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Abstract: Entangled states are crucial to quantum computation and quantum communication, and are usually treated as the target 
states to be accessed by quantum control methods. While most of the researches focus on the generation of the desired entangled state 

at the terminal state ห߰௙ൿ, this paper considers the time-varying entanglement of the transient state |߰ሺݐሻۧ throughout the qubit 

transfer process. It is found that the degree of entanglement of |߰ሺݐሻۧ determines how fast and accurately the terminal state ห߰௙ൿ 

can be achieved. Four quantitative indices of entanglement are employed here to evaluate the degree of entanglement of |߰ሺݐሻۧ and 
to estimate the qubit control performance resulting from different control gains in the Lyapunov control law. Our results show that 
increasing the degree of entanglement during the qubit transfer process is helpful to improve the convergence to the target state; 
however, increasing control gain tends to destroy the entanglement and attenuate the multi-qubit transfer efficiency. The lack of 

sufficient quantum correlation between some initial state |߰଴ۧ and terminal state ห߰௙ൿ is the main reason for unavailable qubit 

transfer between them. For these states, the insertion of an intermediate entangled state |߰௦ۧ can effectively increase the degree of 

entanglement and help to realize the qubit transfer |߰଴ۧ ՜ ห߰௙ൿ via the transition processs |߰଴ۧ ՜ |߰௦ۧ ՜ ห߰௙ൿ. 
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1. Introduction1 

Quantum entanglement is a nonlocal property of 

multi-particle states, which cannot be described by the 

combination of several single-particle states. Due to 

its invariant features under the change of distance of 

separation, entanglement has been widely exploited in 

various fields of quantum information techniques such 

as quantum teleportation [1], quantum computation 

[2], quantum cryptography [3], and quantum dense 

coding [4].The key issue in these quantum 

information techniques is the preparation and 

preservation of maximally entangled states. Numerous 

strategies based on quantum feedback control theory 

[5] have been proposed to drive the system states to 

the maximally entangled states. To synthesize the 

quantum feedback control laws, the information of 

instantaneous quantum states has to be provided either 

by simulation or by measurement. Quantum Lyapunov 
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control [6-8] obtains the state information by 

simulating the evolution of the system and employs 

the computed states to construct control fields. This 

design process yields a feedback-designed open-loop 

quantum control strategy, which has been shown as a 

simple way to design control fields for quantum state 

transfer [9] and entanglement generation [10] without 

measurement. 

The other approach to quantum feedback control is 

based on the continuous measurement and estimation 

of the quantum states. Depending on the different 

measurement processes being employed, three types 

of measurement-based feedback control were 

developed, i.e., Markovian feedback control [11-13], 

Bayesian feedback control [14, 15], and 

weak-measurement feedback control [16], which all 

have been applied successfully to the problems of 

qubit transfer and entanglement generation. 

Measurement-based feedback control is capable of 

dealing with unknown initial states and unpredictable 

disturbances, which otherwise cannot be handled by 
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quantum Lyapunov control; nevertheless, the 

measurement on a quantum system will inevitably 

influence the states and complicate the design of 

feedback control. 

Irrespective of the strategies being used in quantum 

feedback control, the generation of entangled states 

has been formulated as a stabilization problem 

wherein quantum control laws are designed so that the 

considered quantum system converges asymptotically 

to the prescribed entangled states as ݐ ՜ ∞. Although 

convergence properties and stability conditions under 

quantum Lyapunov control have been rigorously 

analyzed, convergence is not the only requirement for 

entanglement-generation and qubit-transfer problems, 

since a convergent solution may experience a long 

transient process before the steady state ห߰௙ൿ is 

achieved. Recently, an optimal method [17, 18] has 

been proposed to speed up Lyapunov quantum control 

by making the Lyapunov function decrease faster. 

Instead of the stability and convergence analysis of 

a terminal entangled state ห߰௙ൿ, which has gained 

significant progress in recent years, here we will focus 

on the transient entangled states |߰ሺݐሻۧ and discuss its 

influence on the qubit transfer performance 

throughout the transition process from |߰଴ۧ and to 

ห߰௙ൿ. Qubit transfer within n-qubit systems composed 

of n spin-coupled electrons will be considered to 

reveal the dependence of qubit transfer performance 

on the entanglement of the transient entangled state 

under Lyapunov quantum control. It is found that 

achieving a high degree of entanglement of the 

transient state |߰ሺݐሻۧ  is not less important than 

generating a terminal entangled state ห߰௙ൿ, because 

the lack of sufficient entanglement of the transient 

state |߰ሺݐሻۧ may lead to a very slow convergent rate 

to the terminal state ห߰௙ൿ  and even lead to the 

divergence of ห߰௙ൿ. 

The main distinction between multi-electron and 

single-electron control problems is the phenomenon of 

spin entanglement between electrons. Spin 

entanglement is vulnerable to external field and a 

strong magnetic field induced by high-gain control 

tends to destroy the quantum correlation between 

electrons and hence attenuate the qubit transfer 

efficiency. On the contrary, for single-spin control 

system [8] and energy-level control system [17], 

which are free from entanglement, high-gain control 

has a positive effect to accelerate transient response 

and reduce steady-state error of qubit transfer. To 

examine the influence of quantum control on the 

intrinsic entanglement developed within a multi-qubit 

transfer process, several indices of entanglement 

including radius of Bloch ball based on Schmidt 

decomposition [19], entanglement entropy [2], relative 

entanglement entropy [20], concurrence [21], and 

entanglement of formation [22], are employed here to 

quantify the entanglement of the time-varying state 

|߰ሺݐሻۧ during the qubit transfer from |߰଴ۧ to |߰௙ۧ. 

Based on the evaluation of these indices of 

entanglement, especially the quantum relative entropy, 

we find that a strong control field induced by 

high-gain control blockages the information exchange 

between electrons, deteriorates their entanglement, 

and consequently causes the degradation of the qubit 

transfer performance. 

Apart from causing a slow convergent rate, the lack 

of entanglement in the transient state |߰ሺݐሻۧ  may 

even render the terminal state inaccessible under 

quantum control. In order to guarantee the 

convergence to an arbitrarily assigned target state 

ห߰௙ൿ under Lyapunov control, the quantum system 

has to satisfy some prerequisite conditions [9, 23, 24]. 

Systems not satisfying these convergent conditions are 

called non-ideal systems, whose convergence to the 

target state ห߰௙ൿ is solved instead by introducing a 

series of implicit function perturbations and choosing 

an implicit Lyapunov function [25, 26]. From the 

viewpoint of the present paper, the lack of sufficient 

quantum correlation between the initial and final 

states is the major reason for unavailable transfer 

between them. Our analysis gives an alternative 

approach to improve the convergence to the target 
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state by increasing the degree of entanglement during 

the qubit transfer process. This can be done by 

inserting an intermediate entangled state |߰௦ۧ into a 

transition process from |߰଴ۧ to ห߰௙ൿ, between which 

direct transfer is not possible. The intermediate 

entangled state |߰௦ۧ plays the role of an information 

medium via which information can be exchanged 

between |߰଴ۧ  and ห߰௙ൿ so that the correlation 

between them is strengthened to facilitate the qubit 

transfer |߰଴ۧ ՜ |߰௦ۧ ՜ ห߰௙ൿ. 

This paper is organized as follows. In Section 2, we 

express Schrödinger equation and Liouville equation 

in state-space forms to describe the spin-coupled 

motion of n electrons. In Section 3, we apply 

Lyapunov quantum control to realize qubit transfer 

based on the developed n-spin model. In Section 4, we 

point out the quantum phenomenon that high-gain 

Lyapunov control tends to suppress the entanglement 

between the electrons and attenuate the qubit transfer 

efficiency. To explain the cause of high-gain 

degradation, we propose four quantitative indices of 

entanglement in Section 5 to evaluate the qubit 

transfer performance, and discuss the dependence of 

the qubit transfer performance on the degree of spin 

entanglement between electrons. According to the 

entanglement-dependent qubit transfer performance, 

we propose in Section 6 an alternative approach to 

qubit transfer between two states, for which direct 

transfer is not possible, by inserting an intermediate 

entangled state between them. Conclusions are 

presented in Section 7. 

2. Schrödinger and LiouvilleEquations in 
State-Space Forms 

In this paper, we consider qubit-transfer control of a 

n-qubit system constituted by n spin-coupled electrons, 

whose spin motions are described by a n-dimensional 

complex vector |߰ሺݐሻۧ and are controlled by an 

externally applied magnetic field with three 

components ݑ௫,ݑ௬,ݑ௭. The control field is coupled to 

the system via time-independent interaction 

Hamiltonians ܪ෡௞ ,݇ ൌ ,ݔ ,ݕ  The controlled n-qubit .ݖ

system evolves according to the Schrödinger equation 

(in dimensionless form) 

݅
݀
ݐ݀

|߰ሺݐሻۧ ൌ 

ሻۧݐ෡|߰ሺܪ ൌ ൮ܪ෡଴ ൅ ෍ ෡௞ܪ

௞ୀ௫,௬,௭

ሻ൲ݐ௞ሺݑ |߰ሺݐሻۧሺ2.1ሻ 

where ܪ෡଴ is the free Hamiltonian, and ݑ௞ ൌ ௞ܤ  is 

the ݇th component of the applied magnetic field 

ሬԦܤ ൌ ௫ܤ Ԧ݁௫ ൅ ௬ܤ Ԧ݁௬ ൅ ௭ܤ Ԧ݁௭. The free Hamiltonian 

෡଴ܪ considers the spin-coupling energy between 

neighboring electrons, 

෡଴ܪ ൌ ෍ ෍ ௜,௜ାଵܬ መܵ௜,௞ መܵ௜ାଵ,௞

௡ିଵ

௜ୀଵ௞ୀ௫,௬,௭

         ሺ2.2ሻ 

where ܬ௜,௜ାଵ  is the coupling constant between ݅th 

and ( ݅ ൅ 1 )th electrons and Ԧܵ௜ ൌ መܵ௜,௫ Ԧ݁௫ ൅ መܵ௜,௬ Ԧ݁௬ ൅
መܵ௜,௭ Ԧ݁௭  is the spin vector of the ݅th electrons. The 

control Hamiltonian ܪ෡௞  considers the interaction 

between the total spin magnetic moment ߤറ ൌ

௘ߛ ∑ റܵ௜
௡
௜ୀଵ  and the applied magnetic field ܤሬԦ . The 

resulting magnetic potential produced by ߤറ and ܤሬԦ is 

given by  

െܤሬԦ · റߤ ൌ െߛ௘ܤሬറ · ෍ റܵ௜

௡

௜ୀଵ

ൌ ෍ ෡௞ܪ

௞ୀ௫,௬,௭

 ሻሺ2.3ሻݐ௞ሺݑ

where ߛ௘ is the gyromagnetic ratio of electrons. 

Accordingly, the control Hamiltonian ܪ෡௞ can be 

expressed as 

෡௞ܪ ൌ െߛ௘ ෍ መܵ௜,௞

௡

௜ୀଵ

, ݇ ൌ ,ݔ ,ݕ  ሺ2.4ሻ         ݖ

To express the Schrodinger operator Eq. (2.1) in a 

state-space form, we note that the vector space of the 

n-qubit system is spanned by the Zeeman basis 

|݁௞ۧ ൌ | ଵܵܵଶ ڮ ܵ௡ۧ, ݇ ൌ 1,2, ڮ , 2௡         ሺ2.5ሻ 

where the bit ௜ܵtakes the value “0” (spin up) or “1” 

(spin down), and totally 2௡  Zeeman vectors |݁௞ۧ 

can be defined. In terms of |݁௞ۧ , the n-qubit 
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state |߰ሺݐሻۧ can be expanded as 

|߰ሺݐሻۧ ൌ ଵ|݁ଵۧݔ ൅ ଶ|݁ଶۧݔ ൅ ڮ ൅  ே|݁ேۧ,   ሺ2.6ሻݔ

with ܰ ൌ 2௡.  Under the same basis, the matrix 

representation of the Hamiltonian operator ܪ෡ can be 

found by the inner product 

௝௞ܪ ൌ ൻ ௝݁หܪ෡ห݁௞ൿ, ݆, ݇ ൌ 1, 2, ڮ , ܰ ሺ2.7ሻ 

In conjunction with the vector form of |߰ሺݐሻۧ and 

the matrix form of ܪ෡, the state-space expression of 

the operator Eq. (2.1) turns out to be 

݅
݀
ݐ݀

൥
ሻݐଵሺݔ

ڭ
ሻݐேሺݔ

൩ ൌ ൥
ଵଵܪ ڮ ଵேܪ

ڭ ڰ ڭ
ேଵܪ ڮ ேேܪ

൩ ൥
ሻݐଵሺݔ

ڭ
ሻݐேሺݔ

൩  ሺ2.8ሻ 

The dimension of the resulting matrix ܪ ؜  ௝௞൧ܪൣ

is 2௡ ൈ 2௡ , where ݊  is the number of electrons 

involved in the system. Apparently, as ݊ increases, 

the element-by-element computation based on Eq. (2.7) 

becomes very time consuming. An efficient way to 

compute the matrix ൣܪ௝௞൧ can be developed by noting 

the fact that the operators ܪ෡଴ and ܪ෡௞  are entirely 

constituted by the spin operators  ෡ܵ௫ , መܵ௬ , and መܵ௭ , 

whose matrix representations are known as the Pauli 

matrices 

௫ߪ ൌ ቂ0 1
1 0

ቃ , ௬ߪ ൌ ቂ0 െ݅
݅ 0

ቃ , ௭ߪ ൌ ቂ1 0
0 െ1

ቃ ሺ2.9ሻ 

By replacing the spin operator መܵ௜,௞ with the Pauli 

matrix ߪ௞ in Eqs. (2.2) and (2.4), the matrix 

representation of H෡଴  and H෡୩ , ݇ ൌ ,ݔ ,ݕ ݖ , can be 

obtained at one stroke as 

଴ܪ ൌ ෍ ෍ ௜,௜ାଵܬ

௡ିଵ

௜ୀଵ௞ୀ௫,௬,௭

ଶܫ ٔ ڮ ٔ ଶܫ ٔ ሺߪ௞ሻ௜

ٔ ሺߪ௞ሻ௜ାଵ ٔ ଶܫ ڮ ٔ  ଶ ሺ2.10ܽሻܫ

௞ܪ ൌ െߛ௘ ෍ ଶܫ ٔ ڮ ٔ ଶܫ ٔ ሺߪ௞ሻ௜ ٔ ଶܫ ڮ ٔ ଶܫ

௡

௜ୀଵ

, 

ሺ2.10bሻ 

where ܫଶ  is the 2 ൈ 2 identity matrix and the 

subscript ݅ of ሺߪ௞ሻ௜ denotes that the Pauli matrix ߪ௞ 

locates at the ݅th entry of the sequence of tensor 

products in Eq. (2.10). The substitution of the vector 

representation of |߰ሺݐሻۧ given by Eq. (2.6) and the 

matrix representation of ܪ෡଴  and ܪ෡௞  given by Eq. 

(2.10) into Eq. (2.1) yields the bilinear state-space 

realization of the Schrödinger equation as 

ሶݔ ൌ െ݅൫ܪ଴ ൅ ௫ݑ௫ܪ ൅ ௬ݑ௬ܪ ൅ ,ݔ௭൯ݑ௭ܪ ሺ2.11ሻ 

The remaining task is to design the control field 

௞ݑ to drive ݔ  to the target state ௙ݔ . However, 

Schrödinger Eq. (2.11) is valid only for the evolution 

of pure states. Mixed states are otherwise described by 

the density operator ߩො ൌ ∑ ௝ห߰௝ൿൻ߰௝ห௝݌ , where ݌௝ is 

the probability of measuring the pure state ห߰௝ൿ from 

the mixture. The time evolution of the density 

operator ߩොሺݐሻ is governed by the quantum Liouville 

equation (in dimensionless form) 

݅
ොߩ݀
ݐ݀

ൌ ,ሻݐ෡ሺܪൣ ො൧ߩ ؜ ොߩሻݐ෡ሺܪ െ  ሻ ሺ2.12ሻݐ෡ሺܪොߩ

If there is only one state in the mixture, then 

quantum Liouville Eq. (2.12) reduces to Schrödinger 

Eq. (2.1).  

To facilitate qubit control involving mixed states, a 

reformulation of the quantum Liouville equation into 

an equivalent state-space equation is necessary. This 

reformulation can be accomplished by transforming 

Eq. (2.12) from Hilbert space to Liouville space. For 

every linear operator ܣመ in the ܰ-dimensional Hilbert 

space, we can define a vector |ۧۧܣ in the 

ܰଶ-dimensional Liouville space via the relation 

መܣ ൌ ෍ ௜௝ܣ

௜௝

|݁௜ۧۦ ௝݁|  ՞ ۧۧܣ| ൌ ෍ ௜௝ܣ

௜௝

|݆݅ۧۧ ሺ2.13ሻ 

where, ܣ௜௝ is the matrix element of ܣመ  under the 

Zeeman basis, and |݆݅ۧۧ, ݅, ݆ ൌ 1, 2, ڮ , ܰare the bases 

of the Liouville vector space. In terms of the Liouville 

vector |ۧۧߩ, we can express the quantum Liouville Eq. 

(2.12) in a vector form as 

݅
݀
ݐ݀

ۧۧߩ| ൌ መࣦሺݐሻ|ۧۧߩ　        ሺ2.14ሻ 

where መࣦሺݐሻ is the Liouville operator defined via the 

following relation: 

መࣦሺݐሻ|ۧۧߩ ՞ ,ሻݐ෡ሺܪൣ  ො൧　         ሺ2.15ሻߩ
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Once the Liouville operator መࣦሺݐሻ  has been 

identified, the quantum Liouville equation can be 

solved efficiently as the Schrödinger equation. 

However, till now no general expression for መࣦሺݐሻ is 

available. Here we give an explicit characterization of 

the Liouville operator መࣦሺݐሻ in terms of the 

Hamiltonian ܪ given by Eq. (2.8) in the 

2௡-dimensional Hilbert space. This characterization 

can be derived by mathematical induction. We begin 

with the simplest case ݊ ൌ 1 involving a single qubit, 

for which the density operator ߩො, the density matrix ߩ, 

and the Liouville density vector |ۧۧߩ are related by  

ොߩ ՜ ߩ ൌ ቂ
ଵଵߩ ଵଶߩ
ଶଵߩ ଶଶߩ

ቃ ՜ ۧۧߩ| ൌ ൦

ଵଵߩ
ଶଵߩ
ଵଶߩ
ଶଶߩ

൪    ሺ2.16ሻ 

For the case of ݊ ൌ 1, an explicit expansion of Eq. 

(2.14) is given by 

݅
݀
ݐ݀

൦

ଵଵߩ
ଶଵߩ
ଵଶߩ
ଶଶߩ

൪ ൌ ࣦሺݐሻ ൦

ଵଵߩ
ଶଵߩ
ଵଶߩ
ଶଶߩ

൪          ሺ2.17ሻ 

where ࣦሺݐሻ is the 4 ൈ 4 matrix representation of the 

Liouville operator መࣦ . To find the matrix ࣦሺݐሻ, we 

note that Eq. (2.17) is equivalent to Eq. (2.12), which 

has a matrix representation as 
 

݅
݀
ݐ݀

ቂ
ଵଵߩ ଵଶߩ
ଶଵߩ ଶଶߩ

ቃ ൌ ሾܪሺݐሻ, ሻሿݐሺߩ ൌ ൤
ଵଵܪ ଵଶܪ
ଶଵܪ ଶଶܪ

൨ ቂ
ଵଵߩ ଵଶߩ
ଶଵߩ ଶଶߩ

ቃ െ ቂ
ଵଵߩ ଵଶߩ
ଶଵߩ ଶଶߩ

ቃ ൤
ଵଵܪ ଵଶܪ
ଶଵܪ ଶଶܪ

൨ 

ൌ ൤
ଶଵߩଵଶܪ െ ଶଵܪଵଶߩ ሺܪଵଵ െ ଵଶߩଶଶሻܪ ൅ ଶଶߩଵଶܪ െ ଵଶܪଵଵߩ

ଵଵߩଶଵܪ ൅ ሺܪଶଶ െ ଶଵߩଵଵሻܪ െ ଶଵܪଶଶߩ ଵଶߩଶଵܪ െ ଵଶܪଶଵߩ
൨              ሺ2.18ሻ 

Expressing both sides of the above equation in the form of Liouville vectors, we obtain 

݅
݀
ݐ݀

൦

ଵଵߩ
ଶଵߩ
ଵଶߩ
ଶଶߩ

൪ ൌ ൦

ଶଵߩଵଶܪ െ ଵଶߩଶଵܪ

ଵଵߩଶଵܪ ൅ ሺܪଶଶ െ ଶଵߩଵଵሻܪ െ ଶଵܪଶଶߩ

െܪଵଶߩଵଵ ൅ ሺܪଵଵ െ ଵଶߩଶଶሻܪ ൅ ଶଶߩଵଶܪ
െܪଵଶߩଶଵ ൅ ଵଶߩଶଵܪ

൪                                       ሺ2.19ሻ 

The equality of Eq. (2.19) with Eq. (2.17) gives 

൦

ଶଵߩଵଶܪ െ ଵଶߩଶଵܪ

ଵଵߩଶଵܪ ൅ ሺܪଶଶ െ ଶଵߩଵଵሻܪ െ ଶଶߩଶଵܪ

െܪଵଶߩଵଵ ൅ ሺܪଵଵ െ ଵଶߩଶଶሻܪ ൅ ଶଶߩଵଶܪ
െܪଵଶߩଶଵ ൅ ଵଶߩଶଵܪ

൪ ൌ ࣦሺݐሻ ൦

ଵଵߩ
ଶଵߩ
ଵଶߩ
ଶଶߩ

൪                                     ሺ2.20ሻ 

from which the Liouville matrix ࣦሺݐሻ can be solved as 

ࣦሺݐሻ ൌ ൦

0 ଵଶܪ െܪଶଵ 0
ଶଵܪ ሺܪଶଶ െ ଵଵሻܪ 0 െܪଶଵ

െܪଵଶ 0 ሺܪଵଵ െ ଶଶሻܪ ଵଶܪ
0 െܪଵଶ ଶଵܪ 0

൪ 

ൌ ൦

ଵଵܪ ଵଶܪ 0 0
ଶଵܪ ଶଶܪ 0 0

0 0 ଵଵܪ ଵଶܪ
0 0 ଶଵܪ ଶଶܪ

൪ െ ൦

ଵଵܪ 0 ଶଵܪ 0
0 ଵଵܪ 0 ଶଵܪ

ଵଶܪ 0 ଶଶܪ 0
0 ଵଶܪ 0 ଶଶܪ

൪ 

ൌ ቂ1 0
0 1

ቃ ٔ ൤
ଵଵܪ ଵଶܪ
ଶଵܪ ଶଶܪ

൨ െ ൤
ଵଵܪ ଶଵܪ
ଵଶܪ ଶଶܪ

൨ ٔ ቂ1 0
0 1

ቃ  ൌ ଶܫ ٔ ܪ െ ்ܪ ٔ  ଶሺ2.21ሻܫ

 

Above Liouville matrix for a single qubit can be 

generalized directly to the n-qubit case as 

ࣦሺݐሻ ൌ ଶ೙ܫ ٔ ܪ െ ்ܪ ٔ  ଶ೙        ሺ2.22ሻܫ

where ܪ ൌ ଴ܪ ൅ ∑ ௞௞ୀ௫,௬,௭ݑ௞ܪ is the n-qubit 

Hamiltonian with ܪ଴ and ܪ௞  given by Eq. (2.10). 

The validity of Eq. (2.22) can be proved by 

mathematical induction by assuming firstly that Eq. 

(2.22) is satisfied for ݊ ൐ 1 and then showing its 

validity for ݊ ൅ 1. With ࣦሺݐሻgiven by Eq. (2.22), the 

state-space representation of the quantum Liouville Eq. 

(2.14) becomes 
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݅
݀
ݐ݀

ۧۧߩ| ൌ ሺܫଶ೙ ٔ ܪ െ ்ܪ ٔ  ሺ2.23ሻ    ۧۧߩ|ଶ೙ሻܫ

where, ܪ  is a 2௡ ൈ 2௡  matrix and |ۧۧߩ  is a 

2ଶ௡-dimensional vector. Eq. (2.23) can be applied to 

the qubit-transfer control for both pure states and 

mixed states and can be solved as efficient as the 

state-space Schrödinger Eq. (2.11). 

3. Qubit Transfer by Lyapunov Control 

The quantum model provided by Eqs. (2.11) and 

(2.23) will be employed in this section to investigate 

the role of entanglement in the qubit transfer from an 

initial state |߰଴ۧ to a terminal state ห߰௙ൿ for pure 

state transfer, or from an initial density matrix ߩ଴ to a 

terminal density matrix ߩ௙ for mixed states. Among a 

variety of quantum control methodologies, Lyapunov 

quantum control will be adopted here to achieve the 

prescribed qubit transfer for its clarity of 

demonstration. The strategy of the Lyapunov control 

is simply to make the first-order time derivative of a 

chosen Lyapunov function non-positive. Three types 

of Lyapunov functions, respectively, based on state 

distance, state error, and the average value of a 

mechanical quantity have been proposed in the 

literature [6]. Being a generalization of the first two 

types, the Lyapunov function based on the average 

value of a mechanical quantity ܲ assumes the 

following form 

Vሺψሻ ൌ ψ|P෡|ψۧۦ ൌ Trace൫P෡ρො൯ ሺ3.1ሻ 

where ෠ܲ  is the Hermitian operator associated with 

the observable ܲ  and Trace ሺ ෠ܲߩොሻ  represents the 

average value of this mechanical quantity in the state 

|߰ۧ . With a proper choice of ෠ܲ , the Lyapunov 

function given by Eq. (3.1) turns out to be a measure 

of the state distance or the state error between |߰ሺݐሻۧ 

and ห߰௙ൿ. While ܸሺ߰ሻ approaches to its minimum 

value according to the control strategy ሶܸ ൑ 0, the 

quantum state |߰ۧ will converge to the desired target 

state ห߰௙ൿ if the operator ෠ܲ is chosen in such a way 

that the target state ห߰௙ൿ is the eigenvector of 
෠ܲ corresponding to the minimum eigenvalue. The 

conditions for ensuring the convergence to an 

arbitrarily assigned target state ห߰௙ൿ under Lyapunov 

control have been investigated elaborately in the 

literature. Here we will focus on the transient response 

of Lyapunov quantum control and discuss the 

influence of spin entanglement on the qubit transfer 

performance during the transition process. 

The design of Lyapunov control law is rather 

straightforward, which starts with the application of 

the following unitary transformation to the density 

matrixߩ 

ᇱߩ ൌ ݁௜ுబ௧/԰ି݁ߩ௜ுబ௧/԰              ሺ3.2ሻ 

where, ߩ′ is known as the density matrix under the 

interaction picture [8]. The transformed quantum 

Liouville equation becomes homogenous in the form of 

݀
ݐ݀

ᇱሺ௧ሻߩ ൌ ,ᇱሺ௧ሻܪൣ ሻ൧ݐᇱሺߩ ൌ ቎ ෍ ሻݐ௞ሺݑሻݐ௞ሺܣ
௞ୀ௫,௬,௭

,  ሻ቏ݐᇱሺߩ

ሺ3.3ሻ 
with ሻݐ௞ሺܣ ൌ െ݅݁௜ுబ௧ܪ௞݁ି௜ுబ௧ .Since the unitary 

transformation does not change the distribution of the 

qubit populations, Lyapunov control law can be 

designed directly under the interaction picture. It can 

be seen that the transformed Eq. (3.3) removes the 

constant tern ܪ଴ and retains only the bilinear terms 

involving ݑ௞ and ߩ′. The resulting model simplifies 

the problem of designing the control law to meet the 

requirement ሶܸ ൑ 0. Based on Eq. (3.1), the Lyapunov 

function can be chosen as ܸሺߩ′ሻ ൌ Traceሺܲߩ′ሻ , 

whose time derivative appears to be 
ሶܸ ሺߩ′ሻ ൌ Traceሺܲߩሶ ′ሻ 

ൌ Trace ൮ܲ ෍ ሻݐ௞ሺݑሻݐ௞ሺܣ
௞ୀ௫,௬,௭

ሻݐሺ′ߩ െ ܲ ෍ ሻݐ௞ሺܣሻݐሺ′ߩ
௞ୀ௫,௬,௭

 ሻ൲ݐ௞ሺݑ

ൌ ∑ ሻ௞ୀ௫,௬,௭ݐ௞ሺݑ · ,ሻݐᇱሺߩ൫ሾ݁ܿܽݎܶ ܲሿܣ௞ሺݐሻ൯                                    (3.4) 
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To ensure the satisfaction of the condition ሶܸ ሺߩ′ሻ ൑ 0, 

the simplest control law takes the following form 

ሻݐ௞ሺݑ ൌ െ݇௣ · ,ሻݐᇱሺߩ൫ሾ݁ܿܽݎܶ ܲሿܣ௞ሺݐሻ൯ (3.5) 

where, ݇௣ ൐ 0  is a control gain. The condition 
ሶܸ ሺߩ′ሻ ൑ 0  alone cannot guarantee the asymptotic 

convergence to the target state ห߰௙ൿ. The additional 

condition for asymptotic convergence can be satisfied 

by choosing the mechanical quantity ܲ  in the 

Lyapunov Eq. (3.1) as 

ܲ ൌ െߩ௙ ൌ െห߰௙ൿൻ߰௙ห.              ሺ3.6ሻ 

It can be shown that the above choice of ܲ leads to 

the following Lyapunov function 

ܸሺߩᇱሻ ൌ ᇱሻߩሺܲ݁ܿܽݎܶ ൌ ۧ߰|ܲ|߰ۦ ൌ െหൻ߰ห߰௙ൿห
ଶ

 ሺ3.7ሻ 

Because the minimum value ܸ ൌ െ1  occurs at 

|߰ۧ ൌ |߰௙ۧ , the condition ሶܸ ൑ 0 ensures that the 

quantum state |߰ۧ is eventually driven to the target 

state ห߰௙ൿ , while the control law of Eq. (3.5) 

decreases the Lyapunov function ܸ to its minimum 

value. 

With the Lyapunov control law of Eq. (3.5) and the 

Lyapunov Eq. (3.7), the convergence to the target 

state ห߰௙ൿ is guaranteed. Our main concern is how to 

quantify and improve the transient performance of the 

qubit transfer between |߰଴ۧ  and ห߰௙ൿ . For this 

purpose, several indices of spin entanglement will be 

introduced to evaluate the qubit control performance 

and the control gain ݇௣  in Eq. (3.5) is to be 

accommodated to improve the control performance in 

response to the change of spin entanglement during 

the qubit transfer process. 

4. High-GainDegradation of Qubit Control 
Efficiency 

Quantum entanglement dominates the qubit transfer 

performance and a well understanding of the influence 

of quantum control on the degree of entanglement is 

helpful to the control law design. The simplest 

entangled system is composed of two spin-coupled 

electrons, for which several definitions of 

entanglement have been well developed [27]. The 

two-electron spin motion can be described by the four 

bases, |00ۧ, |01ۧ, |10ۧ, and |11ۧ, and any two-spin 

state |߰ሺݐሻۧ஺஻ of the system can be expressed as a 

superposition of the four bases: 

|߰ሺݐሻۧ஺஻ ൌ ሻ|00ۧݐଵሺݔ ൅  ሻ|01ۧݐଶሺݔ

൅ݔଷሺݐሻ|10ۧ ൅  ሻ|11ۧ   ሺ4.1ሻݐସሺݔ

where, ݔ௜ሺݐሻ , ݅ ൌ 1, 2, 3, 4 , are time-varying 

expansion coefficients. The time evolution of 

|߰ሺݐሻۧ஺஻ is governed by the Schrodinger Eq. (2.7) 

with Hamiltonians ܪ଴ and ܪ௞ given by Eq. (2.10) 

for ݊ ൌ 2: 
 

ܪ ൌ ଴ܪ ൅ ෍ ௞ܪ

௞ୀ௫,௬,௭

,ሻݐ௞ሺݑ ൌ ଵ,ଶܬ ෍ ௞࣌ ٔ ௞࣌

௞ୀ௫,௬,௭

െ ௘ߛ ෍ ሺ࣌௞ ٔ ଶࡵ ൅ ଶࡵ ٔ ሻݐ௞ሺݑ௞ሻ࣌
௞ୀ௫,௬,௭

          ሺ4.2ሻ 

According to the definition of the Pauli matrices in Eq. (2.9), the Hamiltonians can be expressed explicitly as 
 

଴ܪ ൌ ଵ,ଶܬ ൦

1 0 0 0
0 െ1 2 0
0 2 െ1 0
0 0 0 1

൪ , ௫ܪ ൌ െߛ௘ ൦

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

൪                     ሺ4.3ܽሻ 

௬ܪ ൌ െߛ௘ ൦

0 െ݅ െ݅ 0
݅ 0 0 െ݅
݅ 0 0 െ݅
0 ݅ ݅ 0

൪ , ௭ܪ ൌ െߛ௘ ൦

2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 െ2

൪          ሺ4.3ܾሻ 

 

where the coupling constant is set to ܬଵ,ଶ ൌ 1, and the 

gyromagnetic ratio of electrons is normalized 

toߛ௘ ൌ െ1in the following numerical demonstrations. 

With the given Hamiltonian ܪ, the time evolution of 

the density matrix ߩሺݐሻ ൌ |߰ሺݐሻۧ߰ۦሺݐሻ|  is then 

solved from the quantum Liouville Eq. (2.12) through 

two sequential transformations ߩ ՜ ′ߩ ՜  The .ۧۧ′ߩ|

first one, ߩ ՜  is the unitary transformation given ,′ߩ
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by Eq. (3.2) and the second one, ߩ′ ՜  is the ,ۧۧ′ߩ|

matrix-to-vector transformation via Eq. (2.13). After 

the two transformations, the quantum Liouville 

equation becomes 

݀
ݐ݀

ሻۧۧଵ଺ൈଵݐሺ′ߩ| ൌ ൫ܫସ ٔ െ′ܪ ்′ܪ ٔ  ሻۧۧଵ଺ൈଵݐሺ′ߩ|ସ൯ܫ

ሺ4.4ሻ 

where, ܪ′ሺݐሻ ൌ ∑ ሻ௞ୀ௫,௬,௭ݐ௞ሺݑሻݐ௞ሺܣ is the 

transformed Hamiltonian defined in Eq.(3.3) and the 

magnetic field ݑ௞ሺݐሻ is synthesized by Eq. (3.5) via 

Lyapunov control design. 

The influence of the control gain ݇௣ on the qubit 

transfer from |00ۧ to |11ۧ will be studied firstly in 

order to reveal the dependence of the qubit transfer 

performance on the degree of spin entanglement 

between the two electrons. Under the action of the 

control law of Eq. (3.5), the qubit populations, i.e., the 

diagonal elements of ߩሺݐሻ, are obtained by solving Eq. 

(4.4) with initial density matrix ߩො଴ ൌ  The .|00ۦ00ۧ|

numerical results by using four different control gains 

݇௣ ൌ 1, 2, 14, 20, are shown in Fig. 1. It can be seen 

that for the low-gain cases ݇௣ ൌ 1 and ݇௣ ൌ 2, the 

transition from |00ۧ  to |11ۧ  is 100% completed 

within 50 and 35 time units, respectively. For the 

high-gain cases ݇௣ ൌ 14 and ݇௣ ൌ 20, the transfer 

percentage reduces to 90% and 65%, respectively, 

although high-gain control leads to faster transient 

response and larger control field as illustrated in Fig. 2. 
 

 
Fig. 1  The time responses of the qubit populations in the two-qubit transfer from |૙૙ۧ to |૚૚ۧ by using four different 

control gains ࢖࢑ ൌ ૚, ૛, ૚૝, ૛૙. 

(b) ݇௣ൌ2 

(d) ݇௣ൌ20 (c) ݇௣ൌ14 

(a) k୮=1 



Evaluating Qubit Control Performance by Indices of Quantum Entanglement 

 

9

 
Fig. 2  The applied control field in the two-qubit transfer from |૙૙ۧ to |૚૚ۧ by using four different control gains 

࢖࢑ ൌ ૚, ૛, ૚૝, ૛૙. 
 

If the control gain increases further, the achieved 

population level begins to oscillate with increasing 

amplitude, and diverges eventually. This observation 

is contrary to our common expectation that a 

high-gain control tends to decrease the steady-state 

error. Additional computations have been conducted 

for three- and four-electron systems by solving Eq. 

(4.4) and similar high-gain degradation of transfer 

efficiency occurs. 

A reasonable explanation to high-gain degradation 

of multi-qubit transfer performance is that spin 

entanglement between two electrons is vulnerable to 

external field and a high-gain control tends to 

suppress the interconnection between the electrons 

and hence attenuate the qubit transfer efficiency. To 

confirm this conjecture, we employ the same 

governing Eq. (4.4) and the same control law of Eq. 

(3.5) to examine whether high-gain degradation takes 

place in the single-qubit transfer process, where only 

one electron is involved and no entanglement effect 

can emerge. In contrast with the two-qubit results, two 

control gains ݇௣ ൌ 2  and ݇௣ ൌ 20 , which are 

representative values of low gain and high gain, are 

applied to the one-qubit transfer from |0ۧ to |1ۧ. As 

shown in Fig. 3, high-gain control of single qubit 

transfer yields much faster transient response than 

those by using low-gain control. Moreover, high-gain 

control simplifies the shape of the control field, while 

low-gain control produces high-frequency oscillation 

of the control field, as demonstrated in Figs. 3c and 3d. 
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Fig. 3  The time responses of the population and the applied control field for the single qubit transfer from |૙ۧ to |૚ۧ by 

using (a) low control gain ࢖࢑ ൌ ૛ and (b) high control gain ࢖࢑ ൌ ૛૙. 
 

It appears that contrary to two-qubit transfer, 

high-gain control is otherwise beneficial to single 

qubit transfer. To further strengthen this standpoint, 

we also apply high-gain control to a Morse oscillator 

with four energy levels, which is free from 

entanglement. The result is the same as that of 

single-qubit transfer, indicating that high-gain control 

inclines to destroy the entanglement between electrons 

and attenuate the multi-qubit transfer efficiency, but it 

has no adverse effect on quantum systems free from 

entanglement. 

5. Evaluating Qubit Transfer Performance 
by Index of Entanglement 

Quantum entanglement appears exclusively in 

multi-particle systems and plays a dominant role in 

the performance of multi-qubit transfer control. The 

appearance of entanglement makes the results of 

quantum control totally different from those obtained 

from single-particle systems. The degree of 

entanglement of the transient state |߰ሺݐሻۧ determines 

to show fast and accurate the terminal state ห߰௙ൿ can 

be achieved. For the purpose of clarifying the role of 

entanglement in qubit transfer performance, four 

quantitative indices of entanglement will be employed 

in this section to evaluate the degree of entanglement 

of |߰ሺݐሻۧ and to estimate thequbit control 

performance resulting from different control gains ݇௣ 

in the Lyapunov control law of Eq. (3.5).  

Firstly, the Schmidt decomposition [19] of the 

(b) ݇௣ൌ20 

(c) ݇௣ൌ2 (d) ݇௣ൌ20 

(a) ݇௣ൌ2 
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two-spin quantum system |߰ۧ஺஻ will be applied to 

the computation of the indices of entanglement. A 

two-spin state |߰ۧ஺஻ is said to be separable, if it can 

be separated into a product |߰ۧ஺஻ ൌ |߰ۧ஺ ٔ |߰ۧ஻ , 

where |߰ۧ஺ א ࣢஺ , |߰ۧ஻ א ࣢஻  with ࣢஺  and ࣢஻ 

being the Hilbert spaces of the individual electrons; 

otherwise the state is called an entangled state. With 

this definition, we will see that in the qubit transfer 

process considered previously, the transient quantum 

state |߰ሺݐሻۧ஺஻ is entangled over the entire process, 

except for the initial state |00ۧ஺஻ ൌ |0ۧ஺ ٔ |0ۧ஻ and 

the terminal state |11ۧ஺஻ ൌ |1ۧ஺ ٔ |1ۧ஻ . The 

Schmidt decomposition provides us an effective 

mathematical tool to estimate the degree of quantum 

entanglement in the transient state |߰ሺݐሻۧ஺஻. 

5.1 Schmidt Decomposition 

At any instant ݐ, the transient state |߰ሺݐሻۧ஺஻ can 

be expressed as a linear superposition of the four 

qubits as given by Eq. (4.1). Although the separation 

|߰ሺݐሻۧ஺஻ ൌ |߰ሺݐሻۧ஺ ٔ |߰ሺݐሻۧ஻  is not possible for 

entangled states, the Schmidt decomposition of 

|߰ሺݐሻۧ஺஻ always exists and takes the following form 

|߰ሺݐሻۧ஺஻ ൌ ܿଵሺݐሻ|ݑ஺ሺݐሻۧ ٔ  ሻۧݐ஻ሺݑ|
൅ܿଶሺݐሻ|ݒ஺ሺݐሻۧ ٔ  ሻۧ ሺ5.1ሻݐ஻ሺݒ|

where, ܿଵሺݐሻ  and ܿଶሺݐሻ  are expansion coefficients 

satisfying |ܿଵሺݐሻ|ଶ ൅ |ܿଶሺݐሻ|ଶ ൌ 1 ; ሻۧݐ஺ሺݑ|  and 

 ሻۧ are the unit orthogonal vectors of the Hilbertݐ஺ሺݒ|

space ࣢஺ , and |ݑ஻ሺݐሻۧ  and |ݒ஻ሺݐሻۧ  are the unit 

orthogonal vectors of the Hilbert space ࣢஻. At any 

instant ݐ, the coefficients ܿଵ  and ܿଶ , and the unit 

vectors |ݑ௜ሺݐሻۧ  and |ݒ௜ሺݐሻۧ , ݅ ൌ ,ܣ ܤ , can be 

determined uniquely by the expansion coefficients 

ሻݐ௜ሺݔ  defined in Eq. (4.1). The Schmidt 

decomposition in Eq. (5.1) offers an analytical 

expression for the reduced density matrices ߩ஺ and 

஺஻ߩ ஻, which can be found fromߩ ൌ |߰ሺݐሻۧ஺஻߰ۦሺݐሻ| 

according to their definitions: 

஺ߩ ൌ ܿܽݎܶ ஺݁ሺߩ஺஻ሻ ൌ |ܿଵሺݐሻ|ଶ|ݑ஺ሺݐሻۧݑۦ஺ሺݐሻ| 
൅|ܿଶሺݐሻ|ଶ|ݒ஺ሺݐሻۧݒۦ஺ሺݐሻ| ሺ5.2ܽሻ 

஻ߩ ൌ ஺஻ሻߩ஻ሺ݁ܿܽݎܶ ൌ |ܿଵሺݐሻ|ଶ|ݑ஻ሺݐሻۧݑۦ஻ሺݐሻ| 

൅|ܿଶሺݐሻ|ଶ|ݒ஻ሺݐሻۧݒۦ஻ሺݐሻ| ሺ5.2ܾሻ 
Expanding the unit vectors |ݑ௜ሺݐሻۧ  and |ݒ௜ሺݐሻۧ 

with respect to the Zeeman basis ሼ|0ۧ, |1ۧሽ with 

expansion coefficients expressed in terms of ݔ௜ሺݐሻ 

for each subsystem, we obtain the reduced density 

matrices for the two electrons, respectively, as 

ሻݐ஺ሺߩ ൌ ቈ
ଵݔ

ଶ ൅ ଶݔ
ଶ ଷݔଵݔ

כ ൅ ସݔଶݔ
כ

ଵݔଷݔ
כ ൅ ଶݔସݔ

כ ଷݔ
ଶ ൅ ସݔ

ଶ ቉  ሺ5.3ܽሻ 

ሻݐ஻ሺߩ ൌ ቈ
ଵݔ

ଶ ൅ ଷݔ
ଶ ଶݔଵݔ

כ ൅ ସݔଷݔ
כ

ଵݔଶݔ
כ ൅ ଷݔସݔ

כ ଶݔ
ଶ ൅ ସݔ

ଶ ቉  ሺ5.3ܾሻ 

Because the trajectory representation of spin motion 

on the Bloch sphere is available only for single 

electron, the separated expressions for ߩ஺  and ߩ஻ 

obtained by Eq. (5.3) allow us to describe the 

spin-coupled motion of two electrons on the two 

separated Bloch spheres. The spin motion of each 

electron on the Bloch sphere is described by the Bloch 

vector ሬ݊റ ൌ ሺ݊௫, ݊௬, ݊௭ሻ, which is connected to the 

density matrixvia the following relation 

ߩ ൌ
1
2

൤
1 ൅ ݊௭ ݊௫ െ ݅݊௬

݊௫ ൅ ݅݊௬ 1 െ ݊௭
൨              ሺ5.4ሻ 

The comparison between Eqs. (5.3) and (5.4) gives 

the Bloch vector for each electron in terms of the 

expansion coefficients ݔ௜ሺݐሻas 

቎
݊஺௫ሺݐሻ
݊஺௬ሺݐሻ
݊஺௭ሺݐሻ

቏ ൌ ቎
ଷݔଵݔ

כ ൅ ସݔଶݔ
כ ൅ ଵݔଷݔ

כ ൅ ଶݔସݔ
כ

݅ሺݔଵݔଷ
כ ൅ ସݔଶݔ

כ െ ଵݔଷݔ
כ െ ଶݔସݔ

ሻכ
ଵ|ଶݔ| ൅ ଶ|ଶݔ| െ ଷ|ଶݔ| െ ସ|ଶݔ|

቏ ሺ5.5ܽሻ 

቎
݊஻௫ሺݐሻ
݊஻௬ሺݐሻ
݊஻௭ሺݐሻ

቏ ൌ ቎
ଶݔଵݔ

כ ൅ ସݔଷݔ
כ ൅ ଵݔଶݔ

כ ൅ ଷݔସݔ
כ

݅ሺݔଵݔଶ
כ ൅ ସݔଷݔ

כ െ ଵݔଶݔ
כ െ ଷݔସݔ

ሻכ
ଵ|ଶݔ| ൅ ଷ|ଶݔ| െ ଶ|ଶݔ| െ ସ|ଶݔ|

቏ ሺ5.5ܾሻ 

The magnitude of the Bloch vector | ሬ݊Ԧሺݐሻ| forms 

the radius of the Bloch ball. Regarding the 

geometrical meaning of the Bloch sphere, we note that 

when | ሬ݊Ԧሺݐሻ| ൌ 1 , the two-spin system is 

instantaneously in a separable state (non-entangled 

state), while when | ሬ݊Ԧሺݐሻ| ൏ 1, the two-spin system is 

in an entangled state and its degree of entanglement 

increases with decreasing | ሬ݊Ԧሺݐሻ| . As | ሬ݊Ԧሺݐሻ| 

decreases to zero, the two-spin system reaches the 

maximally entangled state. Accordingly, the radius of 

the Bloch ball derived from the Schmidt 
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decomposition can be conceived of as a quantitative 

measure of entanglement and the time response of 

| ሬ݊Ԧሺݐሻ| plotted in the spherical coordinate turns out to 

be a vivid visualization of the time-varying 

entanglement between the two electrons during a qubit 

transfer process. 

The time response of the Bloch radius | ሬ݊Ԧሺݐሻ| is 

computed by substituting the time-varying coefficients 

 ሻ obtained from Eq. (2.11) into Eq. (5.5). Fig. 4ݐ௜ሺݔ

plots the results for the two-qubit transfer from |00ۧ 

to |11ۧ by using the Lyapunov control law of Eq. 

(3.5) with control gain ݇௣ ൌ 2 and ݇௣ ൌ 20. It can 

be seen that except for the initial state and the final 

state, the radius of the Bloch ball is always smaller 

than one with its minimum value occurring in the 

middle of the transition process. This time response of 

| ሬ݊Ԧሺݐሻ| manifests that the transient state |߰ሺݐሻۧ஺஻ is a 

time-varying entangled state with its degree of 

entanglement increasing from zero at the initial state 

|00ۧ to a maximum in the middle of the transition, 

and then returning back to zero at the terminal state 

|11ۧ. The effect of increasing the control gain ݇௣ is 

to speed up the transient response of | ሬ݊Ԧሺݐሻ|; however, 

high-gain control is also found to attenuate and 

oscillate the entanglement, as shown in Fig. 4b. This 

deterioration of entanglement due to high-gain control 

partially explains the reason why the qubit transfer 

from |00ۧ  to |11ۧ  is unsuccessful by using 

݇௣ ൌ 20 as already shown in Fig. 1d. 

5.2 Entanglement Entropy 

Qubit transfer involves information exchange 

among all the possible states participating in the qubit 

transfer process. The amount of information contained 

in a mediate entangled state determines the efficiency 

of the qubit transfer through this entangled state. The 

von Neumann entropy [2] defined by 

ܵሺߩሻ ൌ െܶ݁ܿܽݎሺ݃݋݈ߩଶߩሻ                 ሺ5.6ሻ 

, which is a useful index to quantify the amount of 

information contained in a quantum state, or 

equivalently, the amount of uncertainty before the 

quantum state is measured. In terms of the Schmidt 

decomposition of the two-electron state |߰ሺݐሻۧ஺஻, the 

entanglement entropy ܧሺ߰ሺݐሻሻ of |߰ሺݐሻۧ஺஻  is 

equivalent to the von Neumann entropy of its 

subsystems as  

ሻ൯ݐ൫߰ሺܧ ൌ ܵሺߩ஺ሻ ൌ ܵሺߩ஻ሻ 
ൌ െ|ܿଵሺݐሻ|ଶ݈݃݋ଶ|ܿଵሺݐሻ|ଶ െ |ܿଶሺݐሻ|ଶ݈݃݋ଶ|ܿଶሺݐሻ|ଶ 

ሺ5.7ሻ 

 

 
Fig. 4  The time responses of the radius of Bloch ball in the two-qubit transfer from |૙૙ۧ to |૚૚ۧ by using (a) low control 

gain࢖࢑ ൌ ૛ and (b) high control gain ࢖࢑ ൌ ૛૙. 

 
 

(a) ݇௣ൌ2 (b) ݇௣ൌ20 
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where ߩ஺ሺݐሻ and ߩ஻ሺݐሻare given by Eq. (5.3). Due to 

the equality |ܿଵ|ଶ ൅ |ܿଶ|ଶ ൌ 1 , the maximal 

entanglement entropy ܧ൫߰ሺݐሻ൯ ൌ 1 occurs at 

|ܿଵ|ଶ ൌ |ܿଶ|ଶ ൌ 1/2 , and the minimum occurs at 

ܿଵ ൌ 0  or ܿଶ ൌ 0 , corresponding to the separable 

situation. Fig. 5 demonstrates the time history of 

 ሻ൯ in the qubit transfer process from |00ۧ toݐ൫߰ሺܧ

|11ۧ with two different control gains ݇௣ ൌ 2  and 

݇௣ ൌ 20 . As shown in Fig. 5, the entanglement 

entropy achieves its maximum in the middle of the 

transition, where the entangled state contains the 

maximal amount of information; however, the 

absolute maximum ܧ൫߰ሺݐሻ൯ ൌ 1  is not attained 

using the control law of Eq. (3.5) with the assumed 

control gains. The comparison between Figs. 4 and 5 

reveals the similar tendency of the entanglement 

entropy ܧ൫߰ሺݐሻ൯ and the Bloch radius | ሬ݊Ԧሺݐሻ| in that 

the occurrence of the relative maximum of ܧ൫߰ሺݐሻ൯ 

coincides with the minimum of | ሬ݊Ԧሺݐሻ|. Meanwhile, 

the attenuation of entanglement due to high-gain 

control is also reflected in the index of entanglement 

entropy, whose maximal value decreases from 0.69 to 

0.66 as ݇௣ increases from 2 to 20, as depicted in Figs. 

5a and 5b. 

5.3 Relative Entanglement Entropy 

Both the entanglement entropy and the Bloch-ball 

radius indicate that the high-gain control has no 

positive effect on increasing the degree of 

entanglement in a two-electron system. However, 

these two indices of entanglement are still not strong 

enough to explain the failure of qubit transfer from 

|00ۧ to |11ۧ as shown in Fig. 1d. The main damage 

to entanglement caused by high-gain control is the 

blockage of information exchange between the 

electrons. The entanglement entropy and the 

Bloch-ball radius measure the amount of information 

contained in individual electrons, but they do not 

exhibit the amount of information exchange between 

the two electrons. When more information is 

exchanged, the quantum states of the two electrons get 

closer to each other, i.e., more information is shared 

by the two states.  

Quantum relative entropy ܵሺߩ஺ԡߩ஻ሻ  is a useful 

measure of the closeness between two quantumstates 

 ஻, which is defined as Ref. [20]ߩ ஺ andߩ

ܵሺߩ஺ԡߩ஻ሻ ൌ ஺ߩሺ݁ܿܽݎܶ ଶ݃݋݈ ஺ሻߩ

െ ஺ߩሺ݁ܿܽݎܶ ଶ݃݋݈  ஻ሻߩ

ൌ െܵሺߩ஺ሻ െ ஺ߩሺ݁ܿܽݎܶ ଶ݃݋݈  ஻ሻ ሺ5.8ሻߩ

 

 
Fig. 5  Time history of the entanglement entropy ࡱ൫࣒ሺ࢚ሻ൯ in the qubit transfer process from |૙૙ۧ to |૚૚ۧ with two 

different control gains ࢖࢑ ൌ ૛ and ࢖࢑ ൌ ૛૙. 

 

(a) ݇௣ൌ2 (b) ݇௣ൌ20 
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It quantifies the amount of information, which 

belongs to ߩ஺ and at the same time is shared with ߩ஻. 

The value of ܵሺߩ஺ԡߩ஻ሻ is a non-negative number 

with minimum ܵሺߩ஺ԡߩ஻ሻ ൌ 0 corresponding to the 

situation that the information of ߩ஺ is fully shared 

with ߩ஻ , i.e., the distance between ߩ஺  and ߩ஻  is 

zero.The amount of information shared by ߩ஺  and 

஻ߩ  decreases with increasing ܵሺߩ஺ԡߩ஻ሻ . With ߩ஺ 

and ߩ஻computed by Eq. (5.3), the time responses of 

the quantum relative entropy ܵሺߩ஺ԡߩ஻ሻ in the qubit 

transfer process from |00ۧ to |11ۧ are shown in Fig. 

6a with control gain ݇௣ ൌ 2. The value of ܵሺߩ஺ԡߩ஻ሻ 

keeps smaller than 0.08 over the entire transition 

process, indicating that the information contained in 

஺ߩ  and ߩ஻  is nearly equivalent. Fig. 6b illustrates 

ܵሺߩ஺ԡߩ஻ሻ  as the difference between ܵሺߩ஺ሻ and 

െTraceሾߩ஺ logଶ  ஻ሿ, showing that the two curves areߩ

almost coincident for ݇௣ ൌ 2 . However, as we 

increase the control gain to ݇௣ ൌ 6, the difference 

between ܵሺߩ஺ሻ  and െTraceሾߩ஺ logଶ ஻ሿߩ  becomes 

significant as shown in Fig. 6c. As ݇௣  increases 

further to 20, the great discrepancy between 

ܵሺߩ஺ሻ and െTraceሾߩ஺ logଶ ஻ሿߩ  shown in Fig. 6d 

manifests the loss of information exchange between 

the two electrons. The quantum relative entropy 

ܵሺߩ஺ԡߩ஻ሻ persuasively indicates that a high-gain 

control blockages the information exchange between 

the two electrons and causes the degradation of    

the qubit transfer performance as already shown in  

Fig. 1d. 
 

 
Fig. 6  Part (a) illustrates the time responses of the quantum relative entropy ࡿሺ࡭࣋ԡ࡮࣋ሻ in the qubit transfer process from 
|૙૙ۧ to |૚૚ۧ. Parts (b), (c), and (d) are the comparison of ࡿሺ࡭࣋ሻ (black line) withെ܍܋܉ܚ܂ሺ࡭࣋ ૛܏ܗܔ ࢖࢑ ሻ(red line) for࡮࣋ ൌ ૛, 

࢖࢑ ൌ ૟ and ࢖࢑ ൌ ૛૙, respectively. 

(d) ݇௣ൌ20 (c) ݇௣ൌ6 

(a) ݇௣ ൌ 2 (b) ݇௣ ൌ 2 
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5.4 Concurrence 

Different from the former three indices of 

entanglement, the concurrence [21] is a quantification 

of two-electron correlation without using Schmidt 

decomposition. This quantity is defined for pure states 

and can be calculated analytically as 

ሻߩሺܥ ൌ ,ሼ0ݔܽ݉ ଵߣ െ ଶߣ െ ଷߣ െ  ସሽ ሺ5.9ሻߣ

where, ߣ௜, ݅ ൌ 1, 2, 3, 4, are the decreasingly ordered 

eigenvalues of the matrix 

ܴ ൌ ටඥߩ൫ߪ௬ ٔ ௬ߪ൫כߩ௬൯ߪ ٔ  ሺ5.10ሻ ߩ௬൯ඥߪ

and ࣌௬ is the Pauli-Y matrix defined in Eq. (2.9).The 

concurrence falls in the interval 0 ൑ ሻߩሺܥ ൑ 1, with 

ሻߩሺܥ ൌ 0 corresponding to the separable state and 

ሻߩሺܥ ൌ 1  to the maximally entangled state. By 

substituting the density matrix ߩሺݐሻ computed by Eq. 

(4.4), the concurrence ܥሺߩሺݐሻሻ can be expressed as a 

function of time ݐ and the result is plotted in Fig. 7 

for the qubit transfer process from |00ۧ to |11ۧwith 

two different control gains ݇௣ ൌ 2 and ݇௣ ൌ 20. It 

is found that the time response of ܥሺߩሺݐሻሻincreases 

initially from zero, then achieves its maximum in the 

middle of the transition and decays to zero at the end 

of transition process. The comparison between Figs. 5 

and7 demonstrates the similarity of ܥሺߩሺݐሻሻwith the 

entanglement entropy ܧ൫߰ሺݐሻ൯ . Both the indices 

indicate that high-gain control leads to an unsteady 

and oscillatory entanglement between the two 

electrons. 

Another useful index of entanglement is the 

entanglement of formation ܧிሺߩሻ [22], which can be 

expressed in terms of the concurrence as 

ሻߩிሺܧ ൌ ܪ ൭
1 ൅ ඥ1 െ ሻߩଶሺܥ

2
൱ ሺ5.11ሻ 

where,ܪሺݔሻ ൌ െݔ ݃݋݈ ݔ െ ሺ1 െ ሻݔ ሺ1݃݋݈ െ  ሻ is theݔ

binary entropy function. Like the concurrence ܥሺߩሻ, 

the entanglement of formation falls in the interval 

0 ൑ ሻߩிሺܧ ൑ 1, with ܧிሺߩሻ ൌ 0corresponding to the 

separable state and ܥሺߩሻ ൌ 1  to the maximal 

entangled state. The resulting time response of 

ሻሻݐሺߩிሺܧ  has a high degree of similarity with 

 .ሻሻ and its illustration is omitted hereݐሺߩሺܥ

6. Qubit Transfer via Intermediate 
Entangled States 

From the time responses of the several quantitative 

measures of entanglement mentioned above, it is 

evident that increasing the degree of entanglement 

during the qubit transfer process is helpful to improve 

the convergence to the target state. The lack of sufficient 
 

 
Fig. 7  The concurrence ࡯ሺ࣋ሺ࢚ሻሻ is plotted as a function of time ࢚ for the qubit transfer process from |૙૙ۧ to |૚૚ۧ with 

two control gains ࢖࢑ ൌ ૛ and ࢖࢑ ൌ ૛૙. 

(b) ݇௣ൌ20 (a) ݇௣ ൌ 2 
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Fig. 8  The qubit transfer from ࣋૙ ൌ |૙૚ۧ to ࢌ࣋ ൌ |૚૚ۧ via the intermediate entangled state ࢙࣋ ൌ ሺ|૙૙ۧ ൅ |૚૚ۧሻ/√૛. Parts 

(a) and (b) show the transition process by using two different switch times from the first phase ࣋૙ ՜  to the second phase ࢙࣋

࢙࣋ ՜  .Parts (c) and (d) are the corresponding time responses of the Bloch radius .ࢌ࣋
 

quantum correlation between the initial and final 

qubits is the main reason for unavailable transfer 

between them. This observation motivates us to insert 

an intermediate entangled state into a transition 

process between two quits for which direct transfer 

between them is not possible. A similar strategy called 

path programming [28] was used in energy-level 

transfer control, where several intermediate states are 

selected as the transitional target states to form a 

transition path connecting the initial and terminal 

states between which direct transfer is unavailable by 

Lyapunov control. Due to the additional quantum 

correlation established by entanglement, which is 

otherwise absent in energy-level transfer control, the 

use of an intermediate state in multi-qubit transfer 

control is expected to be more effective than that used 

in energy-level transfer control. 

Between the given initial state ߩ଴ and final state 

 ௦ߩ ௙, the insertion of an intermediate entangled stateߩ

divides the process into two parts: 

଴ߩ
ଵ
՜ ௦ߩ

ଶ
՜  ௙                    ሺ6.1ሻߩ

For the first partߩ଴ ՜  ௦ andߩ ௦, the target state isߩ

accordingly, the observable operator defined in Eq. 

(3.6) can be chosen as 

ܲሺଵሻ െ  ௦                            ሺ6.2ሻߩ

The related control law ݑሺଵሻgiven by Eq. (3.5) is 

designed to transfer the system state from ߩ଴ to ߩ௦. 

For the second partߩ௦ ՜  ௙ andߩ ௙, the target state isߩ

the observable operator is chosen as 

(a) Switch time  ݐ ൌ 30 (b) Switch time ݐ ൌ 15 

(c) Switch time ݐ ൌ 30 (d) Switch time ݐ ൌ 15 

First phase Second phase 
௦ߩ ՜ ଴ߩ ௙ߩ ՜  ௦ߩ

௦ߩ ՜ ଴ߩ ௙ߩ ՜  ௦ߩ
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ܲሺଶሻ ൌ െߩ௙                            ሺ6.3ሻ 

The related control law ݑሺଶሻis designed to transfer 

the system state from ߩ௦  to ߩ௙ . The intermediate 

entangled state ߩ௦ plays the role of an information 

medium via which information is exchanged between 

 ௙ so as to strengthen their correlation andߩ ଴ andߩ

facilitate the qubit transfer between them. 

The necessity of inserting an intermediate entangled 

state is demonstrated in the qubit transfer from |01ۧ 

to |11ۧ, between which direct transfer is unattainable 

by the Lyapunov control law of Eq. (3.5). If the Bell 

state ሺ|00ۧ ൅ |11ۧሻ/√2, a maximally entangled state, 

is chosen as the intermediate entangled state ߩ௦, the 

qubit transfer can be realized easily via the transition 

process ߩ଴ ՜ ௦ߩ ՜  ௙. As shown in Fig. 8a, duringߩ

the first transition ߩ଴ ՜ ௦ߩ , the Bell state ߩ௦  is 

reached at ݐ௦ ൌ 30, after which the second transition 

௦ߩ ՜ ௙ߩ  is initiated and the terminal state ߩ௙ ൌ

|11ۦ11ۧ|  is attained at ݐ௦ ൌ 60 . The role of the 

intermediate entangled state ߩ௦  is crucial to the 

success of the qubit transfer and the choice of the 

transition switch time ݐ௦ ൌ 30 is to ensure that the 

entangled state ߩ௦ is fully developed before starting 

the second transitionߩ௦ ՜   .௙ߩ

To examine the influence of the intermediate 

entangled state ߩ௦  on the accuracy of the qubit 

transfer, we change the transition switch time from 

௦ݐ ൌ 30 to ݐ௦ ൌ 15, at which the Bell state ߩ௦ is not 

fully developed in the first transition ߩ଴ ՜  ௦. Theߩ

entire transition process ߩ଴ ՜ ௦ߩ ՜ ௙ߩ via this 

premature intermediate state is shown in Fig. 8b. The 

resulting qubit transfer response is found to converge 

to a superposed state 0.0133|01ۧ ൅ 0.9867|11ۧ 

instead of the expected state |11ۧ. Figs. 8c and 8d 

compare the time responses of the Bloch-ball radius 

for the two different switch times ݐ௦ ൌ 30  and 

௦ݐ ൌ 15. In the case of ݐ௦ ൌ 30, the minimal radius is 

zero, indicating that the Bell state is fully attained; 

while in the case of ݐ௦ ൌ 15, the minimal radius is 

0.1908, corresponding to a premature Bell state. If the 

transition switch time ݐ௦ is reduced further, the qubit 

transfer error gets larger and eventually diverges just 

like the direct-transfer situation without an 

intermediate entangled state. 

7. Conclusions 

Quantum entanglement is omnipresent throughout a 

qubit transfer process, even though both the initial and 

final states are not entangled states. Several indices of 

entanglement have been employed in this paper to 

evaluate the qubit transfer performance for a 

two-qubit system composed of two spin-coupled 

electrons. By inspecting the transient responses of the 

various indices of entanglement, we find that the 

accuracy of qubit transfer strongly depends on the 

degree of entanglement that can be achieved during 

the transition process, and the degree of entanglement 

is in turn determined by the imposed qubit control law. 

The comparison of low-gain and high-gain Lyapunov 

control shows that quantum entanglement is 

vulnerable to strong field and a high-gain control 

tends to attenuate the degree of entanglement and 

reduce the accuracy of qubit transfer. Our results show 

that the indices of entanglement, especially quantum 

relative entropy, can be served as a useful cost 

function to evaluate the performance of qubit control. 

On the other hand, for quantum systems lacking for 

sufficient quantum correlation between the states to be 

transferred, the insertion of an intermediate entangled 

state into the transition process helps to connect the 

two qubits by increasing the entanglement between 

them. 
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