
Journal of Electrical Engineering 6 (2018) 46-51 
doi: 10.17265/2328-2223/2018.01.007 

Objects Detection and Recognition System Using 

Artificial Neural Networks and Drones 

Dymitr PIETROW and Jan MATUSZEWSKI 

Military University of Technology, Warsaw 00-908, Poland 

 

Abstract: The paper presents the digital image objects detection and recognition system using artificial neural networks and drones. It 
contains description based on the example of person identification system where face is the key of object processing. It describes the 
structure of this system and components of the learning sub-system as well as the processing sub-system (detection, recognition). It 
consists of the description and examples of learning and processing algorithms and applied technologies. The results of calculations of 
efficiency and speed of each algorithm are presented in the table and appropriate characteristics. The article also describes the 
possibilities of further system developments. 
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1. Introduction 

Image recognition and detection is a complex 

process that demands a lot of calculations. It requires to 

use complex decision systems. Their speed depends on 

the processing algorithms applied and the 

implementation method of these algorithms. The 

implementation should efficiently use the hardware 

platform on which the system runs. 

Usage of AI (artificial intelligence) methods and 

machine learning in processing, allows to gain the 

greater system effectiveness than using algorithms and 

rules that were established by programmer at the time 

of system implementation [2, 3, 10, 11]. 

By fusing such system with movable sensors which 

can provide stream of digital images, allows us to 

observe (in real time) a selected area under search for 

requested objects. Additionally, if our system has the 

base data of object types for the requested object, we 

can classify our object more accurately. 

The system proposed in this article is used for people 

identification who are located in an area of a special 

security. The system contains the learning sub-system 
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and processing sub-system. The next chapters describe 

each component of this system and most significant 

algorithms which have particular influence on the 

system’s performance. 

2. System Structure 

2.1 Learning Sub-system 

The learning sub-system is a software platform 

consisting of two applications. The first application is 

used for generation patterns needed for learning 

process, whereas the second application teaches our 

system detecting and recognizing requested objects on 

the basis of created patterns in program mentioned 

above and static patterns prepared separately. 

The patterns generator was implemented in C++ by 

using Unreal Engine environment in version 4.0 [6, 7]. 

The object which has to be detected by the system is 

loaded as a 3D model. A skeleton and a description of 

these parameters allow the patterns generator to 

present the object in many variations. For example, in a 

gesture detection system, a program will load a hand 

model, where the following will be modifiable in the 

operating time: the hand’s size, the location of the 

fingers, the hand’s color and the variant size of each 

finger  (Fig. 1). These  changes can  be made  randomly 
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Table 1  Comparison of multi-thread with single thread 
processing.  

Speed of processing of single frame video stream 

Thread amounts 1 without SSE 4 with SSE 

Standard histogram 250 ms 130 ms 

Efficient histogram 100 ms 16 ms 
 

If we divide second by time of processing of single 

frame we get theoretical speed of processing which is 

62 fps. The achieved speed-up is sufficient to be used 

by the sub-system in the real-time processing. 

7. Conclusions 

The results confirm that nowadays not only the 

knowledge concerning rules of operating efficient 

algorithms but also the knowledge about hardware 

platform which will be used for implementation 

purposes is very important. Familiarity with 

multi-thread processing and skills in converting 

seemingly serial algorithms to parallel version is 

fundamental for creating efficient and fast algorithms 

which we can use in the real time processing systems. 

By using AI, we allow our system to acquire 

knowledge about features of the analyzed object, which 

the designer/programmer is not able to predict while 

designing. In a certain way in the course of the learning 

process the system is better than its designer. The 

neural networks allow for the system to get general 

knowledge about the requested object. It means that the 

artificial neural network, similarly to biological 

counterparts, can detect an object in different lighting, 

presence of interferences, etc. The difference is that 

digital neurons are never tired and in contrast to 

biological neurons their quality of processing is always 

constant. 

References 

[1] Efficient Histogram-Based Sliding Window. 
http://msr-waypoint.com/en-us/people/yichenw/cvpr10_e
hsw.pdf (access 05.11.2015).  

[2] “Fuzzy Differential Equation for Nonlinear System 
Modeling with Bernstein Neural Networks.” IEEE Access. 

doi:10.1109/ACCESS.2017.2647920.  
[3] Jafari, R., and Yu, W. 2017. “Fuzzy Modeling for 

Uncertainty Nonlinear Systems with Fuzzy Equations.” 
Mathematical Problems in Engineering. Vol. 2017, 
https://doi .org/10.1155/2017/8594738. 

[4] Gregory, K., and Miller, A. C++ AMP Accelerated 
Massive Parallelism with Microsoft Visual C++. O’Reilly 
Media, Inc, 1005 Graven Stein Highway North 
Sebastopol, California 95472. 

[5] Learning to Compare Image Patches via Convolutional 

Neural Networks. 

http://www.cv-foundation.org/openaccess/content_cvpr_

2015/papers/Zagoruyko_Learning_to_Compare_2015_C

VPR_paper.pdf (access 28.05.2017). 

[6] Megatutorial–Od zera do gier kodera (ang. 

Tutorial—From Scratch to Game Coder). 

http://xion.org.pl/productions/texts/coding/megatutorial/ 

(access 28.05.2017). 

[7] Microsoft Software Developer Network (MSDN), Visual 

Studio IDE User’s Guide. 

https://msdn.microsoft.com/en-us/library/jj620919(v=vs.1

20).aspx (access 19.10.2015). 

[8] Neural Network-Based Face Detection. 

http://www.informedia.cs.cmu.edu/documents/rowley-iee

e.pdf (access 19.10.2015). 

[9] Open Source Computer Vision (OpenCV). 

http://opencv.org/ (access 28.05.2017). 

[10] Osowski, S. 2006. Sieci neuronowe do przetwarzania 

informacji (ang. Neural networks for data processing). 

Warsaw University of Technology, Warsaw. 

[11] Osowski, S. 1996. Sieci neuronowe w ujęciu 

algorytmicznym (ang. Algorithms of neural networks). 

Warsaw University of Technology, Warsaw. 

[12] Raspberry PI. https://www.raspberrypi.org/ (access 

28.05.2017).  

[13] Rozpoznawanie twarzy za pomocą sieci neuronowych 

(ang. Face recognition by using neural networks). 

http://www.michalbereta.pl/dydaktyka/KPO/Rozpoznawa

nie%20twarzy.pdf (access 28.05.2017). 

[14] TCP/IP Python Communication. 
https://wiki.python.org/moin/TcpCommunication (access 
28.05.2017). 

[15] Tutorials for Modern OpenGL (3.3+). 

http://www.opengl-tutorial.org (access 28.05.2017). 

[16] Wikipedia the Free Encyclopedia, Bitmap. 
https://en.wikipedia.org/wiki/Bitmap (access 19.10.2015). 

[17] Wikipedia the Free Encyclopedia, Digital Image. 
https://en.wikipedia.org/wiki/Digital_image (access 
19.10.2015). 

 


