxBxE jjjj +′+′=′ γ , 

(iv)  Insert the above )(xE j  and )(xE j′  into 

Eq. (22), and solve the linear system to obtain 1+k
jb . 

If the following convergence criterion for the relative 
norm of kb is satisfied: 
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ε≤+ kk b-b 1          (23) 

then stop the iterations, otherwise, go to (ii) to the 
next step. Notice that 20

2
1 4 aaa −  in Eq. (15) may 

be negative in the first few iterations, and we use 

20
2
1 4 aaa −  to avoid the interruption of program. 

4. Numerical Tests to Recover ),( txα  

When the measurements of strains are contaminated 
by noise, we can simulate the noisy data )( itF , 

ni ,,1K= . in Eq. (4) by adding random errors on the 
exact values of )( itF , ni ,,1K=  by 

)()()( isRtFtF ii += , ni ,,1K=   (24) 

where, s is the intensity of measurement errors, 
assumed to be the same for all measurements, and 

)(iR  is a normally distributed random error between 
[ ]1 ,1− . In the numerical examples given below the 
noisy data )( itF  are used as the inputs to the 
numerical method. We first estimate two 
space-dependent wave speed functions )(xα , where 
t is viewed as a parameter and we set it to be ftt = . 
Then we estimate two space-time-dependent wave 
speed functions ),( txα , where t is a time variable.  

We use the relative error: 

),(
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jjjjn
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txtx
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where, ),( jjn txα  and ),( jj txα  are, respectively, 
the numerically recovered wave speed and exact wave 
speed at N points ),( jj tx , Nj ,,1K= , to assess 
the accuracy of numerical solution and also consider 
the magnitude of ),( jj txα , Nj ,,1K= . Moreover, 
we consider a relative root mean-square-error defined 
by： 
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to further assess the accuracy of numerically 
recovered wave speed. 

4.1 Example 1 

First, we consider 
42 431)( xxx ++=α , 

textxu −−= 2)3(),( ,        (25) 

and the exact ),( txH  can be derived from Eq. (1). 
In this identification of )(xα  we have fixed 

2=ft  and %20=s . Applying the BFM with 

10=m  and 1010−=ε , the iterative algorithm 
converges with three iterations as shown in Fig. 1a. 
Upon comparing the numerically recovered and the 
exact )(xα , good result is obtained with the 
maximum relative error being 0.148 as shown in Fig. 
1b, and 21074.4)( −×=αe . Although only eight 
data on boundaries are employed to estimate )(xα , 
the present result is accurate and robust against large 
noise. 

4.2 Example 2 

Then, we consider 

[ ]22 )5.0(2exp515)( −−+= xxxα , 

textxu −−= 2)3(),(               (26) 

and the exact ),( txH  can be derived from Eq. (1). 
Under 2=ft  and %20=s , applying the BFM 

with 5=m  and 510−=ε  to solve this problem, 
the iterative algorithm converges with three iterations 
as shown in Fig. 2a. Upon comparing the numerically 
recovered wave speed with the exact )(xα , good 
result is obtained with the maximum relative error 
being 2107.5 −× as shown in Fig. 2b, and 

21078.2)( −×=αe  is small. 

4.3 Example 3 

In this example we recover a space-time-dependent 
wave speed function, given by 

( ) 223)( txx +−=α , 

textxu −−= 2)3(),(         (27) 

and the exact ),( txH  can be derived from Eq. (1). 
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Fig. 1  For example 1 solved by the BFM iterative algorithm, (a) convergence rate, and (b) comparing numerically recovered 
and exact wave speeds and showing relative error. 
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Fig. 2  For example 2 solved by the BFM iterative algorithm, (a) convergence rate, and (b) comparing numerically recovered 
and exact wave speeds and showing relative error. 
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The noise imposed is %20=s . Applying the 
BFM with 3=m  and 510−=ε , the iterative 
algorithm converges with one or two iterations at each 
time step. Upon comparing the numerically recovered 
and the exact ),( txα , very good result is obtained 
with the maximum relative error over the plane 
[ ] ( ]1 ,01 ,0 ×  being 41006.3 −×  as shown in Fig. 3, 
and 51031.3)( −×=αe  is very small. 

4.4 Example 4 

In this example we recover another 
space-time-dependent wave speed function by 

( )txtxx +++= 221exp)(α , 

textxu −−= 2)3(),(             (28) 

and the exact ),( txH  can be derived from Eq. (1). 
The noise imposed is %20=s . Applying the 

BFM with 3=m  and 210−=ε , the iterative 
algorithm converges with one or two iterations at each 
time step. Upon comparing the numerical and exact 

),( txα  in Fig. 4, they are close with the maximum 
relative error over the plane [ ] ( ]1 ,01 ,0 ×  being 0.28, 
and 21073.6)( −×=αe  is acceptable. 

 

 
Fig. 3  For example 3 solved by the BFM iterative algorithm, showing relative error of wave speed.  
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(a) 

 
(b) 

Fig. 4  For example 4 solved by the BFM iterative algorithm, comparing (a) numerically recovered and (b) exact wave 
speeds. 
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5. Numerical Algorithm to Recover ),( txH  
and Examples 

Sometimes we may encounter the problem that the 
wave source function in the wave equation is 
unknown. To resolve such an inverse wave source 
problem by using the control results of distributed 
systems was ever conducted by Yamamoto [21, 22], 
Bruckner and Yamamoto [23], and Yamamoto and 
ZHANG [24]. In higher dimensional domains the 
reciprocity gap functional technique leads to the 
reconstruction of smoother unknown sources by using 
the boundary observations [17, 20]. Komornik and 
Yamamoto [18] have determined the positions of 
point sources in a one-dimensional wave equation, 
and later the estimation results are extended to 
multi-dimension in Ref. [19]. Most researchers are 
concerned with the determination of point sources. Liu 

et al. [25] have developed a differencing technique to 
generate a small scale linear system to recover the 
spatial-dependent or temporal-dependent wave 
sources. Liu [26] has developed a boundary integral 
equation method to recover the term-wise separable 
wave source function, and Liu [27] has developed a 
polynomial Trefttz method to recover the 
time-dependent wave source function. We will 
continue the BFM for the recovery of a space-time 
dependent wave source by using two extra strains 
measured on two boundaries. 

5.1 Numerical Algorithm to Recover ),( txH  

In this section we attempt to recover the unknown 
wave source ),( txH  through the boundary 
measurements of strains. The numerical procedure for 
recovering ),( txH  is given in the following form to 
find the expansion coefficients jc  in 

∑
=

+=
m

j
jj xEctxDtxH

1
)(),(),(                              (29) 

where, 

[ ] 3
003 )()()(2)(21),( xtHtHtHtHtxH ll

l
ll
′+′+−=  

[ ] ).()()()(2)(3)(31
00

2
002 tHxtHxtHtHtHtH +′+′+′+−− ll

l
ll              (30) 

The data ),0()(0 tHtH = , ),()( tHtH ll = , ),0()(0 tHtH ′=′  and ),()( tHtH ll
′=′ are supposed to be 

provided. 
The numerical procedures of BFM for recovering unknown wave source function are summarized as follows. 

(i) Give t in a time interval of ],0( ftt ∈ , and give m, ε , and an initial guess of ( ) 0c0 == T
1 ,, mcc K  and 

0=jγ , 
(ii) For ,,1,0 K=k calculate: 

)()()( 1 xBxBxE jjjj ++= γ , 

∑
=

+=
m

j
j

k
j xEctxDtxH

1
)(),(),( , 

∫ ′=
l

0

2
2 ,)(),( dxxBtxa jα  

[ ] [ ]{ }∫ −+′′+′= +

l &&
0 0011 )(),(),()(),(),(2 dxxBtxHtxBxBtxBBtxa jjjα , 
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[ ] [ ][ ]{ } )(),()( ),(),(),(),(
0 010

2
010 tFdxtxBxBtxHtxBtxBBtxa jj −+−+′+′= ∫ ++

l &&α , 
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a
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j

−−−
=γ , 

)()()( 1 xBxBxE jjjj ++= γ , 

)()()( 1 xBxBxE jjjj +′+′=′ γ , 

(iii) Insert the above )(xE j  and )(xE j′  into  

[ ]∫ +
l

0 0 )(),()( dxxEtxBxEc iji  

[ ][ ] [ ] ,)(),()(),(),(),( ),()(
0

2
00 00 ∫∫ −′+′+−+=

ll && tFdxtxBxEtxdxtxDtxBtxBxE jj α  
 

and solve it to obtain 1+k
jc . If the following 

convergence criterion for the relative norm of kc  is 
satisfied: 

ε≤+ kk c-c 1  

then stop the iterations; otherwise, go to (ii) to the 
next step. In the first few iterations, 20

2
1 4 aaa −  

may be negative, and we use 20
2
1 4 aaa −  to avoid 

the interruption of program. 

5.2 Example 5 

In this example we recover the space-time 
dependent and non-separable wave source function 
generated from Eq. (28), which is given by: 

( ) ( )xtxxextxH t ++−+−= − 222 1exp)24(3),( (31) 

The noise imposed is %20=s . Applying the 
BFM with 3=m  and 210−=ε , the iterative 
algorithm converges with one to four iterations for 
each time step. Upon comparing the numerical and 
exact ),( txH  in Fig. 5, good result is obtained with 
the maximum relative error over the plane 
[ ] ( ]1 ,01 ,0 ×  being 0.357, and 21025.7)( −×=He . 
Notice that the maximum value of ),( txH  over the 
plane [ ] ( ]1 ,01 ,0 ×  is 33.202 . 

5.3 Example 6 

In this example we recover a more complex 
non-separable and space-time dependent wave source 
function with 

,1),( 22 txtxtx +++=α  

( )2232 exp),( txxxttxu +++= , 

( ) ( )25462442222 exp242),( xttxttxttxttxxtxH −−−−−−+=  

( )( ) ( )( )xtxtxxxtx 6213221 22222 ++++−++−                   (32) 

The noise imposed is %20=s . Applying the 
BFM with 3=m  and 210−=ε , the iterative 
algorithm converges with one iteration for each time 

increment. Upon comparing the numerically recovered 
wave source with the exact ),( txH , good result is 
obtained with the maximum relative error over the plane 
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(a) 

 
(b) 

Fig. 5  For example 5 solved by the BFM iterative algorithm, comparing (a) numerically recovered and (b) exact wave 
sources. 
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Fig. 6  For example 6 solved by the BFM iterative algorithm, showing relative error of wave source.  
 

[ ] ( ]1 ,01 ,0 ×  being 21033.2 −×  as shown in Fig. 6, 
and 31077.9)( −×=He  is quite small. Notice that 
the maximum value of ),( txH over the plane 
[ ] ( ]1 ,01 ,0 ×  is 49.72. 

5.4 Example 7 

Finally, we recover a very complex non-separable 
and space-time dependent wave source function 
generated from 

,1),( 22 txtxtx +++=α  

( ) ( )xttxtxu cosexp),( +=      (33) 

 
 
 

The exact ),( txH can be obtained by inserting the 
above ),( txα  and ),( txu  into Eq. (1). 

The noise imposed is %20=s . Applying the 
BFM with 5=m  and 210−=ε , the iterative 
algorithm converges from one to sixteen iterations for 
each time step. Upon comparing the numerically 
recovered and exact ),( txH  we show the error in 
Fig. 7, of which good result is obtained with the 
maximum error over the plane [ ] ( ]1 ,01 ,0 ×  being 

13.3  and 31077.9)( −×=He  is acceptable. 
Notice that the maximum absolute value of ),( txH  
over the plane [ ] ( ]1 ,01 ,0 ×  is 98.43 . 
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Fig. 7  For example 7 solved by the BFM iterative algorithm, showing error of wave source.  
 

6. Conclusions 

In this paper, a dynamic energy identity derived 
from the wave equation was used to set up a linear 
space of the energetic boundary functions, which not 
only satisfy the homogeneous boundary conditions but 
also preserve the energy in time. In terms of the 
energetic boundary functions as bases to expand the 
unknown wave speed, we have transformed the 
inverse coefficient problem to recover the space-time 
dependent wave speed into a linear system to 
determine the expansion coefficients of the unknown 
wave speed. On the other hand, we have transformed 
the inverse problem to recover the space-time 

dependent wave source function into solving a linear 
system to determine the expansion coefficients of the 
unknown function at each time step. Therefore, we 
can fast recover the unknown functions in the linear 
space, which are supplemented with extra boundary 
data of time-dependent strains and the boundary 
values of the unknown functions to be recovered. 
Seven examples confirmed the efficiency and 
accuracy of the presented BFMs, of which the 
convergence is only through a few iterations at each 
time step. To the best knowledge of authors, in the 
literature there exists no such a similar work which 
can recover the space-time dependent wave speed and 
wave source functions only through the boundary 
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measurements of strains, without needing to know the 
initial conditions and internal over-specified 
conditions of ),( txu . 
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