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Abstract: We discuss how recent advances in phase-recovery imaging techniques in combination with plasmonic UTSs (ultrathin 
condensers) with a semiconductor substrate have paved the way for the development of novel optical nanoscopes. These optical 
nanoscopes are capable of imaging the intensity and the phase of the electric field distribution at the sample’s plane.  
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1. Introduction 

For a long time, the Rayleigh resolution limit 

~λ/(2NAo), where λ is the wavelength of the light used 

for imaging and NAo is the numerical aperture of the 

objective lens, was considered to be the ultimate 

resolution limit of optical microscopes [1-4]. Since 

objective lenses have NAo < 2, imaging nanostructures 

with a size smaller than 100 nm using visible light 

was thought to be impossible. Nevertheless, the 

nanoimaging needs in subcellular biology and 

nanotechnology motivated further research in possible 

ways to overcome the resolution limitation of 

common optical microscopes. Advances in near-field 

imaging resulted in the first breakthrough with the 

development of NSOMs (near-field scanning optical 

microscopes) capable of imaging nanostructures [5]. 

The success of NSOMs encouraged the quest for 

far-field optical imaging techniques capable of 

resolving nanostructures, which recently added to the 

development of, not one, but several far-field optical 

nanoscopy techniques and a Nobel Prize recognizing 

the pioneers in this emerging field [6-11]. What was 

once considered the ultimate resolution limit of optical 

microscopes is today understood to be the best 

resolution possible for an image formed directly in a 

camera attached to a microscope. Existing optical 
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nanoscopy techniques circumvent the Rayleigh 

resolution limit by numerically reconstructing a 

nanoresolution image from multiple measured events. 

In NSOMs each measurement event corresponds to 

the electric field intensity at a different point of the 

sample [5], while in far-field optical nanoscopy 

techniques each measurement event is a 

low-resolution image containing partial [6-8] or 

indirect [9-11] information of the sample.  

Like common optical microscopes, but with better 

resolution, existing optical nanoscopes permit imaging 

of the intensity distribution of the electric field in the 

sample’s plane; however, they do not allow imaging 

of its phase distribution. This is a second limitation of 

any image formed directly on a camera that is only 

sensitive to the intensity of the light [1, 2, 12]. 

Numerous optical microscopy techniques have been 

developed to overcome this second limitation of 

common optical microscopes [13-28]; however, none 

of the existing optical nanoscopy techniques permits 

imaging of the phase distribution of the electric field 

at the sample’s plane. In this work we present a 

feasible route for the realization of the first optical 

nanoscope capable of imaging both the intensity and 

phase distributions of the electric field at the sample’s 

plane. Here we discuss how a PRON (phase-recovery 

optical nanoscope) could be built using a combination 

of a common optical microscope and a plasmonic 

UTC (ultrathin condenser) [29, 30]. The UTC is 
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comprised of a ~150 m glass substrate covered with 

a (thermally evaporated) 45 nm thick gold layer and 

coated with a ~110 nm thick layer of poly methyl 

methacrylate doped with Rhodamine-6G 

(PMMA-R6G). A 2 nm thick Cr layer was added in 

between the glass substrate and gold layer to promote 

adhesion. As sketched in the inset of Fig. 1e, the 

imaged photonic crystal was defined by patterning an 

array of air holes with square symmetry on top of the 

PMMA-R6G layer of the plasmonic UTC. A Nikon 

Eclipse Ti inverted microscope was fitted with two 

CCD (charge-coupled device) cameras to acquire RP 

and FP images. A high numerical aperture (NAo = 1.49) 

oil-immersion objective lens, and a low numerical 

aperture (NAo = 0.9) air objective lens, both with 100× 

magnification were used, for collection and focusing, 

respectively. A 532 nm wavelength laser source was 

used to illuminate the sample from the top through the 

focusing objective. The laser excites the Rhodamine in 

the doped PMMA layer which in turn excites the SPPs 

(surface plasmon polaritons) at the gold/PMMA 

interface [36, 37]. Light coupled to SPPs subsequently 

leaks toward the glass substrate which sits above the 

collection objective lens [34, 36, 38]. A λ = 570 nm 

wavelength band-pass filter with a bandwidth of Δλ = 

10 nm was placed after the objective lens to spectrally 

filter the leaked and transmitted radiation such that 

only light originating from the fluorescence/SPP 

leakage radiation was detected. The CCD cameras 

were then used to collect FP and RP images 

corresponding to the SPP leakage radiation [29, 30, 34, 

35, 38]. The FP and RP images shown in Figs. 1a and 

1b, respectively, were obtained with an objective lens 

having NAo = 1.49, which corresponds to λ/NAo ~ 382 

nm > p = 300 nm. In excellent agreement, the array of 

air holes was not visible when the plasmonic crystal 

was under perpendicular illumination (not shown). 

However, the periodic structure of the plasmonic 

crystal is clearly visible in the RP image shown in Fig. 

1b. This is a result of an improvement in resolution 

from λ/NAo to λ/(NAo+NAc) ~ 219 nm < p resulting by 

illuminating the sample with the inclined illumination 

produced by the plasmonic UTC with NAc < NAo. The 

resolution of the plasmonic crystal structure in the RP 

image shown in Fig. 1b is in excellent correspondence 

with the presence of two consecutive diffraction 

features in the FP image shown in Fig. 1a [12]. A 

centered, bright, zero-order diffraction ring with 

radius ~ 1.1 NA units is clearly visible in Fig. 1a. In 

addition, 4 arcs with the same square symmetry of the 

plasmonic crystal, which corresponds to the first-order 

diffraction rings, are also visible in Fig. 1a. The 

presence of rings in the FP images is a signature of the 

illumination produced by plasmonic UTCs [29, 30, 

39]. There are also 4 arcs in the FP image shown in 

Fig. 1c. However, the zero-order diffraction ring was 

not captured by the objective lens with NAo = 0.9 < 

NAc = 1.1 that was used for obtaining the FP and RP 

images shown in Figs. 1c and 1d, respectively. 

Consequently, the periodic structure of the plasmonic 

crystal cannot be seen in the RP image shown in Fig. 

1d, which is also in agreement with p < λ/(2NAo) ~ 

317 nm when evaluated for NAo = 0.9. It is worth 

noting that in this case λ/(NAo+NAc) ~ 285 nm < p < 

λ/(2NAo) but the periodic structure could not be 

recorded directly because NAc > NAo. This illustrates 

that the resolution limit of any image formed directly 

in the RP of a microscope-condenser combination can 

only be improved, up to the Rayleigh resolution limit, 

by increasing NAc from 0 (perpendicular illumination) 

up to NAc = NAo. Any additional increment of NAc 

above the NAo value fails to increase the resolution of 

the image directly formed in the camera. 

3. Illumination Direction Multiplexing FPM 
and DSM Using Plasmonic UTCs 

When NAc > NAo and λ/(NAo+NAc) > λ/(2n), where 

(n) is the refractive index of the medium surrounding 

the sample, phase-recovery imaging techniques like 

FPM and DSM can be used to obtain a 

numerically-reconstructed high-resolution image with 

a resolution ~λ/(NAo+NAc) < λ/(2NAo) [23, 24, 27, 28]. 
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shifted toward kq, the FP position corresponding to the 

qth illumination direction. The shift is then followed 

by a multiplication by the circular window parameter 

Wo, so that the resulting FP image is limited to an 

experimentally realizable numerical aperture (NAo). 

As sketched in block (6) in Figs. 2a and 2b, in the 

IDM-DSM algorithm, the amplitude of the calculated 

FP-ODs is modified as shown: 

,mod
, , , ,

,

2
, , , , , , ,

1

( ) ( ),

, [ ( )] .

FP j
m j q m j q

FPT j

N

FPT j FP j q FP j q m j q
q

I
A r A r

I

I I I A r




 
   (3) 

where IFP,j is the intensity of the experimental (or 

simulated) multiplexed low-resolution RP image 

number j. This is in contrast to single 

illumination-direction DSM, where the amplitude of 

the calculated FP-OD (am,j,q(r)) is instead substituted 

by the square root of the intensity of the 

corresponding experimental (or simulated) 

low-resolution FP image [27, 28]. The incoherent 

superposition condition, which requires that the sum 

of all modified intensities (ImodFP, j,q) contributing to 

the formation of the multiplexed low-resolution FP 

image number j should be equal to IFP,j. This prompts 

us to rewrite the equivalent expression of Eq. (3) for 

an incoherent source as: 

mod , , ,
1

,mod 2
mod , , , , , ,

,

,

[ ( )] .

N

FP j q FP j
q

FP j
FP j q m j q FP j l

l qFPT j

I I

I
I A r I

I







 




 (4) 

As sketched in block (5) in Fig. 2a, the ODs in the 

RP (RP-ODs) corresponding to each modified FP-OD 

are then obtained by applying an inverse 2D Fourier 

transform (F-1) operation as follows: 

, , , ,( ) ( )1 mod
, , , ,( ) , 1,2,...,m j q m j qip r iP k

m j q m j qa r e F A e q N       (5) 

As sketched in block (5) in Figs. 2a and 2b, like in 

IDM-FPM, in the IDM-DSM algorithm, the amplitude 

of the calculated RP-ODs is modified in the following 

way [31-33]: 

,mod
, , , ,

,

2
, , , , , , ,

1

( ) ( ),

, [ ( )] .

RP j
m j q m j q

RPT j

N

RPT j RP j q RP j q m j q
q

I
a r a r

I

I I I a r




 

   (6) 

where IRP,j is the intensity of the experimental (or 

simulated) multiplexed low-resolution RP image 

number j. Again, this is in contrast to single 

illumination-direction DSM, where the amplitude of 

the calculated RP-OD (am,j,q(r)) is instead substituted 

by the square root of the intensity of the 

corresponding experimental (or simulated) 

low-resolution RP image [27, 28]. Eq. (6) must be 

modified to fulfill the incoherent superposition 

condition, that requires that the sum of all modified 

intensities (ImodRP, j,q) contributing to the formation of 

the multiplexed low-resolution RP image number j 

should be equal to IRP,j, as follows: 

mod , , ,
1

,mod 2
mod , , , , , ,

,

,

[ ( )] .

N

RP j q RP j
q

RP j
RP j q m j q RP j l

l qRPT j

I I

I
I a r I

I







 




  (7) 

As sketched in block (7) in Fig. 2a, the FP-ODs 

corresponding to each modified RP-OD are 

recalculated with the following equation: 

, , , ,( ) ( )mod
, , , ,( ) ( ) .

rec
m j q m j qiP k ip rrec

m j q m j q oA k e F a r e W     (8) 

It is worth noting that the recalculated FP-ODs 

(block (7) in Fig. 2a) are improved versions of the 

previously calculated FP-ODs (block (3) in Fig. 2a) 

because the information contained in the experimental 

(or simulated) multiplexed images has been 

incorporated to the recalculated FP-ODs. Then, as 

sketched in the block (8) of Fig. 2a, the next 

approximation of the synthetic FP-OD is calculated in 

the following way: 
, ,

, , , ,

( ) ( )
, ,

( ) ( )
, , , ,

1

( ) ( )

( ) ( ) .

upd act
m j m j

rec
m j q q m j q q

iP k iP kupd act
m j m j

N
iP k k iP k krec

m j q q m j q q
q

A k e A k e

A k k e A k k e   





    
 

(9) 

As shown by arrow between blocks (8) and (2) in 

Fig. 2a, after the synthetic FP-OD is updated, it is 
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used as the actual approximation for the next set of 

multiplexed images (j = 2, 3 …, M). The operations 

included in the box with discontinuous-line in Fig. 2a 

are successively done for each pair of experimental (or 

simulated)) multiplexed low-resolution RP and FP 

images. The “round-trip” application of steps outlined 

in blocks (2)-(8) constitutes the first algorithm 

iteration (m = 1). The algorithm should converge after 

several iterations. Finally, as shown in the block (9) in 

Fig. 2a, the amplitude and phase corresponding to the 

final high-resolution RP image is obtained by 

applying an inverse 2D Fourier transform of the 

complex function corresponding to the updated 

FP-OD. We conducted IDM-DSM simulations setting 

p(r)=0 and a(r) equal to the square root of the 

intensity corresponding to the first multiplexed 

low-resolution RP image used in the algorithm as the 

initial approximation of the RP-OD. We assumed a set 

of 64 illumination directions, each direction 

corresponding to an LED in a previously reported 

hemispherical digital condenser [27, 28, 33]. The 

HDC is formed by 4 ring-like rows with numerical 

aperture values of NAc = 0.57, 0.73, 0.89, 0.97. Each 

row contains 16 uniformly distributed LEDs. Light 

emitted by four consecutive LEDs in the same HDC’s 

row was multiplexed in each of the 16 pairs of 

simulated multiplexed RP-FP images. Fig. 3 shows 

simulation results corresponding to a photonic crystal 

with rectangular symmetry and two different periods 

px = 800 nm and py = 340 nm, which were obtained 

using the IDM-DSM phase recovery algorithm 

described in Fig. 2. Figs. 3a and 3b show an example 

of simulated multiplexed RP and FP images 

corresponding to NAo = 0.8, NAc = 0.73, and a λ = 570 

nm wavelength of the light used for imaging. In the 

low-resolution multiplexed RP image shown in Fig. 

3a, a periodic structure corresponding to the largest 

period of the sample, px = 800 nm, is clearly visible; 

however, the smallest period (py = 340 nm) is 

invisible. This is in excellent correspondence with px > 

λ/(NAo+NAc) ~ 373 nm but py < λ/(2NAo) ~ 356 nm. In 

the simulated multiplexed FP image shown in Fig. 3b, 

four relatively bright spots are clearly visible inside of 

a disk of radius equal to NAo= 0.8. Each spot in Fig 3b 

correspond to the zero-order diffraction spot 

associated with the light produced by one of the four 

multiplexed LEDs with NAc = 0.73 < NAo. Figs. 3c 

and 3d show the high-resolution intensity and phase 

distributions numerically calculated using the 

IDM-DSM phase-recovery algorithm described above. 
 

 
Fig. 3  Simulated multiplexed (a) RP and (b) FP images of a photonic crystal with rectangular symmetry, px = 800 nm, and 
py = 340 nm obtained using λ = 570 nm, NAo ~ 0.8 and NAc = 0.73. High-resolution (c) intensity and (d) phase distributions 
obtained using the IDM-DSM phase-recovery algorithm after 10 iterations.  

b) a) 

c) d)
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zero-order diffraction ring would not be visible in the 

FP image because NAo << NAc = n ~ 9 [29, 30]. 

However, arcs corresponding to the first-order 

diffraction rings may be visible. Despite that, when p > 

λ/(NAo+NAc) ~ 54 nm, using the IDM (ring-based) 

FPM and DSM phase-recovery algorithms should 

allow numerically obtaining a high-resolution RP 

image like the one shown in Fig. 1b where the 

periodic structure of the plasmonic crystal would be 

visible. We thus foresee that the microscope-UTC 

combination sketched in Fig. 1d should result in a 

novel optical nanoscope capable of imaging the 

intensity and phase of the electric field distribution, in 

the far-field, produced by nanostructures placed on the 

plasmonic UTC with a GaP substrate. 

4. Conclusions 

We discussed why it is not possible to directly 

obtain an image with a resolution better than the 

Rayleigh resolution limit in a camera. We also 

discussed how the use of a microscope-UTC 

arrangement with NAc > NAo, in combination with 

ring-based IDM FPM and DSM techniques allows for 

the numerical acquisition of a high-resolution image 

with increased resolution equal to the maximum value 

between λ/(NAo+NAc) and λ/(2n). Moreover, we 

presented simulation results suggesting that a 

plasmonic UTC with a transparent semiconductor 

substrate may have n >> 1. Consequently, we argued 

that a combination of a common optical microscope, a 

plasmonic UTC with a semiconductor substrate, and a 

ring-based IDM phase-recovery algorithm should be 

capable of imaging the intensity and the phase of the 

electric field distribution produced by nanostructures 

placed on the plasmonic UTC, in the far-field.  
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