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abstract: In this work we try to introduce the concept of Maximal codes that
are built over rings, more precisely we will give Maximal codes for special rings,
Namely that the notion of maximal codes has been used by Chritophe Chapote,
these maximal codes are constructed over finite fields, and these codes are used for
coding and decoding.
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1. Introduction

Codes over finite rings are an important class of codes. This is why the study
of codes over rings has become an increasingly important area in coding theory.
Many of the results of coding theory over finite fields have been extended to codes
over finite rings, It is for this reason that we try to introduce the notion of maximal
codes over finite rings.
This notion has been studied by Christophe Chabot. For a complete description of
codes over finite fields, maximal codes have been shown to have many interesting
application to coding and decoding theory (see [3]).
In this paper, we shall generalize this concept over finite commutative rings. We
will prove that the set of linear codes constructed over finite ring form equivalence
classes, based on the fact that any linear code can be included in a maximal code.
The problem of maximal codes is a problem of the search for the maximal ideals
in a ring. For this reason, we will give the form of a maximal ideal of the direct
sum of a finite number of rings.
In the following, one will be interested in a important class of codes that are the
Zpm - maximal cyclic codes and we will give maximal codes and their dual codes
over Zpm .

2. Rings

We assume that all rings in this paper are commutative with identity.
We begin with some definitions for codes over rings.

Definition 2.1 Let A be a ring. A linear code C of length n over A is a submodule
of the free module An. And the elements of C are called the words of the code. If
more C is a sub A- free module of rank k, then C is said a [n, k]-code of A and k
is called the dimension of the code C.

Example 2.1 Soit A = Z/4Z et

C = {(00), (10), (20), (30), (20), (12), (22), (32)}
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As in the case of A is a field, it defines the inner product of two elements
a = (a1, ..., an) and b = (b1, ..., bn) of An by:

a.b =
n−1∑
i=0

aibi,

The operations being carried out in A, this inner product allows to define a notion
of duality on A and it was:

Definition 2.2 (dual Code ) Let C be a linear code on A, then

C⊥ = {a ∈ An | : (∀b ∈ C)(a.b = 0)},

is a linear code of length n on A called the dual code of the code C.

Definition 2.3 A linear code C of length n over A is cyclic if :
a- C is linear,
b- Any cyclic shift of a codeword of C is a codeword of C, i.e., if (co, c1, ..., cn−1) ∈

C then (cn−1, c0, ..., cn−2) ∈ C.

As is customary, An will denote the ring A[X]
Xn−1 and the elements of An will be iden-

tified with polynomials over A of degree ≤ n−1. Also, an n-tuple (co, c1, ..., cn−1)
in An will be identified with the element (co + c1X

n−1 + ... + cn−1X
n−1) of

An = A[X]
Xn−1 . Using this identification, it is easy to see that the cyclic A-codes

correspond precisely to the ideals of An.

3. Preliminary

Definition 3.1 Let A be a ring and let M be an A module. A submodule N of an
A−module M is said to be maximal if N is different from M and if there is no P
submodule stuck strictly between N and M .

Definition 3.2 An A−module is said of finite type if it is generated by a finite
number of elements.

Proposition 3.1 Let M be an A−module of finite type and L ⊂ M a strict sub-
module of M . Then there exists a submodule N containing L and maximal.

Proof: See [5, prop 4, p 30] 2

Definition 3.3 An A−module M is said to be noetherian if any increasing se-
quence of submodules of M is stationed from a certain rank.

Proposition 3.2 Let A be a ring.
Given an A−module M , the following three assertions are equivalent :
(A) M is noetherian.
(B) Any non-empty set of submodules of M has a maximal element for inclusion.
(C) Every submodule of M is of finite type.
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Proof: See [4, prop3.1, p 40] 2

Proposition 3.3 Let A be a ring.
Let M be an A-module and n ∈ N. If M is noetherian, then Mn is noetherian.

Proof: See [5, cor 1, p 22] 2

4. Maximal elements of family

We consider a noetherian ring A and an naturel integer n. Let N be a family
of submodules of An. We require that An ∈ N.
we provide this family with the most natural relation of order, inclusion ⊂. We
obtain a partially ordered family (N, ⊂)

Definition 4.1 Let C an element of N \An, C is called a maximal element of N
if

C ⊂ D and D ∈ N =⇒ (D = C orD = An)
In other words N is a maximal element of N if there is no submodule between N
and An.

Theorem 4.1 Let N be a family of submodules of An, then N admits a maximal
element.

Proof: -The ring A is noetherian, so it is the same for An, N is a family of sub-
modules of An which is notherian then it admits a maximal element. 2

Definition 4.2 We note Nmax = {Ni}i∈I the set of maximal elements of (N, ⊂)

Remark 4.1 If N is not reduced to An, N has at least an maximal element.

5. Maximal elements of codes

Let A be a finite ring, C be the set of sub-modules (codes) of An, which can
be provided with an inclusion relation and Cmax be the set of maximal elements of
(C, ⊂).

Remark 5.1 -Note that since C is a finite family, the number of maximal elements
of C is finite then Cmax = {Ci, ..., Cr}.

Proposition 5.1 Let C an element of C (C 6= An), then, there exists i ∈ {1, . . . , r}
such that C ⊂ Ci

Proof:
Let C be an element of C, then it is a submodule An. The A-module An is

notherian, C is a submodule of An so it is of finite type, by applying the Proposition
3.1 C is contained in a maximal submodule of An.

2

Conclusion
Any linear code over A is contained in a maximal code.
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Definition 5.1 Let C an element of C, the signature is defined by

I(C) := {i ∈ {1, . . . , r}|C ⊂ Ci}

For any family, I(An) = ∅ and I(Ci) = {i}.

regroup all elements with the same signature and consider the following set
CI := {C ∈ C | I(C) = I}

Proposition 5.2 Let C be the set of linear codes of length n over A.

The CI defined above form a partition of C.

C =
m
∪

j=1
CIj

Proof:
We consider the following relation :

Let C1, C2 ∈ C, C1 RC2 ⇐⇒ I(C1) = I(C2).
It is clear that R is an equivalence relation.
The class of an element C is none other than CI .
Therefore C is a disjoint finite union of CI 2

6. Maximal ideals of A1 ⊕A2

Theorem 6.1 Let A1, A2 be two rings. Then any maximal ideal of A1 ⊕ A2 is a
sum of two ideals I1 and I2, where one of the factors is an ideal maximal and the
other is equal to Ai.

Proof: Show that the condition is necessary.
Let I be an maximal ideal of A1 ⊕ A2. Since I is an ideal of A1 ⊕ A2, then
I = I1 ⊕ I2, where I1 and I2 are two ideals of A1 et A2 respectively.
Assume that I1 is different from A1 and I2 is different from A2.
Then A1 + I2 is a proper ideal containing I1⊕I2 therefore I1⊕I2 is not a maximal
ideal, For this reason we have I1 is equal to A1 or I2 is equal to A2, for example it
is assumed that I1 = A1, then I = A1 + I2.
Let us show that I2 is a maximal ideal of A2.
If I2 is not a maximal ideal then it is contained in a maximal ideal M3 of A2. So
the ideal A1 + M3 is a proper ideal containing I which is not possible because I
is a maximal ideal therefore I2 is a maximal ideal.
The condition is sufficient because if I = A1 + I2 where I2 is a maximal ideal of
A2 or I = I1 + A2 where I1 is a maximal ideal of A1. Then it is easy to show
that I is a maximal ideal. 2

Corollary 6.1A Let A1, A2, . . . An be n rings. Then any maximal ideal of A1 ⊕
A2 ⊕ · · · ⊕An is of the form M1 ⊕ M2 ⊕ . . . ⊕Mn where one of the factors Mi is
a maximal ideal of Ai and Mj = Aj for j different from i.
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Proof:
The proof is by induction on i.

7. Maximal codes for cyclic codes over ring A

Let C′ be the set of cyclic codes of length n over A, we provide this family
with the most natural relation of order, inclusion ⊂. We obtain a partially ordered
family (C′, ⊂) 2

Theorem 7.1 Let A be a ring and Let C be a cyclic code of length n over the ring
A, so it is contained in a maximal cyclic code.

Proof: C is a cyclic code of length n on A so it is an ideal of the ring An = A[X]
Xn− 1 ,

but by Krull’s Theorem it is contained in a maximal ideal which is also a cyclic
code, hence the result. 2

Conclusion
Each cyclic code over A is contained in a maximal cyclic code.

Definition 7.1 Let C an element of C′, the signature is defined by

I(C) := {i ∈ {1, . . . , r}|C ⊂ Ci}

For any family, I(An) = ∅ and I(Ci) = {i}.

regroup all elements with the same signature
CI := {C ∈ C′|I(C) = I}

Proposition 7.1 Let C′ be the set of cyclic codes of length n over A.

The C′I defined above form a partition of C′.

C′ =
r
∪

j=1
CIj

Proof:
It is the same proof given in Proposition 5.2 2

8. Maximal cyclic codes over Zpm

Let p be a prime integer that does not divide the integer n and Zpm the ring
of integers modulo pm. A unitary polynomial f(X) ∈ Zpm [X] is said to be basic
irreducible if its image in Zp[X] is irreducible.

A cyclic code of length n on the ring Zpm is an ideal of the ring
Zpm [X]
(Xn− 1) .

For a Zpm -code C we shall use C⊥ to denote the dual (orthogonal) code of C. For
a polynomial f of degree k, f∗ will denote its reciprocal polynomial Xkf(X−1).
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Theorem 8.1 If f(X) ∈ Zpm [X] is a basic irreducible polynomial then the ideals of
(Zpm [X]/(f(X)) are precisely (0), (1 + (f(X))), (p+ (f(X))), ..., (pm−1 + (f(X))).

Proof:
See [2, prop 6.6, p 49] 2

Recall that (p + (f(X))) is the maximal ideal of (Zpm [X]/(f(X))

Theorem 8.2 Any maximal ideal of
Zpm [X]
(Xn− 1) is of the form M1 ⊕ M2 ⊕ ...⊕ Mr

such that one of the terms Mi = (pf̂i + (Xn − 1)) and for j different from i

Mj = f̂j + (Xn − 1))

Proof: Let p be a prime such that p does not divide n. Let Xn − 1 = f1f2 . . . fr
be the representation of Xn − 1 as a product of basic irreducible pairwise-coprime
polynomials in (Zpm [X]).

Let C be a maximal ideal of the ring Rn =
Zpm [X]
(Xn− 1) . Then by the Chinese Theorem,

Rn =
Zpm [X]

∩ri=1(fi)
' ⊕

r∑
i=1

Zpm [X]

(fi)
=

Zpm [X]

(f1)
⊕ · · · ⊕ Zpm [X]

(fr)
.

I is a maximal ideal of the sum
Zpm [X]
(f1)

⊕ · · · ⊕ Zpm [X]
(fr)

, by applying the corollary

6.1A then C = ⊕
∑r

i=1 Mi where one of the factors Mi is a maximal ideal of

Ai =
Zpm [X]
(fi)

and Mj =
Zpm [X]
(fj)

for j different from i.

Mi is a maximal ideal of the ring then Ai =
Zpm [X]
(fi)

. Then according to the

Theorem 8.1 Mi = (p + (fi)). But Mi = (p + (fi)) correspond to (pf̂i + (Xn − 1))

in Rn and Mj =
Zpm [X]
(fj)

correspond to (f̂i + (Xn − 1)) in Rn.

Consequently C has the following form

C = (f̂1 + (Xn− 1))⊕...⊕(f̂i−1 + (Xn− 1))⊕(pf̂i + (Xn− 1))⊕...⊕(f̂r + (Xn− 1))

2

Theorem 8.3 Let p be a prime such that p does not divide n. Let Xn − 1 =
f1f2 . . . fr be the representation of Xn − 1 as a product of basic irreducible pairwise-
coprime polynomials in Zpm [X]. Then any maximal cyclic Zpm-code C is generated

by {fi, pf̂i}; ie.,

C = (fi, pf̂i)

Where f̂i =
∏

fj(1≤j≤r, j 6=i).

Proof:
As observed above, Xn − 1 = f1f2...fr are unique basic irreducible pairwise-
coprime polynomials. For each i, 1 ≤ i ≤ r, let f̂i denote the product of all fj
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different from fi. Then by application of Theorem 8.2, C is a sum of ideals of the
type (f̂1), (f̂2), .., (f̂i−1), (pf̂i), (f̂i+1), ..., (f̂r).

Consider the ideal C generated by {fi, pf̂i} that is to say C = (fi, pf̂i).

For j different from i, fi divides f̂j , it follows that (f̂j) ⊆ (fi). Thus the code C is
included in C.
Also, since f̂i, fi is a pair of coprime polynomials, then C = (fi) ⊕ (pf̂i).
There fore,

|C| = |(fi)||(pf̂i)|

= pm(n−deg(fi))p(m−1)(n−deg(f̂i))

= pm(deg(f̂i))p(m−1)(deg(fi))

= pm(deg(f̂i + deg(fi))p−(deg(fi))

= pmn− deg(fi)

On the other hand, we have the cardinal of the code C is

|(f̂1)||(f̂2)|, .., |(f̂i−1)||(pf̂i)||(f̂i+1)|...|(f̂r)|

= pm(n−deg(f̂1))pm(n−deg(f̂2)) . . . pm(n−deg(f̂i−1))p(m−1)(n−deg(f̂i))pm(n−deg(f̂i+1)) . . . pm(n−deg(f̂r))

= pmdeg(f1)pmdeg(f2) . . . pmdeg(fi−1)p(m−1) deg(fi)pmdeg(fi+1) . . . pmdeg(fr)

= pm( deg(f1)+ deg(f2)+ ...+ deg(fi−1)+ deg(fi)+ deg(fi+1)+ ...+ deg(fr))p−deg(fi)

= pmn− deg(fi)

Consequently C is equal to C.
2

Example 8.1 For R = Z/4Z and n = 7, we have X7 − 1 = g1(X)g2(X)g3(x)
in Z/4Z, with g1(X) = x − 1, g2(X) = X3 + 2X2 + X − 1, and g3(X) =
X3 −X2 + 2X − 1, Then by applying Theorem 8.3 we have three maximal codes
whose generators are given in the following table

Table 1: Environments
Code number The generator polynomials The single-element

of maximal codes generator polynomials
1 (g1, 2g2g3) g1 ⊕ 2g2g3
2 (g2, 2g1g3) g2 ⊕ 2g1g3
3 (g3, 2g1g2) g3 ⊕ 2g1g2

.

Theorem 8.4 Suppose p is a prime not diving n and C be a maximal cyclic Zpm-
code.

C = (fi, pf̂i)



268 Mohammed. Sabiri

Where f̂i =
∏

fj(1≤j≤r, j 6=i). Then

C⊥ = pm−1f̂∗i

Proof:
For a finite ring R, it has been shown by (Wood, 1999) [6] that |C||C⊥| = |R|n,

if R is a Frobenius ring and where |R| denotes the cardinal of R. Moreover it is
shown that every finite chain ring is a Frobenius ring.
The ring Zpm is a of frobenius ring and C is a linear code over Zpm then we have
|C||C⊥| = |R|n.
Therefore, if the code C has pk codewords and the dual code is of the form pl then
pk+ l = pmn.
Let C1 = pm−1f̂∗i . Note that (fi)(p

m−1f̂∗i )∗ is divisible by Xn− 1 and (pf̂i))(p
m−1f̂∗i )∗

is divisible by pm. Thus (fi)(p
m−1f̂∗i )∗ = (pf̂i))(p

m−1f̂∗i )∗ = 0 (modXn − 1).
Consequently C1 ⊆ C⊥.
Also |C1| = pdeg(fi) and

|C| = pm(n−deg(fi))p(m−1)(n−deg(f̂i)) = pm(n−deg(fi))p(m−1)(deg(fi) = pmn−deg(fi).
On the other hand, |C⊥| = pl, where mn − deg(fi) + l = mn. it follows that
l = deg(fi). Hence, C⊥ = C1.

2
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