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Abstract: The IP (inverse problem) in solid mechanics have emerged through the 20th century and measured. Nowadays has accept 
the classification of inverse problems in solid mechanics [1]: retrospective IP, boundary IP, coefficient IP, geometric IP. The IPs in 
theory of elasticity, theory of plasticity, theory of strengthening, fatigue theory, fracture theory micro-structural of polycrystalline 
materials are formulated and solved. The method of high frequency theory of ultrasonic waves is used. The results which are obtained 
here show, that all coefficients and geometrical characteristics of imperfections in the material are functions only of longitudinal and 
transversal velocities and attenuation of ultrasonic waves, which are measured, according ASTM E 494: 2015. The received 
relationships from this article could be used for NDE (non-destructive evaluation) of the coefficients and the geometrical characteristics 
of imperfections in polycrystalline materials. 
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1. Introduction  

Classification of the IP (inverse problem) in solid 
mechanics includes [1].  

(1) Retrospective IP. The functions 
( ) 3,2,1;0 == ktuu Kk  are evaluation;  

(2) Coefficients IP. The function )(xa  is in the 

wave equation ( ) 0~)(~ =− xxtt pxap , where 

p~―normalized sound pressure, is evaluation;  
(3) Boundary IP. The stress vector n

ip  from 
3,2,1; == ipn n

iSjij X
σ  is evaluation; 

(4) Geometric IP. The reflected area XS  in 
3,2,1; == ipn n

iSjij X
σ  is evaluation;  

(5) Microstructure IP. The average value of grain 
size D  in polycrystalline materials is evaluation. 
Retrospective IP and Boundary IP here are not view, 
because the conditions ( ) 3,2,1;0 == ktuu Kk  and 

3,2,1; == ipn n
iSjij X

σ  are not considered because it 

is calibrations technics for ultrasonic examination 
technics [2]. 

In this article the IPs (2), (4) and (5) are formulated 
and solved as measured the acoustical characteristics of 
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materials ( )LTL VV α;;  [3]. 

2. Coefficients Inverse Problems 

2.1 In Theory of Elasticity 

The physical equations in theory of elasticity are ijσ  
= λ ijδ iiε  + 2 μ ijε  i, j = 1, 2, 3 . It is Hooke’s law. 
The relationships between the physical modulus 
( )μλ, , the technical modulus ( )KGE ,,,ν  and 
velocities of longitudinal and transversal ultrasonic 
waves ( )TL VV ,  are [4] 

22 LVρμλ =+ , 2
TVρμ =       (1) 

Е = 
μλ

μλμ
+
+ )23(

, ν  = 
)(2 μλ

λ
+

; 

G = 
ν

νλ
2

)21( −
, К = μλ

3
2

+ .     (2) 

Eqs. (1) and (2) are NDE of modulus of elasticity 
( )μλ,  and ( )KGE ,,,ν  [4]. 

The velocity of transversal ultrasonic wave TV  is 
measured according to ASTM E 494 2015. In this case 
of the Snellius’s law there is Eq. (3), in Fig. 1. 
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Fig. 1  Patent & US 5618994 A/1997.  
 

where the value ( )XW  is distance between 

transducers (emitter-receiver), )( X
Tt  is time of 

transversal ultrasonic wave propagation. Eq. (3) 
introduced: b1ϑ ―angle in protector, 1V ―ultrasonic 
velocity in protector, 0)()( =− yTt X

T
 is wave front, 

Tt ―time of transversal ultrasonic wave propagation. 
After performing the necessary transformations of Eq. 
(3), the equation for TV  is obtained as Eq. (4). 
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where, p = 
1

1sin
V

bϑ
―beam parameter. 

The velocity LV  of propagation of longitudinal 
ultrasonic wave in material is obtained by Ref. [4]. 

( ) st
mmV X

L
L μ

δ
,

,.2
)(= ,              (5) 

where, δ ―thickness of tested object, )( X
Lt ―time of 

longitudinal ultrasonic wave propagation. 
The coefficients inverse problem, in this case, is 

“evaluation of elastic modulus ( )KGE ,,,ν and 
( )μλ,  by measurement in Ref. [3] of longitudinal and 
transversal velocities of ultrasonic waves ( )TL VV ,  
propagation”. 

2.2 In Theory of Plasticity  

In theory of plasticity the physical equations are 

( )0σδσ ijij −  = ( )0. εδε ijij −Ψ , , 3.2.1=i  

(Henky’s law), where Ψ  is Henky’s coefficient [5]. 

There are relationships ϕ+=Ψ
G2
1 , 
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Eq. (6) is NDE of Henky’s coefficient. In Ref. [5] the 
modified Holl-Petch formula (NDE of yield stress), for 
yield stress— Sσ , is obtained 

( ) ( )( ) 2/1
0 .;;

−
+= DGKG yS ννσσ ,   (7) 

where for the technical modulus ( )KGE ,,,ν  there 
are 

ν = 2
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For the non-destructive evaluation of average value 
of grain size― D  by measuring the acoustical 
characteristics of materials ( )LTL VV α,,  we have 
Popov’s equation. 

( )TL VVW ,2
4f ( )3

D  - αL = 0      (8) 

where, ( )TL VVW ,2 = ⎥
⎦
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VVV
Vπ , i.e., 

DD = ( )LTL VV α,, . 
Eq. (8) is NDE of average value of grain size— D  

in polycrystalline materials. 
The coefficient inverse problem, in this case, is: 

“evaluation of the Henky’s coefficient Ψ by 

( )LTL VV α,, ”. 

2.3 In Theory of Strengthening 

If the strengthening model is xxσ = n
xxbε. , then 

parameters ( )nb,  are obtained  

)(.2 XW
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where 

( ) [ ]
⎭
⎬
⎫
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⎨
⎧ +++−= 2/1)1.(2).1(

9
2).21(

2
1 ννννϕ [4],

989.034.0 HBB =σ [4]. 

Eq. (9) is NDE of parameters ( )nb, . 

The modified Stroh’s relationship is 

Bσ = ( )TL
B VV ,)(

0σ + ( )TL
B

y VVK ,)( . ( ) 2/1−
D  

989.034.0 HBB =σ                     (10) 

where ( )TL
B VV ,)(

0σ  and ( )TL
B

y VVK ,)( . 

The coefficients inverse problem, in this case, is 

“The parameters ( )nb,  are obtained by measured 

( )DHBVV TL ,,, ”. 

2.4 In Theory of Fatigue  

The basic result in theory of fatigue is Wöhler’s 
curve .  

bNa −
− += 11max .σσ           (11) 

where 1−σ  is fatigue limit, ( )1max ; Nσ  are 
mechanical stress and number of cycles to destruction, 
( )ba; —parameters. The Eq. (11) in the form of 
Vagapov is 

( )2
1max1 −−σσN  = ⎟⎟
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16
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where for fatigue limit 1−σ . 

1−σ = ( )TL VV ,)1(
0
−σ + ( )TLy VVK ,)1(− . ( ) 2/1−

D  (13) 

The coefficients ( )TL VV ,)1(
0
−σ  and ( )TLy VVK ,)1(−  

in Ref. [4] are obtained as function of ( )TL VV , . From 

Eq. (8) therefore ( )LTL VVDD α,,= . Eq. (13) is 
NDE of fatigue limit 1−σ . 

For Young’s modulus and relative 
contraction— ( )ψ,E  are obtained the relationships 
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A nψ - B ψ - C 0≈ , 15/4=n  [6];      (14)  
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Eqs. (13) and (14) are NDE of parameters 
( )ψσ ,,1 E−

 in Vagapov’s curve (12). 
The coefficients inverse problem, in this case, is 

“evaluation of the functions )1(
0

−σ ( )TL VV ;  and 

)1(−
yK ( )TL VV ; , by measured ( )LTL VV α;;: , where 

( )Lα —attenuation coefficients at longitudinal 
ultrasonic wave propagation”. 

2.5 In Fracture Theory 

In Ref. [7] for the value of stress intensive 

factor— ICK  is obtained 

2
ICK = ( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−− ψν

τχ
1

1ln.
1

... 2

ED S     (15) 

where, ( )Dχ  is function of average value of grain 

size D , SS στ
3

1
= —yield stress, 

( )ν;E —Young’s modulus and Poison’s coefficient, 

ψ —relative contraction. After conducting the 
necessary transformations Eq. (15) is down to 
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Eq. (16) is NDE of stress intensive factor— ICK  by 

( )DK IC
* . 

For low carbon steels, the reference values ( )REF  

are approximately 
2/1.54 mmMPaK REF

IC ≈ MPaREF 72)(
0 ≈σ ;

2/1)( .9.23 mmMPaK REF
y ≈ and 

( )// ≈E REFREFREF ψν
( )%7565(~/256.0~/.201~ −MPa . Therefore 

we have 2
ICK = ( )LTLIC VVK α;;2 . 

3. Geometrical Inverse Problems  

3.1 Evaluation of Reflected Area by Acoustical Tract 
Analysis  

For the calculated the reflected area— dS , Eq. (17) 
is used. 

0)~(.
)(
cos/cos

22 =−⎟⎟
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⎝

⎛

+
pS

rr
SD

d
ППT

ППJ

λ
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  (17) 

where, JD —omission coefficient by energy, 
ППS —area of piezo-plate, ( )βγ , —incident and 

orientation angles respectively, Tλ —wave length, 

( )ППrr; —ultrasonic roads to the reflector and through 
the protector of the transducer respectively, 
( )Sp~ —scattering acoustic field, in Fig. 2. 

The Geometrical Inverse Problem, in this case, is 

“calculation of the reflected area dS  at given 

JD , λ , ППS , ( )βγ , , ( )ППr  and measured ( )rpS ;~ ”.  

3.2 Evaluation of Depth of Crack 

The cracks are boundary for tested sample in Fig. 3. 
The ultrasonic diffraction method for calculating 

the depth of crack—h Eq. (18) is used. 

( ){ }( )2)(.. X
TUp WVph ϕ=       (18) 

where, ( ) ( ) 1
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P ϕ

ϕ ,  

( ) 0/. )( =− p
X

T tWppVϕ  [4]. 

The function―φ(pVT) and the beam parameter―p 
are described in Eq. (4). The geometrical inverse 
problem, in this case, is “to calculate the depth of 
cracks h by beam parameter―p and measure of 

( )T
XT tWV ,, )( ”. 

 
Fig. 2  Ultrasonic reflected method. 
 

)( XW  

 

Fig. 3  Ultrasonic diffraction method.  
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4. Microstructure Inverse Problem 

The basic characteristics of polycrystalline 
microstructures [8] are average value of grain 
size― D . The value D  is random value with 
Weibull’s density of distribution i.e., 

( )baDp ,, =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
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− bb

a
D

a
D

a
b exp

1

. If 

( )baDp ,,  is known, then D  is defined  

D ( )baD ,,  = ∫
D

dDbaDpD
max

0

),,(. .  (19) 

The IP, in this case, is “evaluated as the density of 
distribution ( )baDp ,,  by means measured of 
( )LTL VV α,,  and evaluation of D  and solve of 
Fredholm’s integral equations, 1-st kind (14) for 

( )baDp ,, , through ( )Da  and ( )Db  [4]”. 

5. Conclusions  

In this paper, it was obtained equations for 
evaluation of the velocities of longitudinal and 
transversal ultrasonic wave propagation. 

The relationships between following mechanical 
properties: modulus of elasticity, Henky’s coefficient, 

parameters in strengthening theory, Wöhler’s curve, 
fatigue limit, coefficient in fracture mechanics and 
acoustics characteristics of materials are obtained for 
NDE. 

The geometrical inverse problem for reflected area 
and crack depth are solved by means reflected and 
diffraction methods respectively. 

The micro-structural IP by means 
mathematical-ultrasonic dualism is solved.  
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