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Highlights: High sensitivity spin diodes as wave sensors are compact and cost effective devices for objects detection in different 
scenarios and weather conditions. Holographic reconstruction allows seeing the 3D density of the objects, indicating different 
materials—stone, flesh, metal, wood, etc. A computationally efficient holographic imaging and obstacle detection algorithm were 
targeted for use in a non-optical setting with a single coherent emitter and few detection sensors. The detection distances and spatial 
resolution proved sufficient for near-vehicle object detection purposes. 

 
Abstract: We present a robust and computationally efficient image reconstruction and object detection algorithm suitable for a 
microwave holographic vision system with several microwave sensors and a single emission source to detect the presence and the 
nature of road obstacles impeding driving in the near vehicle zone. The holographic visualization technique allows reconstructing the 
spatial microwave scattering density in non-optical setting, detecting by lattice of sensors both amplitude and phase of a reflected signal. 
We discuss versions of an algorithm, determine and analyze its resolution limits for various distances with different number of sensors 
for a one-dimensional test problem of detecting two walls (or posts) separated by a gap at a fixed distance. The interval between sensors 
needed for a reliable reconstruction equals about one Fresnel zone width. We show that detection distances and spatial resolution 
achieved (better than 20 cm on distances up to 4.5 m) were sufficient for near-vehicle object detection purposes. 
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1. Introduction  

The growing interest in automated and connected 

vehicle technology prompted the need for efficient 

traffic and obstacle detection techniques in large 

variety of settings. To reach level 4 truly autonomous 

vehicles (Levels of Driving Automation, SAE 

International Standard J3016), the standard is putting 

emphasis on the automotive vision systems. 

Self-driving vehicles currently developed by Alphabet, 

Uber, or Toyota rely heavily on LIDAR (light 

detection and ranging). LIDAR can scan more than 

                                                           
Corresponding author: Leshchiner Dmitry Roaldovich, 

Ph.D., research fields: computer vision, data analysis, and 
pattern recognition. E-mail: dmitry_1111@inbox.ru. 
 

100 m in all directions around the car, generating a 

precise 3D map of the surroundings. The main issues 

related to LIDAR in automotive industry are that they 

generate a large amount of data and that they are still 

too expensive for mass-market implementation. Much 

cheaper, in terms of price and computations, solutions 

are those based on radars and cameras. The cheapest 

and most available sensors are the cameras, the best for 

classification and texture interpretation. The cameras, 

however, use massive amounts of data, so processing 

becomes a computationally intense and algorithmically 

complex job. Radars are computationally much lighter 

than cameras and LIDAR. Radars can work in every 

weather condition and even use reflection to see behind 

obstacles; however, they are much less accurate than 

D 
DAVID  PUBLISHING



Resolution Limits in Near-Distance Microwave Holographic Imaging for  
Safer and More Autonomous Vehicles 

  

317

LIDAR. Radar is a proven technology increasingly 

becoming more efficient for the autonomous car. The 

new RFCMOS (radio frequency complementary 

metal-oxide semiconductor) technology recently 

introduced to the market will allow smaller, lower 

power, efficient sensors that fit into the OEM (original 

equipment manufacturer) cost reduction strategies. 

This will also make radar more complementary to the 

cameras as the “dynamic duo” to “cross validate” the 

potential reconstructed scenario. Short-range 24 GHz 

and 77-79 GHz scanning radars work well for longer 

distance obstacle detection. 

For safer inner-city mobility, as well as for vehicle 

parking setting, critical issues are control of obstacles 

and object movement in the near-vehicle zone, about 

0.3 to 4.5 m distance to detection point. That would 

allow for speed control and adjustment in dense 

environment, vehicle-to-vehicle and pedestrian 

automatic emergency braking (with reaction time    

< 0.1 s) avoiding crashes and pedestrian fatalities at 

speeds less than 30 km/h, mitigating crashes in most 

inner-city environments [1]. 

Recently, there suggested an alternative approach to 

close-distance imaging [2] based on digital microwave 

holography, using high sensitivity spin diodes [3] as 

wave sensors. Those could provide compact and cost 

effective devices for dynamic detection of surrounding 

objects in different driving scenarios and weather 

conditions. Microwaves can penetrate various 

media—such as stone and water—so it can work at any 

weather, sense distant or inaccessible objects. 

Holographic reconstruction allows seeing the full 3D 

density of the objects—not just the object surface. 

Different densities indicate different materials—stone, 

flesh, metal, wood, etc. 

At short distances, this technology combines the 

advantages of radars (work at every weather condition, 

low cost, can see behind obstacles) and of LIDAR (3D 

scenario reconstruction), adding also an extra capacity 

for object type detection, based on correct 

determination of object material. In this article, we 

discuss the potential of that technique for accurate 

obstacle recognition in near-vehicle zone from the 

image reconstruction and algorithmic point of view. 

We show that there exists a capacity to use it as a 

component in an integrated realistic object recognition 

automotive system. 

2. The Technical and Algorithmic Setting for 
Near-Vehicle Object Detection Task 

Digital holography techniques were first proposed in 

1960s [4, 5] and extensively developed since [6-18]. 

They typically use a large array of sensors comparable 

in size to the object studied and a wide parallel imaging 

beam. In Ref. [19], authors explored a possibility to 

extend the holographic visualization diapason into the 

terahertz range by applying the high-resolution 

multi-spectral wave front registration. In Ref. [20], 

authors employed digital dark-field propagation for 

indoor Wi-Fi radiation imaging in the environment 

with multipath reflections. In our case, there is 3D 

picture where not only the waves scattering from 

various object volume points interfere, but also the 

object matter absorbs them on the way. There are 

microwave tomography techniques developed for 

medical purposes, addressing radiation absorption 

issues, based on nonlinear iterative inversion 

algorithms [21-24] and giving accurate information on 

the dielectric properties of the objects. In our 

application, however, there is no practical way to 

provide a parallel imaging beam comparable in size to 

the imaging field. We need to rely on just one or few 

compact radiation sources, emitting each within a 

certain angle. We also need to rely on just a few 

detection sensors here. Therefore, we deal with a 

radically non-optical setting. That has serious 

consequences for spatial resolution achievable. Indeed, 

looking at Fresnel zones size at the object edges, we 

would not normally expect spatial resolution much 

better than the half of the zone width. It remains 

unclear though even if that resolution is reliably 

achievable given the limited number of sensors 
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available for wave detection. As provided by 

Kotelnikov-Whittaker-Nyquist-Shannon sampling 

theorem [25-28], the maximal interval between sensors 

needed for a reliable reconstruction equals about 

Fresnel zone width. Same consideration implies that 

using more frequent sampling than that would not 

actually increase the amount of useful information 

available. With that in mind, we would realistically be 

looking at positioning no more than few dozens of 

sensors at the vehicle’s front in order to reconstruct the 

image. Clearly, the 3D density map by size of a 

near-vehicle imaging field and with a resolution 

necessary for obstacle detection was controlled by at 

least couple of orders of magnitude more parameters 

than that. We will need effective parameters 

regularization techniques applied to reduce the 

dimensionality of the problem and still get the 

meaningful object detection results. We will present 

our approach below, together with an experimental 

analysis of the resolution achieved by that method at 

various detection distances and with various number of 

sensors used. 

3. Image Reconstruction and Object 
Detection Algorithms Proposed 

Here, we have the following setting. There is a 3D 

imaging field (a space zone) and a class of functions 

within that zone, representing a wave scattering density 

of objects, and represented by a finite-dimensional 

function space. As to the choice of a basis for density 

functions space, there could be number of 

representations, including, obviously, Fourier basis, 

but even a pixel-based density map would be a 

possibility. What is important is not a basis choice per 

se but the corresponding choice of space (e.g., using 

Fourier expansion with limited number of harmonics 

reduces the space dimensionality) and, most 

importantly, accompanying choice of regularization 

(expressing preferences for the shape of density 

solution). For instance, one could prefer smooth 

solutions or, alternatively, solutions with sharp density 

boundaries (which actually makes more sense for the 

obstacle detection task). One may prefer certain density 

values only (reflecting the expected physical properties 

of the object materials). One may also prefer that 

density be concentrated around certain areas of 

imaging field, focusing on object detection task within 

that area. In our paper here, we will work in Fourier 

basis. We will discuss the regularization effects below. 

We will consider a task with one monochromatic 

radiation emitter, and several sensors. One could 

effortlessly extend the problem statement to cover 

various multiplexing schemes, several emission 

sources, etc., but we limit ourselves to the basic case; in 

particular, it is important since spin diodes are highly 

sensitive to a particular frequency so it is harder to use 

them in multiple frequency schemes. Given is the 

vector of K sensor signals P (these including both 

phase and amplitude) and the positions of both the 

emitter and the sensors. The article [1] gave the 

following expression for the scattered signal P in terms 

of the functions expressing objects density in a point ̅ݎ 

within the imaging area, ݂ሺ̅ݎሻ , and the emission 

intensity in direction to ̅ݎ, ݃ሺ̅ݎሻ:  ܲሺ݌ሻ ൌ ሻݎሺ݂̅׬ ௚ሺ௥̅ሻோ ݁ି௜ఠோ݀̅ݎ              

where, p is a position of a sensor, ߱  is signal 

frequency and ܴ  is the length of the two-segment 

broken line from a position of the emitter S to the point ̅ݎ, and then to the p. That expression, however, takes no 

account of the signal adsorption within the object. 

Considering the adsorption intensity to be proportional 

to the scattering density (and normalizing the density 

function so that the proportionality coefficient equals 

to 1), the total adsorption coefficient is then given by ݁ି∮ ௙ሺ௫̅ሻௗ௫̅೛ೄ , where, the integral in the exponent is taken 

along the same two-segment broken line from S to ̅ݎ 

and then to the p, of the length R. Then we obtain a 

non-linear integral equation for the density function ݂ሺ̅ݎሻ: න݂ሺ̅ݎሻ ݃ሺ̅ݎሻܴ ݁ି∮ ሺ௙ሺ௫̅ሻା௜ఠሻௗ௫̅೛ೄ ݎ̅݀ ൌ ܲሺ݌ሻ 
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What makes that equation non-linear is the 

adsorption term ݁ି∮ ௙ሺ௫̅ሻௗ௫̅೛ೄ . Still, if we assume a 

given density function, we may compute it, and fixing 

the term will now make the equation linear. It could 

then be solved numerically by linear algebra methods 

(keeping in mind that the functional space is 

finite-dimensional), and its solution will provide a 

correction to a previously given density. We may use 

that solution in its turn to obtain a newer correction, 

and so on. 

We will discuss proper ways to solve the system, 

keeping in mind parameter regularization needs, in a 

moment. Let’s note though that such scheme may work 

for a low dimension of density space—but talking 

about 3D Fourier expansion with 10 harmonics will 

give us 103 = 1,000 parameters, and a function space of 

N = 1,000 dimensions, and the need to invert a 

1,000*1,000 matrix to obtain a solution—which is an 

N3, i.e., 1,0003 = 109 computational cost. The inversion 

task becomes too costly to perform it in real time. The 

solution, however, may lie in ignoring the adsorption 

term altogether. Indeed, ignoring the term, we would 

still get accurate scattering picture of the front parts of 

the obstacles—the most critical ones to detect—and the 

image of distant parts slightly distorted by scattering 

adsorption. If we ignore the term, the task of inverting 

the matrix is still there, but the matrix no longer 

depends on the density function 	݂ሺ̅ݎሻ, and therefore 

its inversion could once and for all be precomputed. 

Moreover, what one needs to obtain the result is just a 

basis of density functions corresponding to each 

individual sensor. The result is simply a sum of these 

functions multiplied by each sensor’s signal—a linear 

map from signal space to a density space. That gives us 

an easy and effective algorithm for object density 

reconstruction. 

Let us present the formulae. To obtain a linear 

resolution procedure, one could present the 

regularization preferences as a quadratic weight within 

the functional space. The solution procedure 

(Tikhonov regularization [29-32]) is to find a solution 

with a minimal weight—or, more generally, a solution 

that minimizes the sum of a penalty for deviation from 

exact solution and of a regularization weight penalty. 

The weight is defined by a matrix Г and is given by ‖Г݂‖ଶ , where f is a proposed solution, ‖∗‖  is a 

standard (Euclidean or Hermitian) norm, and Г is a 

matrix that maps the vector f into a norm space. The 

form for the total penalty is ‖݂ܣ െ ܲ‖ଶ  + ‖Г݂‖ଶ 

where P is the vector of sensor signals and A is a 

matrix for linearized integral equation. Thus, the 

regularized solution given by 	෩݂ ൌ ሺܣ்ܣ ൅
Г்Гሻିଵ்ܲܣ  where ்ܣ  and Г்  are Hermitian 

conjugate matrices to A and Г. So it is a result of 

multiplication of vector P by a rectangular N*K matrix ሺܣ்ܣ ൅ Г்Гሻିଵ்ܣ which maps K-dimensional vector 

P into N-dimensional vector f—or, in other words, a 

collection of K basic functions ௜݂ , ݅ ൌ 1,… , ܭ , each 

corresponding to its own sensor. Please note that it 

depends on sensor configuration only, so one may 

precompute this. 

As stated above, the choice of a regularization 

matrix Г must reflect the preferences for a shape of the 

density solution. In the numerical experiments 

presented below, only one out of the whole variety of 

potential preferences has been explored—a preference 

for smoothness. The way to express it in Fourier basis 

is to define a diagonal matrix Г in which the diagonal 

term (the weight) depends on the number of a 

harmonics. Choosing the weight increasing with 

increase in harmonics number will enable a 

suppression of the high frequency noise. We found in 

numerical experiments that choosing the weight 

proportional to a harmonics number gives about the 

best performance. 

Another way to reduce the dimensionality is to 

simplify the density functions. In particular, given that 

we only care about vehicle movement obstacles, we 

may largely ignore the height structure of the objects, 

confining ourselves to resolving the 2D (the 

width-depth) shape of the object within the given 
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height range corresponding to vehicle dimensions. In 

the next section, we give results of numerical 

experiments corresponding to a task of       

imaging and detecting a 1D object structure (a 

slot—two walls separated by a gap) at a given  

distance. 

For that 1D task, we used a particular object 

detection algorithm. Namely, we assume that object 

density could only take two values 0 and 1 (all objects 

are of the same density—as in, of the same material) 

and we would like to distinguish between the two  

cases. The way to do it is to set a density threshold and 

assume zero density for all reconstructed density 

values below the threshold and density one for all the 

values above. Here is how we choose the threshold. We 

take the point lattice with a period equal to the wave 

length, take all the reconstructed values in these points, 

and put a threshold in the middle of the largest interval 

between the values (i.e., to the point of “lowest values 

density”—hopefully corresponding to the point 

between the cluster groups of high and low density 

values). Applying the chosen threshold to the 

reconstructed density, we then get back a reconstructed 

object shape. Having thus fixed the object detection 

procedure, we made a series of numerical experiments 

testing its resolution power with various object 

distances and configurations of sensors. Fig. 1    

gives an illustration of how the algorithm worked for a 

particular case (32 sensors, object distance is 50 

wavelengths).  

4. Numerical Experiment Setting and Results 

There was a series of experiments detecting the 1D 

slots (two walls divided by a gap) at a given distance 

conducted to determine the spatial resolution limits for 

the algorithm described above. Spatial resolution refers 

to the ability of the imaging to differentiate two objects. 

Low spatial resolution techniques will be unable to 

differentiate between two objects that are relatively 

close together. In our case, objects are the slot walls 

and the closeness of the objects is the width of the gap. 

We determine the gap resolution limits depending on 

the object distance and the configuration of walls, for 

several configuration of sensors. The imaging field size 

was fixed to be of 64 wavelengths (for a realistic case 

of spin diodes set to 10 GHz frequency, that would be 

about 2 m), and the size of sensors lattice was fixed to 

be the same (that would roughly correspond to a width 

dimension of a car). We assume the emitter was 

monochromatic, wide-beam, positioned at the center of  
 

 
Fig. 1  A reconstructed 1D density for a given slot shape (gap 8 wavelengths, smaller wall 10 wavelengths). X-axis is the object 

point coordinate measured in wavelength units (࢞ ൌ  Y-axis is an object density (original object density is in red—equal 0 .(ࣅ/ࡰ
or 1; the reconstructed density is in blue). The density threshold obtained is in green. Dark blue bars show an object shape 
restored by applying it to the reconstructed object density.  
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sensors field, and sensors positioned at a lattice with 

approximately equal spacing (affected by a small 

random noise). The configurations tested had 4, 8, 16, 

32 and 64 sensors. The object distances varied from 10 

to 500 wavelengths (in physical units, it is from 0.3 to 

15 m). Two types of slots, positioned to the center of 

the imaging field, were tested—one with walls of equal 

width, another with one wall twice as wide as the other. 

We did not add any noise to the sensor signals modeled, 

and assumed them exact. The object detection results 

presented below. 

We summarize the results of detection experiments 

in terms of minimal object dimensions required for 

reliable slot detection. There are two relevant minimal 

dimensions for each object type—with equal and 

unequal walls—but it turns out that there is a difference 

between these types in terms of dimensions giving 

adequate description of reliable detection diapason. For 

the slot with unequal walls, relevant dimensions are the 

gap width and the smaller wall width. If they both 

exceed the values required, then the object detection is 

reliable. The dimensions are shown in Figs. 2 and 3. 
 

 
Fig. 2  Critical dimensions for a given slot shape with unequal walls (same as above). Gap width is 8 wavelengths, and the 
smaller wall width is 10 wavelengths (both are shown by green bars). 
 

 
Fig. 3  Critical dimensions for a given slot shape with equal walls. Gap width is 8 wavelengths, periodicity (the sum of wall and 
gap widths) is 18 wavelengths (both are shown by green arrows).  
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For the slot shape with equal walls, however, the 

relevant dimensions are the gap width and the sum of 

wall width and the gap width (one may also call the 

latter a “periodicity parameter” of the object). If these 

both exceed the values required, then it turns out the 

object detection is reliable. 

Below, we present the detection reliability data in 

terms of the parameters described above, for both types 

of objects. We give the dependency of two object’s 

minimal required dimensions and of the detection 

failure rate on the distance of sensors to the object and 

on number of sensors used. 

For the slot with unequal walls: 

 Minimal gap width (in meters), depending on 

object distance (in meters) and number of sensors, as 

shown in Fig. 4; 

 Minimal smaller wall width (in meters), 

depending on distance (in meters) and number of 

sensors, as shown in Fig. 5. 

Here in Table 1, we may observe that detection is 

more reliable for distances less than 6 m and number of 

sensors not less than 16. The number of sensors 

required is in line with theoretical estimates. The 

spatial resolution is also best for number of sensors not 

less than 16 (as seen in Figs. 4 and 5 above). 

It is of interest to quantify the resolution quality by 

introducing the quality parameter as the ratio: ߢ ൌ  ଶ, where Y is given minimal critical dimensionݎ/ܻ

(i.e., minimal gap or wall size, etc.) and ݎଶ ൌ ܦ2√ ൅ 1 

is the first Fresnel zone width (from zone center to 

second ring boundary in zone plate) at the distance D. 

One may note that the maximal possible resolution at 

first Fresnel zone, ∆݈ ൌ  .ଶݎଶ, equals about 0.36ݎ∆1.22

Hence, we may at best obtain 0.36 as quality parameter 

value. Table 2 is the gap quality parameter (a ratio of a 

gap width to the first Fresnel zone width) values, and 

Table 3 shows the wall size parameter (ratio of a 

minimal wall width to the first Fresnel zone width). 

We may see that at reliable detection zone (at 16 or 

more sensors), the spatial resolution for both 

dimensions closely approaches the minimal expected 

value, 0.36 of the first Fresnel zone width. 
 

 
Fig. 4  Minimal gap (in meters) required for slot shape with unequal walls for reliable detection, depending on the distance of 
sensors to the object (in meters). Graphs are for 4, 8, 16 and 32 sensors. The graph for 64 sensors not drawn here, as it largely 
coincides with the 32 sensors graph. For the four sensors, at distances of 0.3, 6 and 15 m, an algorithm fails to detect the slot. 
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Fig. 5  Minimal smaller wall size (in meters) required for slot shape with unequal walls for reliable detection, depending on 
the distance of sensors to the object (in meters). Graphs are for 4, 8, 16 and 32 sensors. The graph for 64 sensors is not drawn 
here, as it coincides with the 32 sensors graph. 

 
Table 1  The detection failure rate for all tested slots exceeding minimal dimensions, depending on object distance (in meters) 
and number of sensors, for unequal walls. 

Distance 4_S 8_S 16_S 32_S 64_S 

0.3 - 18.1% 1.7% 0.2% 0.0% 

0.45 13.3% 27.4% 5.3% 2.6% 2.2% 

0.6 31.4% 4.8% 5.1% 4.8% 3.4% 

1.5 0.0% 9.7% 1.9% 1.3% 2.9% 

3 24.0% 17.6% 4.2% 4.3% 3.0% 

4.5 8.3% 16.7% 5.6% 6.3% 6.3% 

6 - 30.0% 11.6% 9.5% 7.4% 

15 - 20.0% 20.0% 53.3% 53.3% 

 
Table 2  Gap quality parameter (a ratio of a gap width to the first Fresnel zone width) values, for unequal walls. 

Distance 4_S 8_S 16_S 32_S 64_S 

0.3 - 0.55 0.44 0.44 0.44 

0.45 2.87 0.54 0.45 0.36 0.36 

0.6 2.50 0.55 0.39 0.39 0.39 

1.5 1.79 0.65 0.55 0.35 0.35 

3 0.78 0.63 0.35 0.35 0.46 

4.5 0.86 0.69 0.37 0.32 0.32 

6 - 0.75 0.30 0.30 0.30 

15 - 0.57 0.57 0.57 0.57 
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Table 3  Wall size parameter (ratio of a minimal wall width to the first Fresnel zone width), for unequal walls. 

Distance 4_S 8_S 16_S 32_S 64_S 

0.3 - 1.53 0.65 0.44 0.44 

0.45 1.62 1.26 0.45 0.36 0.36 

0.6 1.09 1.09 0.47 0.31 0.31 

1.5 1.00 0.65 0.40 0.40 0.40 

3 0.56 0.49 0.42 0.35 0.35 

4.5 0.14 0.43 0.37 0.37 0.37 

6 - 0.40 0.40 0.40 0.40 

15 - 0.25 0.25 0.25 0.25 

 

 
Fig. 6  Minimal gap (in meters) required for slot shape with equal walls for reliable detection, depending on the distance of 
sensors to the object (in meters). Graphs are for 4, 8, 16 and 32 sensors. The graph for 64 sensors not drawn here, as it largely 
coincides with the 32 sensors graph. For the 4 sensors, at distances of 0.3 and 15 meters, an algorithm fails to detect the slot. 

 

For the slot with equal walls: 

 Minimal gap width (in meters), depending on 

object distance (in meters) and # of sensors, shown in 

Fig. 6. 

The same as the ratio to the first Fresnel zone width 

(the quality parameter) shown in Table 4. 

 The other minimal dimension for that case is the 

sum of the widths of a wall and a gap, shown in   

Fig. 7. 

The same as the ratio to the first Fresnel zone width 

(the quality parameter) shown in Table 5. 

Note that the sum of sizes of two objects still does 

not exceed a single first Fresnel zone width. 

The detection failure rate for all slots exceeding 

minimal dimensions, depending on object distance (in 

meters) and number of sensors, shown in Table 6. 

We see that for slots of that type, detection is reliable 

at distances up to 15 m, with number of sensors not less 

than 16. With eight sensors, detection reliability and 

resolution are weaker. 
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Table 4  Gap quality parameter (a ratio of a gap width to the first Fresnel zone width) values, for equal walls. 

Distance 4_S 8_S 16_S 32_S 64_S 

0.3 - 0.22 0.55 0.33 0.44 

0.45 1.80 0.63 0.45 0.45 0.45 

0.6 1.72 0.47 0.47 0.39 0.39 

1.5 1.59 0.30 0.35 0.35 0.35 

3 0.67 0.46 0.25 0.32 0.21 

4.5 0.63 0.52 0.29 0.29 0.29 

6 0.75 0.50 0.27 0.45 0.45 

15 - 0.38 0.38 0.38 0.38 

 
Fig. 7  The minimal sum of wall size and the gap (in meters) required for slot shape with equal walls for reliable detection, 
depending on the distance of sensors to the object (in meters). Graphs are for 4, 8, 16 and 32 sensors. The graph for 64 sensors 
is not drawn here, as it largely coincides with the 32 sensors graph. 

 

Table 5  Sum quality parameter (a ratio of a sum of wall size and the gap to the first Fresnel zone width), for equal walls. 

Distance 4_S 8_S 16_S 32_S 64_S 

0.3 - 5.02 1.20 0.76 1.09 

0.45 4.49 1.08 0.99 0.99 0.99 

0.6 4.06 0.94 0.94 0.86 0.86 

1.5 2.69 1.99 0.85 0.80 0.80 

3 1.16 1.06 0.95 0.81 0.81 

4.5 1.15 1.04 0.95 0.78 0.78 

6 1.22 0.95 0.72 0.97 1.00 

15 - 0.65 0.71 0.66 0.70 

 
Table 6  The detection failure rate for all slots exceeding minimal dimensions, depending on object distance (in meters) and 
number of sensors, for equal walls. 

Distance 4_S 8_S 16_S 32_S 64_S 

0.3 - 3.1% 0.0% 0.0% 0.4% 

0.45 2.8% 2.2% 0.2% 0.2% 0.2% 

0.6 8.0% 1.7% 0.2% 0.4% 0.4% 

1.5 37.5% 1.1% 0.0% 0.7% 0.5% 

3 3.6% 3.9% 1.0% 0.9% 3.3% 

4.5 6.6% 4.3% 0.5% 1.1% 2.8% 

6 0.0% 5.3% 4.8% 0.0% 1.1% 

15 - 6.2% 0.0% 0.0% 0.0% 

0

0.2

0.4

0.6

0.8

1

0.30 0.45 0.60 1.50 3.00 4.50 6.00 15.00

Sum as dependent on distance

4_S 8_S 16_S 32_S
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5. Conclusions 

In this work, we presented, by combining the 

well-known building blocks (generalized Fourier-basis 

deconvolution, a specific type of Tikhonov 

regularization in Hermitian space, and a 

threshold-based object detection technique), a concrete 

version of microwave holographic imaging and 

obstacle detection algorithm for an environment with a 

single coherent emitter and few detection sensors. The 

version is computationally efficient, requiring just 

O(N*K) operations per image frame, where K is the 

number of signals detected (sensors) and N is the 

number of image elements (pixels). There exist wide 

varieties of signal processing approaches with the 

given algorithm, defined by the choice of functional 

space and a regularization metrics, allowing for 

adaptive treatment of sensor data based on the output of 

the other parts of the collaborative object recognition 

system. The algorithm suggested would offer, even in 

its simple form, a reliable object detection with spatial 

resolution matching the a priori theoretical 

expectations for a model 1D task of slot detection. The 

detection distances and spatial resolution achieved 

(better than 20 cm on distances up to 4.5 m) are 

sufficient for near-vehicle object detection purposes. 

An important direction for future research is to focus 

on distance measurement precision with object 

detection algorithms (the experiments presented in this 

article concentrated on a width measurement task only). 

The numerical experiments on 2D and 3D shapes 

detection, systematic treatment for signal noise effects, 

and the testing with the actual physical objects all are 

the subject for the future work. 
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