
Journal of Mathematics and System Science 7 (2017) 237-247 
doi: 10.17265/2159-5291/2017.09.001 

A Two-phase Solution Algorithm for the Inventory Routing 
Problem with Time Windows 
Pantelis Z. Lappas*, Manolis N. Kritikos, George D. Ioannou 

Department of Management Science and Technology, School of Business, Athens University of Economics and Business, 
47a Evelpidon Str., GR-11362, Athens, Greece 

Abstract 

The main objective of this paper is to propose a two-phase solution algorithm for solving the Inventory Routing Problem with 
Time Windows (IRPTW), which has not been excessively researched in the literature. The solution approach is based on (a) a 
simple simulation for the planning phase (Phase I) and (b) the Variable Neighborhood Search Algorithm (VNS) for the 
routing phase (Phase II). Testing instances are established to investigate algorithmic performance, and the computational 
results are then reported. The computational study underscores the importance of integrating the inventory and vehicle 
routing decisions. Graphical presentation formats are provided to convey meaningful insights into the problem. 
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1. Introduction 
In recent years, the Inventory Routing Problem (IRP) has received a great deal of attention from academics, 
consultants and practitioners. The IRP arises from the application of the Vendor Managed Inventory (VMI) 
concept, where the supplier (vendor) has to make inventory and routing decisions simultaneously for a 
given planning horizon. Analytically, the supplier monitors the inventory levels of the customers and 
determines (a) the delivery times (i.e., when to visit his customers), (b) the quantities (i.e., how much to 
deliver to each of them when they are served), so that stock-outs are avoided, and (c) the set of routes used 
by a fleet of vehicles to serve a given set of customers (i.e., how to integrate the customers into the vehicle 
routes). 

The Inventory Routing Problem with Time Windows (IRPTW) is a generalization of the standard IRP 
involving the added complexity that every customer should be served within a given time window. The 
IRPTW reflects a multi-functional problem that attempts to integrate two different functions within the 
supply chain network, i.e., planning and routing. In particular, planning is associated with the Inventory 
Control Problem (ICP), while routing is related to the Vehicle Routing Problem with Time Windows 
(VRPTW). The integration of ICP-VRPTW problems has scarcely been studied in the literature. Liu and 
Lee [1] proposed a two-phase heuristic method for solving the Inventory Routing Problem with Soft Time 
Windows (IRPSTW). The first phase of the heuristic algorithm finds an initial solution based on a 
construction approach, while the second phase improves the initial solution by adopting a variable 
neighborhood tabu search algorithm. In addition, Zeng and Zhao [2] represented the stochastic IRPSTW as 
a discrete time Markov decision process model and solved it by using dynamic programming 
approximations. Some applications in the context of IRPTW were presented by Zhang et al. [3], Li et al. [4] 
and Zhang et al. [5]. 

Generally, IRPs can be categorized into three levels [6,7]. The first categorization is based on the structural 
variants  presented in IRPs, namely, product, time horizon, network topology, routing, inventory policy, 
inventory decisions, fleet composition and fleet size. The second categorization is related to the availability 
of information on the demand, reflecting several types of IRPs, for example, deterministic, stochastic, and 
dynamic and stochastic IRPs. Furthermore, the third categorization is associated with the chosen solution 
approach. According to Ballou [8] the modeling of supply chain and logistics problems has traditionally 
relied on three primary methods, i.e., simulation, optimization (exact algorithm) and heuristics, which can 
be divided into two categories [9]: classic heuristics and meta-heuristics. The recent literature has shown an 
increased interest in so-called matheuristics, methods that combine exact and heuristic approaches [10]. 
Bertazzi and Speranza [11] classified IRP decisions into two classes: (a) decisions over time only, in which 
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the delivery times and the quantities have to be determined at the same time, while the routes are given, and 
(b) decisions over time and space, where delivery times, quantities and routes have to be determined 
simultaneously. In addition, the optimal solution of an IRP depends on the objective function that has been 
chosen. As a result, an objective function can be (a) the sum of transportation costs only, (b) the sum of 
transportation and inventory holding costs of the customers or (c) the sum of transportation and inventory 
holding costs of the supplier and the customers. 

In this paper, the main objective is to propose an approach for solving the IRPTW with the following 
characteristics. A single-product type has to be delivered by a fleet of capacitated homogenous vehicles 
(multiple vehicles) housed at a depot over a finite and discrete planning horizon. The network topology 
taken into account by the IRPTW model is one-to-many; that is, one supplier serves many geographically 
dispersed customers. A vehicle can visit more than one customer (multiple routing), while a vehicle’s trip 
starts and ends at the depot (supplier). As far as the replenishment policy is concerned, an Order-up-to 
Level (OU) policy is considered, in which any customer has defined a maximum inventory level and every 
time a customer is served, the delivered quantity is such that the maximum inventory level at the customer 
is reached. It is assumed that the depot has a sufficient supply of products that can cover all customers’ 
demands throughout the planning horizon. Moreover, the inventory is not allowed to become negative 
(fixed inventory) since the lowest inventory level is either fixed or equal to zero. With respect to the 
availability of information on customer demand, the proposed IRPTW model is deterministic since the 
demand is fully available to the supplier at the beginning of the planning horizon. Regarding the solution 
approach, a two-phase solution algorithm that combines a simple simulation and a Variable Neighborhood 
Search Algorithm (VNS) (i.e., a single-point search meta-heuristic) is presented to handle the IRPTW. The 
simple simulation is associated with the inventory allocation decisions (planning phase), while VNS is 
related to the routing decisions (routing phase). In addition, IRPTW decisions are decisions over time and 
space, while the objective function represents the sum of transportation costs only. This case corresponds to 
an environment in which the transportation cost represents the major cost component (e.g., the supplier and 
the customers represent entities of one and the same company). 

The remainder of the paper is organized as follows. A problem description and mathematical formulation 
are presented in Section 2. The proposed solution approach is described and analyzed in detail in Section 3. 
Section 4 presents computational results, while in Section 5, conclusions and future research are given. 

2. Problem Description and Mathematical Formulation 
The IRPTW is a variation of the classical VRPTW formulation. Whereas the VRPTW focuses on a single 
period, the IRPTW considers a multi-period time horizon, typically measured in terms of days. The IRPTW 
can be defined on a complete directed graph G = (N, A) where N = {0, n + 1} ∪ {1, … , n} is the set of 
nodes and A = {(i, j): i, j ∈ N, i ≠ j} is the set of arcs. Arcs 1, … , n correspond to the customers, whereas 0 
and n + 1  represent the single depot (origin-depot and destination-depot). The set of arcs represents 
connections between the depot and the customers and among customers. No arc terminates in node 0, and 
no arc originates from node n + 1. The proposed model deals with the repeated distribution of a single 
product from a single supplier to a set of geographically dispersed customers C = {1, … , n} over a given 
time horizon of length H. The set of time horizons is denoted by T = {1, … , H}. Each customer i ∈ C faces a 
different demand di

t  per time period t ∈ T. It is assumed that the depot has a sufficient supply of items that 
can cover all customers’ demands throughout the planning horizon. To each arc (i, j) ∈ A, where i ≠ j, a 
travel cost cij  and a travel time tij  are associated. The cost and travel time matrices satisfy the triangle 
inequality. Nodes are associated with points of the plane having the given coordinates (xi, yi)∀i ∈ N, and 
the travel cost cij  for each arc (i, j) ∈ A is defined as the Euclidean distance between the two nodes i, j ∈ N. 

A fleet of m homogenous vehicles, with capacity Q, is available for the distribution of the product. The 
fleet of vehicles is denoted by K = {1, … , m}. Each customer i ∈ C is associated with a time interval [ei, li], 
called a time window and a service time si, where ei ≤ li  ∀i ∈ C. The service of each customer must start 
within the associated time window, and the vehicle must stop at the customer location for si time instants, 
where 0 ≤ si ≤ li − ei ∀i ∈ C. Moreover, in case of early arrival at the location of customer i ∈ C, the 
vehicle generally is allowed to wait until time instant ei , i.e., until the service may start. Therefore, a 
vehicle must arrive at the customer i ∈ C before li. It can arrive before ei but the customer i ∈ C will not be 
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serviced before. The depot has also time windows [e0, l0] and [en+1, ln+1] where e0 = en+1 and l0 = ln+1. 
The time windows associated with the depot represent the earliest possible departure from the depot as well 
as the latest possible return time at the depot, respectively. As a result, vehicles may not leave the depot 
before e0 and must be back before or at time ln+1. In addition, s0 = sn+1 = 0. Each customer maintains his 
own inventory up to capacity Ui ∀i ∈ C. At the beginning of the planning horizon each customer i ∈ C has 
an initial inventory level of Ii

0 = Ui of product. Furthermore, the formulation uses the following decision 
variables: 

 wik
t : the amount of delivery to customer i ∈ C in period t ∈ T by vehicle k ∈ K. 

 xijk
t : a binary variable that is equal to 1 if vehicle k ∈ K drives from node i to node j ∀ (i, j) ∈ A where 

i ≠ j, j ≠ n + 1, j ≠ 0, and 0 otherwise. 
 aik

t : the time vehicle k ∈ K starts to service customer i ∈ C. 
 yik

t : a binary variable that is equal to 1 if customer i ∈ C is visited by vehicle k ∈ K in period t ∈ T, and 
0 otherwise. 

 zk
t : a binary variable that is equal to 1 if vehicle k ∈ K is used in period t ∈ T, and 0 otherwise. 

 Ii
t: a nonnegative variable indicating the inventory level at customer i ∈ C at the end of period t ∈ T. 

Moreover, stock-outs are not allowed at the customers, while the quantities delivered by each vehicle in 
each route cannot exceed the vehicle capacity. As far as the replenishment policy is concerned, an Order-
up-to Level (OL) policy is considered, in which any customer has defined a maximum inventory level and 
every time a customer is served, the delivered quantity is such that the maximum inventory level at the 
customer is reached. After defining the necessary parameters and decision variables, the IRPTW can be 
formulated as shown below: 

min��cij
j∈Ni∈N

��xijk
t

t∈Tk∈K

 (1) 

Subject to:  

Ii
0 = Ui, ∀i ∈ C (2) 

Ii
t−1 − Ii

t + �wik
t

k∈K

= di
t , ∀i ∈ C,∀t ∈ T (3) 

Ii
t ≤ Ui, ∀i ∈ C, ∀t ∈ T (4) 

�wik
t

i∈C

≤ Qzk
t , ∀k ∈ K, ∀t ∈ T (5) 

�yik
t

k∈K

≤ 1, ∀i ∈ C, ∀t ∈ T (6) 

�y0k
t

k∈K

= m,∀t ∈ T (7) 

�yn+1,k
t

k∈K

= m, ∀t ∈ T (8) 

�xjik
t

j∈N

= yik
t , ∀i ∈ N\{0}, ∀k ∈ K, ∀t ∈ T (9) 

�xijk
t

j∈N

= yik
t , ∀i ∈ N\{n + 1}, ∀k ∈ K, ∀t ∈ T (10) 
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aik
t + si + tij ≤ ajk

t + M�1 − xijk
t �, ∀i, j ∈ N, ∀k ∈ K, ∀t ∈ T (11) 

aik
t ≥ eiyik

t , ∀i ∈ N, ∀k ∈ K, ∀t ∈ T (12) 

aik
t ≤ liyik

t , ∀i ∈ N, ∀k ∈ K, ∀t ∈ T (13) 

xijk
t ∈ {0,1}, ∀i, j ∈ N, ∀k ∈ K, ∀t ∈ T (14) 

yik
t ∈ {0,1}, ∀i ∈ N, ∀k ∈ K, ∀t ∈ T (15) 

Ii
t ≥ 0, ∀i ∈ C, ∀t ∈ T (16) 

wik
t ≥ 0, ∀i ∈ C, ∀k ∈ K, ∀t ∈ T (17) 

aik
t ≥ 0, ∀i ∈ C,∀k ∈ K, ∀t ∈ T (18) 

zk
t ≤�yik

t

i∈C

 ∀k ∈ K, ∀t ∈ T (19) 

zk
t n ≥�yik

t

i∈C

 ∀k ∈ K, ∀t ∈ T (20) 

 

The total cost includes only the transportation costs as depicted in the objective function (1). Constraints (2) 
indicate that each customer i ∈ C has an initial inventory level equal to his maximum inventory level. 
Constraints (3) are the inventory balance equations for the customers. Constraints (4) limit the total amount 
of inventory to Ui, ∀i ∈ C. Constraints (5), (19) and (20) ensure that the vehicle capacities are not exceeded 
on any day t ∈ T during the planning horizon. Constraints (6)-(10) impose that each customer is visited 
exactly once, m  vehicles leave the depot, and the same vehicle enters and leaves a given customer. 
Constraints (11) ensure feasibility in terms of the time necessary when traveling from node i to node 
j ∀i, j ∈ N. In addition, ensure simultaneously the elimination of subtours where M is a large constant. 
Constraints (12) and (13) impose that service may only start within the given interval [ei, li]∀i ∈ N . 
Constraints (14)-(18) are the domain constraints. 

3. Solution Approach for the IRPTW 
Due to the NP-hard nature of the IRPTW, a two-phase solution algorithm based on (a) a simple simulation 
and (b) the Variable Neighborhood Search Algorithm (VNS) is proposed to handle the problem. The first 
phase (Phase I) is related to the planning phase of the IRPTW, in which delivery times and quantities are 
determined by implementing the well-known inventory policy (s,S) for inventory management using a 
simple simulation. In the second phase (Phase II), the VNS is applied to combine the customers into the 
vehicle routes by solving a VRPTW for a specific time period during the planning horizon. 

3.1. Phase I: Simple Simulation (planning phase) 

In particular, (s,S) inventory policy reflects the OU policy, where s and S correspond to a minimum and a 
maximum inventory level, respectively. An order for S-s units is placed immediately when the inventory 
level is reduced to s. Since stock-outs are not allowed, inventory policy (si, Si) is applied to each customer 
i ∈ C setting si = 0 ∀i ∈ C. In addition, each customer has an initial inventory level equal to his maximum 
inventory capacity Ui ∀i ∈ C. At the end of the planning horizon, each customer should have an inventory 
level equal to his initial inventory level. 

Since the demands are fully available to the supplier at the beginning of the planning horizon, by applying 
an (s,S) inventory policy to each customer, Phase I of the algorithm enables the supplier to run an inventory 
simulation to determine delivery times and quantities, so that stock-outs are avoided. A sample problem of 
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a distribution system that comprises a single supplier and three customers can be considered to explain the 
inventory simulation algorithm (Fig. 1). In addition, Fig. 2 illustrates for each customer the relative 
inventory levels during the planning horizon and the delivery times. 

 

 

 

Fig. 1. Illustrative Example Fig. 2. Inventory Simulation 
 

Below, an algorithm (Algorithm 1) is presented that applies the (s,S) policy to customers. Initially, based 
on a specific test problem (IRPTWdata), the number of customers (NC) as well as the length of the 
planning horizon (H) are defined. Then, for each customer i, his (si, Si) inventory policy and demands 
during the planning horizon (d) are taken into account to determine the delivery quantities and times 
(deliveries) as well as the inventory levels (inventories). It is worth noting that the time starts from zero, 
where customer demand is equal to zero and an initial inventory level exists for each customer. To define 
the delivery quantities the (s,S) policy is applied to each customer. Analytically, for each time period of the 
planning horizon, if the inventory level (IL) is less than si, a delivered quantity (OQ) is defined such that 
the maximum inventory level at the customer is reached. To define the inventory levels, the inventory 
balance equation is applied. Namely, the amount of inventory in the next time period must be equal to the 
current inventory plus the amount of delivered quantity minus the demand in the next time period. 

 

Algorithm 1. Simple simulation (Phase I) 
Inputs: 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼  
𝑁𝑁𝑁𝑁 ← 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼),𝐻𝐻 ← 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼), 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ← [],𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ← [] 
𝒇𝒇𝒇𝒇𝒇𝒇 𝑖𝑖 = 1:𝑁𝑁𝑁𝑁 𝒅𝒅𝒅𝒅 

𝑠𝑠𝑖𝑖 ← 𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠𝑖𝑖(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼), 𝑆𝑆𝑖𝑖 ← 𝑔𝑔𝑔𝑔𝑔𝑔𝑆𝑆𝑖𝑖(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼), 𝑑𝑑 ← [0, 𝑑𝑑𝑖𝑖1, 𝑑𝑑𝑖𝑖2, … , 𝑑𝑑𝑖𝑖𝐻𝐻], 𝐼𝐼𝐼𝐼(1) ← 𝑆𝑆𝑖𝑖, 
𝑗𝑗 ← 1 
𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝑗𝑗 ≤ 𝐻𝐻 𝒅𝒅𝒅𝒅 

𝑗𝑗 ← 𝑗𝑗 + 1 
𝒊𝒊𝒊𝒊 𝐼𝐼𝐼𝐼(𝑗𝑗 − 1) < 𝑠𝑠𝑖𝑖  𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 

𝑂𝑂𝑂𝑂(𝑗𝑗 − 1) ← 𝑆𝑆𝑖𝑖 − 𝐼𝐼𝐼𝐼(𝑗𝑗 − 1) 
𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 

𝑂𝑂𝑂𝑂(𝑗𝑗 − 1) ← 0 
𝒆𝒆𝒆𝒆𝒆𝒆 − 𝒊𝒊𝒊𝒊 
𝐼𝐼𝐼𝐼(𝑗𝑗) ← 𝐼𝐼𝐼𝐼(𝑗𝑗 − 1) + 𝑂𝑂𝑂𝑂(𝑗𝑗 − 1) − 𝑑𝑑(𝑗𝑗) 
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𝒆𝒆𝒆𝒆𝒆𝒆 −𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 
𝑛𝑛 ← 𝑗𝑗, 𝑂𝑂𝑂𝑂(𝑛𝑛) ← 𝑆𝑆𝑖𝑖 − 𝐼𝐼𝐼𝐼(𝑛𝑛), 𝐼𝐼𝐼𝐼(𝑛𝑛) ← 𝑆𝑆𝑖𝑖,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ← [𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷; 𝑂𝑂𝑂𝑂], 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 ← [𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼; 𝐼𝐼𝐼𝐼] 

𝒆𝒆𝒆𝒆𝒆𝒆 − 𝒇𝒇𝒇𝒇𝒇𝒇 
Output: 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 
 

3.2. Phase II: Variable Neighborhood Search Algorithm (routing phase) 

Since the simple simulation focuses only on the planning phase by determining the delivery times and 
quantities, the vehicle routes should be constructed. The routing phase (Phase II) is related to the usage of a 
VNS algorithm for solving a VRPTW for each time period of the planning horizon where delivery 
quantities have been scheduled. The VNS is a single-point search meta-heuristic introduced by Mladenović 
and Hansen [12]. A set of neighborhood structures Nk  where k = 1, . . , n  are defined. The algorithm 
successively explores the set of pre-defined neighborhoods to provide a better solution. Each iteration of 
the algorithm includes three steps: shaking, local search and move. At each iteration, an initial solution is 
shaked from the current neighborhood Nk . For example, a solution x′  is generated randomly in the current 
neighborhood Nk(x). Path representation is the most natural way of representing the routes of a VRPTW. 
Since a VRPTW consists of one or more routes, the length of each path is variable. On account of this, a 
dynamic variable, 𝑥𝑥, can be used to represent the solution of the VRPTW. For instance, 𝑥𝑥 = {𝑥𝑥. 𝑅𝑅1, 𝑥𝑥. 𝑅𝑅2} 
where 𝑥𝑥. 𝑅𝑅1 = [0,2,0] is the first route and 𝑥𝑥. 𝑅𝑅2 = [0,1,3,0] is the second route. The zero value in each row 
vector represents the supplier, while the other numbers represent the customers. A local search procedure is 
applied to the solution x′  to generate the solution x′′ . The objective of the VNS is to minimize the cost 
associated with all proposed routes of a specific time period of the planning horizon. If a solution 𝑥𝑥 consists 
of ℎ  routes, the cost function is equal to 𝑓𝑓(𝑥𝑥) = ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥. 𝑅𝑅𝑗𝑗 )𝑗𝑗=ℎ

𝑗𝑗=1 . Therefore, the current solution is 
replaced by the new local optima x′′  if and only if a better solution has been found (i.e., f(x′′ ) < 𝑓𝑓(𝑥𝑥)). The 
same search procedure is thus restarted from the solution x′′  in the first neighborhood Nk . If no better 
solution is found, the algorithm moves to the next neighborhood Nk+1, randomly generates a new solution 
in this neighborhood, and attempts to improve it. 

The generation of the initial solution is based on the Push Forward Insertion Heuristic (PFIH) [13]. The 
method tries to insert the customer between all the arcs in the current route. It selects the arc that has the 
lowest additional insertion cost. In addition, the feasibility check tests all the constraints related to time 
windows and vehicle capacity. When the current route is full of feasible insertions, PFIH will start a new 
route and repeat the procedure until all the customers are routed. As far as the first step of the VNS 
(shaking) is concerned, the 2-interchange neighborhood operator of Osman [14] as well as the CROSS-
exchange neighborhood operator of Taillard et al. [15] are used randomly (rand2interchange and 
randCrossExchange). Regarding the second step of the VNS (local search), nested neighborhoods are used 
based on the 2-interchange and CROSS-exchange mechanisms. These mechanisms (twoInterchange and 
crossExchange) are used systematically (not randomly). In general terms, the 2-interchange mechanism is 
based on customer interchange between sets of vehicles routes. The 2 means that maximum two customer 
nodes may be interchanged between routes. The CROSS-exchange mechanism swaps sequences of 
consecutive customers between two routes. The detail information about PFIH, 2-interchange and CROSS-
exchange can be obtained from papers of Solomon [13], Osman [14] and Taillard et al. [15], respectively. 
Algorithm 2 presents the template of the proposed VNS algorithm.  

 

Algorithm 2. Variable neighborhood search algorithm (Phase II) 
Input: 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 
[𝐻𝐻, 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖] ← 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼), 𝑖𝑖 ← 1 
𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝑖𝑖 ≤ 𝐻𝐻 𝒅𝒅𝒅𝒅 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ← 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑖𝑖), 
𝑥𝑥 ← 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉, 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 
𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 
𝑘𝑘 ← 1 
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𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝑘𝑘 ≤ 2 𝒅𝒅𝒅𝒅 
𝒊𝒊𝒊𝒊 𝑘𝑘 = 1 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,  
𝑥𝑥′ ← 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥, 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), 𝒆𝒆𝒆𝒆𝒆𝒆 − 𝒊𝒊𝒊𝒊 
𝒊𝒊𝒊𝒊 𝑘𝑘 = 2 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕,  
𝑥𝑥′ ← 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥, 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), 𝒆𝒆𝒆𝒆𝒆𝒆 − 𝒊𝒊𝒊𝒊 
𝑙𝑙 ← 1, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ← 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝑙𝑙 ≤ 2 𝒅𝒅𝒅𝒅 

𝒊𝒊𝒊𝒊 𝑙𝑙 = 1 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕, 
𝑥𝑥′′ ← 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥′ , 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), 𝒆𝒆𝒆𝒆𝒆𝒆 − 𝒊𝒊𝒊𝒊 
𝒊𝒊𝒊𝒊 𝑙𝑙 = 2 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕, 
 𝑥𝑥′′ ← 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥′ , 𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖), 𝒆𝒆𝒆𝒆𝒆𝒆 − 𝒊𝒊𝒊𝒊 
𝒊𝒊𝒊𝒊 𝑓𝑓(𝑥𝑥′′ ) < 𝑓𝑓(𝑥𝑥′) 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 

𝑥𝑥′ ← 𝑥𝑥′′ , 𝑙𝑙 ← 1, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ← 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 

𝑙𝑙 ← 𝑙𝑙 + 1 
𝒆𝒆𝒆𝒆𝒆𝒆− 𝒊𝒊𝒊𝒊 

𝒆𝒆𝒆𝒆𝒆𝒆−𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 
𝒊𝒊𝒊𝒊 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 

𝑥𝑥 ← 𝑥𝑥′′ , 𝑘𝑘 ← 1 
𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 

𝑘𝑘 ← 𝑘𝑘 + 1 
𝒆𝒆𝒆𝒆𝒆𝒆− 𝒊𝒊𝒊𝒊 

𝒆𝒆𝒆𝒆𝒆𝒆−𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 
𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
𝑖𝑖 ← 𝑖𝑖 + 1 

𝒆𝒆𝒆𝒆𝒆𝒆 −𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 
Output: 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
 
In addition, based on a sample problem of one supplier and twenty-five customers, Fig.3 illustrates the 
IRPTW solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. IRPTW solution for the (1-25) IRPTW model 
 
 
 
Table 1 presents the routes that take place in each time period of the planning horizon. 
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Table 1 
Cost information and routes for the IRPTW sample problem 

IRPTW Solution 
Routes of Period 1 Routes of Period 2 Routes of Period 3 
 Route 1: 0-24-25-19-10-0 

Route 2: 0-5-3-7-9-4-1-0 
Route 3: 0-23-21-0 

Route 1: 0-13-17-18-0 
Route 2: 0-16-14-0 
Route 3: 0-20-15-12-0 
Route 4: 0-6-2-0 
Route 5: 0-8-11-22-0 

VRPTW Cost = 0 VRPTW Cost = 163.4705 VRPTW Cost = 338.1404 
Routes of Period 4 Routes of Period 5 Routes of Period 6 
Route 1: 0-24-25-23-21-0 Route 1: 0-7-0 

Route 2: 0-10-16-14-12-0 
Route 3: 0-20-18-19-9-0 
Route 4: 0-5-3-4-2-1-0 

Route 1: 0-13-17-18-10-0 
Route 2: 0-20-24-25-19-16-14-12-0 
Route 3: 0-8-15-11-0 
Route 4: 0-5-3-7-9-6-4-2-1-0 
Route 5: 0-23-22-21-0 

VRPTW Cost = 35.0462 VRPTW Cost = 247.8036 VRPTW Cost = 330.9369 
Total VRPTW Cost 
1115.3975 
 
 
4. Computational Experiments and Results 
This section presents the computational results of the proposed two-phase solution algorithm. The 
algorithm was developed in the MATLAB programming language and executed on a DELL personal 
computer with an Intel® Core™ i3-2120, clocked at 3.30 GHz, a microprocessor with 4 GB of RAM 
memory under the operating system Microsoft Windows 7 Professional. Since new benchmark instances 
were designed, the efficiency and the effectiveness of the proposed algorithm cannot be compared to other 
published IRPTW studies using benchmark instances previously introduced. This is due to the 
differentiated manner in which the proposed algorithm operates based on the assumptions presented in 
Section 2. However, this section validates the two-phase solution algorithm and then evaluates its 
performance by comparing the algorithm’s solutions with solutions obtained by solving a VRPTW for each 
time period of the planning horizon based on the known demands (the planning phase is ignored). The 
algorithm has been tested on a newly introduced set of 18 IRPTW benchmark instances described in the 
following. All benchmark instances and their computational results are available at 
http://www.msl.aueb.gr/files/SimVnsIRPTW.zip. 

The new datasets have been developed by generalizing the well-known datasets C101, C201, R101, R201, 
RC101 and RC201 of Solomon [13]. As a result, these datasets are divided into six classes. The datasets are 
named in the form of “IRPTW_Z_nX_pY” strings, where “Z” stands for the class related to a specific 
dataset of Solomon [13], i.e., C101, C201, R101, R201, RC101 and RC201, “X” stands for the number of 
customers and “Y” stands for the number of time periods. For instance, the problem IRPTW_C101_n25_p6 
represents a test problem of the first class (i.e., dataset that was generated by the dataset C101 of Solomon 
[13]) with 25 customers and a planning horizon of 6 days. Different problem sizes, based on the total 
number of customers, were designed, in each class. Specifically, each class contains problems with 25, 50 
and 100 customers. Nodes coordinates are modified in such a way that the depot is located at the origin (i.e., 
coordinates (0,0)). The distance matrix is obtained by calculating the Euclidean distances. Time windows 
related to customers as well as the maximum operation time for each vehicle are kept the same as in the 
Solomon’s datasets [13]. 

Demand exists for each customer at each time period of the planning horizon. Customer demand at each 
time period was generated according to the Poisson distribution, Poisson(λ), where λ is the rate parameter. 
For each customer, the rate parameter is equal to his demand in the single-period VRPTW of Solomon [13]. 
In addition, for each customer i ∈ C, his maximum inventory capacity is defined as Ui = 2λi. As it usually 
happens in real life, customers with higher expected demands will have higher inventory capacities. 
Therefore, for each customer i ∈ C, inventory policy (si, Si) is equal to (0, Ui) . An unlimited fleet of 
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identical vehicles with capacity Q is available for the distribution of the product. The vehicle capacity is 
kept the same as in the Solomon’s datasets. At the beginning of the planning horizon, each customer i ∈ C 
has an initial inventory level up to his maximum inventory capacity, i.e., Ui. Finally, the supplier has a 
sufficient supply of products that can cover customers’ demands throughout the planning horizon. 

Since the algorithm cannot be compared to other published IRPTW studies, the best solution obtained from 
the proposed algorithm (IRPTW) is compared to the best solution obtained if the planning phase is ignored 
(p − VRPTW). In the aftermath of ignoring the planning phase, a VRPTW needs to be solved for each day 
of the planning horizon according to daily demand. The proposed VNS for the routing phase is then used to 
solve a daily VRPTW through the planning horizon. To compare the results, the following gap percentage 
formula is used: Gap (%) = (SolIRPTW − Solp−VRPTW ) × 1

Sol p−VRPTW
× 100. The Solp−VRPTW  corresponds 

to the solution obtained by solving the daily VRPTWs according to the known daily demands, while the 
SolIRPTW  determines the solution obtained by applying the proposed two-phase solution algorithm. Since 
the SolIRPTW  is compared with the Solp−VRPTW , a positive gap means that the Solp−VRPTW  is outperformed. 
The computational results obtained are summarized in Table 2. For the p − VRPTW and IRPTW problems, 
the respective total vehicle routing cost is presented. In addition, for each IRPTW the computation time (in 
seconds) needed to obtain a solution is presented, while the last column of the table shows the gap between 
the two problems reflecting the respective relative error.  

Table 2 
Experimental results 

Instance 
p-VRPTW IRPTW p-VRPTW – IRPTW  

Vehicle Routing Cost Vehicle Routing Cost Computation 
Time (seconds) Gap (%) 

IRPTW_C101_n25_p6 1150.8817 1115.3975 142.5091 -3.0832 
IRPTW_C101_n50_p6 2559.8361 2077.3767 1.0827e+03 -18.8473 
IRPTW_C101_n100_p6 5685.3165 5067.128 7.6578e+03 -10.8734 
IRPTW_C201_n25_p6 1293.2554 883.8036 165.4300 -31.6606 
IRPTW_C201_n50_p6 2753.3707 1614.115 2.1193e+03 -41.3768 
IRPTW_C201_n100_p6 3883.0779 2812.4137 3.9252e+04 -27.5726 
IRPTW_R101_n25_p6 3804.3657 1880.0941 68.9572 -50.5806 
IRPTW_R101_n50_p6 6728.73 3462.5182 461.9215 -48.5413 
IRPTW_R101_n100_p6 10388.3709 5566.806 4.6026e+03 -46.4131 
IRPTW_R201_n25_p6 2795.4622 1629.6064 135.5557 -41.7053 
IRPTW_R201_n50_p6 5106.1462 2626.2472 1.5377e+03 -48.5669 
IRPTW_R201_n100_p6 7567.238 3837.7514 1.5402e+04 -49.2846 
IRPTW_RC101_n25_p6 3257.2105 1892.2402 82.0641 -41.9061 
IRPTW_RC101_n50_p6 5969.5287 3907.7457 556.1790 -34.5385 
IRPTW_RC101_n100_p6 10783.6372 6145.4136 5.2140e+03 -43.0117 
IRPTW_RC201_n25_p6 2549.0663 1521.4596 213.5986 -40.3131 
IRPTW_RC201_n50_p6 4548.0065 2878.2674 2.2410e+03 -36.7136 
IRPTW_RC201_n100_p6 8191.1021 5053.3035 1.2644e+04 -38.3074 

Based on Table 2, it can be concluded that better solutions are obtained when the planning phase is 
considered. The ability of each customer to have storage enables a significant decrease in the VRPTW cost, 
reducing the total number of routes during the planning horizon. As it can be observed, in all cases, the 
two-phase solution algorithm provides better solutions than the p − VRPTW, with gaps in the interval of 
−3.0832 percent to −50.5806 percent. The results indicate that if the inventory capacity of each customer 
is taken into account during the planning phase, better solutions can be obtained, significantly reducing the 
total transportation cost and designating the importance of integrating supply chain activities. To illustrate 
in more detail the behavior of the proposed algorithm, more information is presented about the vehicles 
(number of routes) used in each time period of the planning horizon in Table 3. 
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Table 3 
Number of vehicles used during the planning horizon 

Instance 
p-VRPTW  IRPTW  

P1 P2 P3 P4 P5 P6 No. of 
Routes P1 P2 P3 P4 P5 P6 No. of 

Routes 
IRPTW_C101_n25_p6 3 3 3 3 3 3 18 0 3 5 1 4 5 18 
IRPTW_C101_n50_p6 7 6 5 6 6 6 36 0 7 6 4 6 9 32 
IRPTW_C101_n100_p6 11 12 12 12 12 12 71 0 11 17 7 13 20 68 
IRPTW_C201_n25_p6 2 2 2 2 2 2 12 0 1 2 1 1 2 7 
IRPTW_C201_n50_p6 4 4 4 3 3 4 22 0 3 4 2 3 5 17 
IRPTW_C201_n100_p6 5 5 4 5 4 6 29 0 5 4 3 5 7 24 
IRPTW_R101_n25_p6 9 9 9 9 9 9 54 0 4 6 3 4 10 27 
IRPTW_R101_n50_p6 14 14 13 14 14 14 83 1 8 7 5 9 13 43 
IRPTW_R101_n100_p6 23 23 23 23 23 23 138 0 12 13 10 15 24 74 
IRPTW_R201_n25_p6 4 4 4 4 4 4 24 0 3 2 2 4 4 15 
IRPTW_R201_n50_p6 6 6 6 6 6 6 36 0 3 5 3 4 6 21 
IRPTW_R201_n100_p6 9 9 8 10 9 9 54 1 6 6 3 4 9 29 
IRPTW_RC101_n25_p6 6 6 6 6 6 6 36 0 3 6 1 6 6 22 
IRPTW_RC101_n50_p6 10 10 10 10 10 10 60 0 7 10 5 8 12 42 
IRPTW_RC101_n100_p6 20 18 19 20 17 19 113 0 11 16 5 14 20 66 
IRPTW_RC201_n25_p6 4 4 4 4 4 4 24 0 3 2 2 2 4 13 
IRPTW_RC201_n50_p6 6 6 5 5 5 5 32 0 4 2 4 4 5 19 
IRPTW_RC201_n100_p6 10 10 11 10 11 10 62 0 7 7 4 6 9 33 

Due to the fact that each customer has an initial inventory level equal to his maximum inventory capacity, 
in most cases no routes occur in period 1. However, for test problems “IRPTW_R101_n50_p6” and 
“IRPTW_R201_n100_p6” a single route takes place to satisfy the daily demand of specific customers for 
whom their daily demands are greater than their maximum inventory capacity. Since stock-outs are not 
allowed, a route takes place to satisfy their demands. In addition, the number of routes is increased at the 
end of the planning horizon since the (s,S) inventory policy is applied for each customer. According to this 
policy, for each customer, the inventory level at the end of the planning horizon should be equal to the 
initial inventory level. On the other hand, in the context of the p-VRPTW, the number of vehicles is nearly 
the same, as a specific VRPTW problem should be solved on a daily basis. 

5. Conclusions and Future Work 
In this paper, a two-phase solution algorithm was introduced to handle the IRPTW, which has not been 
excessively researched in the literature. The paper gives more emphasis to how a simple simulation can be 
used in hybrid synthesis with a VNS (a single-point search meta-heuristic) for the solution of the IRPTW. 
Particularly, the simple simulation is related to the planning phase of the IRPTW to determine the delivery 
times and quantities, while the VNS is associated with the routing phase to determine the routes. The 
algorithm has been tested on a newly introduced set of 18 IRPTW benchmark instances by comparing the 
algorithm’s solutions with the solutions obtained by solving a VRPTW for each time period of the planning 
horizon based on known demand (the planning phase is ignored). The computational results show that the 
proposed algorithm is outperformed simultaneously verifying the benefits obtained by the integration of the 
inventory and the vehicle routing decisions. Due to the myopic nature of the proposed algorithm, it is worth 
noting that the two-phase solution algorithm should be even further improved. To begin with, both 
simulation and VNS should be dealt with in an iterative way to define a re-optimization phase. In this case, 
(s,S) inventory policy can be initialized randomly and recalculated at each iteration of the solution 
algorithm. This can be obtained by applying a Discrete Event Monte Carlo Simulation for the planning 
phase of the problem. In terms of future research, the goals are (a) to extend and improve the proposed 
algorithm, (b) to explore the algorithm behavior in other problems (instances), (c) to take into account 
inventory holding costs of customers in the objective function and (d) to focus on the development of other 
meta-heuristic approaches for the solution of the IRPTW. 
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