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Abstract: This study presents the determination of the stress intensity factors (SIFs) at the edges of the cracks in an elastic 
strip weakened by N-collinear cracks. The problem of an orthotropic elastic strip is reduced to a system of Cauchy type 
singular integral equations. The system of singular integral equations is approached by a Quadrature technique. Under two 
different loading conditions, the results are obtained for the different cases of crack numbers. The resistance of the strip is 
examined by considering the orthotropic properties of the strip material. Finally, the crack interactions are clarified during the 
analysis.  
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1. Introduction   
In fracture mechanic, multiple crack problems 

are very important subjects. Because, in practice, 
it is uncommon to encounter a crack problem 
involving only a single crack. It is important to 
analyse the crack interactions. Many studies have 
been done on the interactions of multiple cracks. 
Some of the studies are listed below: 

Rao and Reddy [1] considered a multiple crack 
system in a homogeneous, isotropic, and two 
dimensional linear-elastic body. The SIFs and 
energy release rates (ERRs) are approached 
efficiently by fractal finite element based 
continuum shape sensitivity analysis under 
mixed-mode loading condition. Hwang et. al. [2] 
further extended the virtual crack extension 
method to the general case of multiple crack 
systems under mixed-mode loading. They 
presented analytical expressions for derivatives 
of ERRs and SIFs and gave comparisons between 
present numerical solution and finite difference 
method. A numerical solution of a multiple crack 
problem in a finite plate using coupled integral 
equations was presented by Chen and Wang in 
[3]. Non-dimensional SIFs and T-stresses for 
different cases of the cracks (an inclined crack in 
a square cracked plate, two parallel cracks in a 
staking position, two inclined cracks in an elliptic 
cracked plate) were given in tabular forms. The 
study of Ma et.al [4] includes a multiple crack 
problem for an infinite plate. Two single crack 

Corresponding author: İlkem Turhan Çetinkaya, 
Dr, applied mathematics: ilkem.turhan@dpu.edu.tr. 

problems with different tractions applied to the 
crack which led to the Riemann-Hilbert problem 
were examined. Muravin and Turkel [5] designed 
a multiple crack weight (MCW) method for the 
strongly interacting cracks. They developed an 
algorithm for the construction of weight 
functions to handle multiple interacting cracks. 
Variation of SIFs for double-edged collinear 
cracks in finite plate under normal load and 
Star-shaped crack in finite plate under bi-axial 
load was presented. Jin and Keer [6] handled a 
multiple crack problem on an elastic half plane. 
A procedure based on the distributed dislocation 
method was given. Three different patterns of 
modeling dislocation density at the crack mouth 
were discussed. Nondimensional SIFs 
corresponds to the number of the crack were 
determined. An elaborated analysis was done for 
recent developments of multiple crack problems 
in plane elasticity by Chen [7]. Some kinds of 
integral equations were suggested for the 
multiple crack problems in plane elasticity. The 
effectiveness of the integral transform method 
and the complex variable function method were 
compared for some particular cases. Different 
kinds of the singular integral equations for 
multiple crack problems and their regularization 
procedures were given. Zheng et.al., [8] first 
formulated a nonlinear complementarily problem 
and the boundary value problem fitted to the 
servo control way. They proposed an algorithm 
to simulate growth of multiple cracks. As 
examples, they examined a symmetric central 
straight crack, a plate with two holes and edge 
cracks and a plate containing 10 random cracks. 
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Erbas et.al., [9] reduced a contact problem to a 
singular integral equation with the help of 
Fourier transform technique. The singular 
integral equation is approached by an iterative 
solution method and a direct asymptotic 
procedure for the thick and thin strip, 
respectively. Numerical results of pressure and 
moment are given for the different values of 
relative thickness of the strip. Erdogan et.al., 
discussed the numerical solution of singular 
integral equations [10]. Numerical examples for 
first and second kind singular integral equations 
are included. An orthotropic strip problem 
weakened by a crack is handled in the studies of 
Yusufoğlu and Turhan [11,12]. A singular 
integral equation is induced by the equations of 
elasticity theory and Fourier transform of Airy’s 
stress function. The solution of the singular 
integral equation is approached by an iterative 
technique and Gauss Chebyshev quadrature, 
respectively. 

In this study, an orthotropic strip weakened by 
N-cracks is considered. A system of singular 
integral equations is derived. The system of 
singular integral equations is approached by 
Gauss quadrature formulas. As examples, the 
cases of N=1, N=2, N=3 are taken and the 
numerical results of normalized SIFs are 
presented.  

2. Solution of mixed boundary value 
problem corresponding to N- crack 

Let us consider a crack problem which 
presents the generalization of the N-collinear 
cracks on an elastic orthotropic strip (see 
Figure.1). The cracks are located along 

( )
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,
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i i
i

x w a b
=

∈ =
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 on the axis x- and the 

boundaries of the strip y h= ±   are hinged. 
Uniformly distributed pressure of magnitude 

( )iq x , 1,i N=  is applied to the sides of cracks. 

 
Figure 1. Geometry of N-collinear cracks. 

 
Let us present a formulation of the 

considered problem with the help of theory of 

elasticity. The boundary conditions of the 
problem can be expressed as; 

( , ) ( , ) 0,xyx h x hυ σ± = ± = ( ,0) 0,xy xσ = ,x < ∞

( ,0) 0,xυ = x w∉ ;          (1) 
( ,0) ( ),y x q xσ = − x w∈ ,    

in which υ  is the vertical displacement; xyσ  

and yσ are shear and normal stress components, 
respectively. 

According to the analogy in [11,12], 
considering kinematic equations, equilibrium 
equations, Hooke’s law, Airy function and using 
the Fourier transform technique and Eqs. (1), the 
following system of singular integral equation is 
obtained: 
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where, ( ) ( )= iq x q x , ( ),∈ i ix a b , 1,...,=i N  

and ( )'γ j x  are the derivatives of the function 
describing vertical displacements of the points on 
the sides of the cracks. The following additional 
condition arises from the continuity of the 
function of vertical displacements of the points 
on the crack sides,  

( ) ( ) 0γ γ= =i i i ia b .       (3) 
Hence, Eq. (3) leads to the following integral 
equation:  

( )' 0,  1,..., .γ ξ ξ = =∫
i

i

b

i
a

d i N                (4) 

To convert the systems of integral equations (2) 
and (4) into dimensionless forms, the variables 
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integral equations are obtained: 
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( ) ( )i i i
i

q s r t
f t

π +
= −

∆
. 

The procedure given in [14] is prefered for the 
solution of reduced system of singular integral 
equations (5),(6). So, according to the index 
theory of Muskheleshvili [15], the solution is the 
form of 

( ) ( )
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φ
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j
j

t
t

t
, 1,...,=j N .            (7) 

Substituting Eqs. (7) into Eqs. (5) and (6), we 
obtain 
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respectively. The function ( )φ j t  is defined by 
Lagrange interpolation polynomials 
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where, ( )nT t  are Chebyshev polynomials of 

the first kind, mτ , ( 1, 2,...,m n= ) are the roots 
of the Chebyshev polynomials of the first kind 
and ( ) ( ) ( )φ τ φ τ=j

n m j m  is valid. So, we 
designate the Lagrangian interpolation 
polynomials ( ) ( )j

n tφ as approximate solution of 
the system, containing from (8) and (9), namely 
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By considering the known formula [16] 
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where, ( )nU t  is the Chebyshev polynomial of 
second kind, the following equality is valid 
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By using the following known relation for 

Chebyshev polynomials 
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Taking into account (13) and using 
appropriate Gauss-Chebyshev integration 
formula for Eq. (7), next, setting t= tm 
(m=1,2,…,n-1) in equation (10), where tm are 
roots of the polynomial 1( )nU t− , we obtain the 
following system of linear equations 
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3. Numerical results for SIFs 
In this section, the elasticity problem is solved 
numerically by Gauss quadrature approach for 
the different cases of N, i.e., N=1, N=2, N=3. 
The stiffness properties of the three kinds of 
orthotropic materials are given in Table 1 [17].  

Table 1. Stiffness properties for selected 
materials 

Material 
i 

c11 (Pa) c12  (Pa) c22 (Pa) c66 ( Pa) 

1 1.048x1010 3.248x109 1.578x1010 7.070x109 
2 1.048x1010 3.248x109 4.192x1010 7.070x109 
3 4.192x1010 3.248x109 1.048x1010 7.070x109 

Material i is the name of three 
orthotropic materials by which the strip is made. 
Table 1 shows that Materials 2 and 3 are same 
except a 90 degree rotation of orthotropy and 
while Material 3 has the highest orthotropy, 
Material 2 has weakest orthotropy in crack line 
direction. 

Two different loading conditions given 
in Figure 2 are loaded to the sides of the cracks to 
determine the SIFs. These conditions are uniform 
crack surface pressure ( ( ) = =q x q const ) and 
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fixed-grip loading ( 0 0( ) δε= xq x E e ), where 

( ) 0,ε ε∞ =x y , 2
0 11 12 22/= −E c c c . 

 
a) Uniform crack surface pressure 

 
  b) Fixed-grip loading. 

 
c) Fixed-grip loading. 

Figure. 2. Geometry of loading 
conditions. 

Tables 2-3 give the normalized SIFs 
under uniform crack surface pressure for a strip 
weakened by different numbers of cracks. As is 
seen from Tables 2-3, cracking starts earlier 
when crack numbers in the strip increase. So 
increasing of the crack numbers leads to 
decreasing of strip resistance. 

As is known, crack propagation occurs 
when ≥I ICK K , where ICK  is the fracture 
toughness of the strip materials. Let us show the 
relation between SIFs and critical load by 
referring the SIFs values for Material 1 in the 
first, second and third rows of Table 2. 

( )1
IK , ( )2

IK  and ( )3
IK  denote the SIF values at 

the crack edges for strips weakened by one crack, 
two cracks and three cracks, respectively. From 
Table 2, 

( ) ( )1 / 2.10824IK q aπ = ,  

( ) ( )2 / 2.26888IK q aπ =  and 

( ) ( )3 / 2.28620IK q aπ =  are seen. 

Accordingly, 
( )1 / 2.10824 /π π= ≥I ICK a q K a  and 

( )1

2.10824 π
≥ =IC

C
Kq q

a
. Similarly, it can be 

written that 
( )2 / 2.26888 /π π= ≥I ICK a q K a  and 

( )2

2.26888 π
≥ =IC

C
Kq q

a
 , 

( )3 / 2.28620 /π π= ≥I ICK a q K a  and 

( )3

2.28620 π
≥ =IC

C
Kq q

a
.  By comparing three 

relations, it has seen that critical load ( )3
Cq  is 

minimum. It shows that, the resistance of the 
strip weakened by three cracks is the minimum. 
Similar interpretations can be done for the 
resistance of the strip composed of Materials 2-3 
(see, Table 2), too.  

Again, from Table 2, when the crack 
length increases, SIFs increase and critical load 
decreases. Additionaly, Table 2 presents the 
relation of normalized SIFs for all tip materials 
given in Table 1. Remember that from Table 1, 
while material 3 has the highest orthotropy, 
material 2 has weakest orthotropy in crack line 
direction. Also, it has seen from Table 2 that 
while the SIF values for the strip composed of 
Material 3 are the highest, the SIF values for the 
strip composed of Material 2 are the lowest. So, 
it can be interpreted that, when orthotropy 
properties of the strip increase, SIFs increase and 
critical load decreases. So the resistance of the 
strip decreases. 

By comparing Table 2 and Table 3, it is 
concluded that, when the crack sides are loaded 
by uniform crack surface pressure, while the strip 
thickness decreases, normalized SIFs decrease, 
too. So critical load increases and the resistance 
of the strip increases. 
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Table 2. The normalized SIFs under uniform crack surface pressure for a strip  weakened by different numbers 
of cracks for h=80a. 
N a1 b1 a2 b2 a3 b3 Material 

i 
( )1IK a

q aπ
 ( )1IK b

q aπ
 ( )2IK a

q aπ
 ( )2IK b

q aπ
 ( )3IK a

q aπ
 ( )3IK b

q aπ
 

1 -10a -a - - - - 3 2.11244 2.11244 - - - - 
1 2.10824 2.10824 - - - - 
2 2.08658 2.08658 - - - - 

2 -10a -a a 10a - - 3 2.27884 2.61712 2.61712 2.27884 - - 
1 2.26888 2.60551 2.60551 2.26888 - - 
2 2.22122 2.54819 2.54819 2.22122 - - 

3 -10a -a a 10a 20a 30a 3 2.30064 2.65692 2.67596 2.37344 2.34032 2.28864 
1 2.28620 2.63960 2.65819 2.35751 2.32533 2.27465 
2 2.22709 2.56482 2.57957 2.28629 2.26326 2.22050 

3 -10a -5a -3a 10a 12a 20a 3 1.92745 2.26720 2.92988 3.07422 2.74208 2.28583 
1 1.91415 2.25122 2.90883 3.05196 2.72246 2.26989 
2 1.85640 2.17887 2.80993 2.94580 2.63101 2.19935 

3 a 20a 40a 60a 80a 100a 3 3.06581 3.12070 3.22432 3.22770 3.19422 3.13716 
1 3.01800 3.06586 3.15753 3.16044 3.13604 3.08632 
2 2.87238 2.89387 2.94999 2.95091 2.94895 2.92695 

Table 3. The normalized SIFs under uniform crack surface pressure for a strip  weakened by different numbers 
of cracks for h=40a. 
N a1 b1 a2 b2 a3 b3 Material 

i 
( )1IK a

q aπ
 ( )1IK b

q aπ
 ( )2IK a

q aπ
 ( )2IK b

q aπ
 ( )3IK a

q aπ
 ( )3IK b

q aπ
 

1 -10a -a - - - - 3 2.08658 2.08658 - - - - 
1 2.07051 2.07051 - - - - 
2 1.99325 1.99325 - - - - 

2 -10a -a a 10a - - 3 2.22122 2.54819 2.54819 2.22122 - - 
1 2.18701 2.50677 2.50677 2.18701 - - 
2 2.05374 2.33107 2.33107 2.05374 - - 

3 -10a -a a 10a 20a 30a 3 2.22709 2.56482 2.57957 2.28629 2.26326 2.22050 
1 2.18580 2.51231 2.52429 2.23628 2.22002 2.18297 
2 2.05017 2.32708 2.32961 2.06831 2.08406 2.06892 

3 -10a -5a -3a 10a 12a 20a 3 1.85640 2.17887 2.80993 2.94580 2.63101 2.19935 
1 1.81648 2.12844 2.74047 2.87102 2.56690 2.15041 
2 1.69376 1.95556 2.47882 2.58016 2.33207 1.99270 

3 a 20a 40a 60a 80a 100a 3 2.87238 2.89387 3.22432 2.95091 2.94895 2.92695 
1 2.77371 2.77920 2.81473 2.81458 2.82482 2.81959 
2 2.46166 2.45473 2.47014 2.46971 2.47531 2.48263 
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Figures 3-4 show normalized SIFs correspond 
to material orthotrophy parameter E1/E2   in an 
ortotropic strip weakened by different cracks under 
uniform crack surface pressure.  When material 
orthotrophy parameter E1/E2  increases SIFs increases, 
too. So, when the orthortopy properties of the strip 
material increases SIFs increases and critical load 
decreases. Thereby, the resistance of the strip 
decreases. 

 
Figure 3. SIFs correspond to material orthotropic 
parameter E1/E2   in an ortotropic strip weakened by 
three cracks located a1=-10a, b1=-a, a2=a, b2=10a, 
a3=20a, b3=30a under uniform crack surface pressure. 

 
 
Figure 4. SIFs correspond to material orthotropic 
parameter E1/E2   in an ortotropic strip weakened by 

three cracks located a1=-120a, b1=-a, a2=0, b2=10a, 
a3=20a, b3=30a under uniform crack surface pressure. 

Tables 4-11 show normalized SIFs 
determined by an ortotropic strip weakened by 
different cracks under fixed-grip loading. It is 
assumed that same forces are applied to both two 
cracks. For the case of N=1, when δh<0, crack 
propagation starts at left edge (a1), when δh>0, crack 
propogation stars at right edge (b1). 

In Tables 2-3, for the case of N=1, it is 
assumed that the crack is just located on a1=-10a, 
b1=-a. Because, for the same length cracks, the 
normalized SIF values are same under uniform crack 
surface pressure.  But in Tables 4-9, we preffered to 
present two different location for the case of N=1. It 
can be concluded that, when the crack slides through  
-Ox,  if δh<0, SIFs increase; on the contrary, if δh>0, 
SIFs decrease. 
For all the cases given in Tables 4-11, independently 
of crack numbers, sizes and loading condition, it can 
be deduced that when then the material orthotropy 
properties of strip in the crack line increase, 
normalized SIFs increase, too. So, critical load 
decreases and the strip’s resistance decreases. 

Tables 4-7 shows that when δh<0, if the thickness 
of the strip decreases, the SIF values of the cracks 
located on axis –Ox increase; on the contrary, the SIF 
values of the cracks located on axis Ox decrease. 
Similarly, it follows from Tables 8-11, when δh>0, if 
the thickness of the strip decreases, the SIF values of 
the cracks located on axis –Ox decrease; on the 
contrary, the SIF values of the cracks located on axis 
Ox increase. 
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Table 4. The normalized SIFs determined under fixed-grip loading δh=ln0.1 for a strip weakened by different 
numbers of cracks for h=80a. 
N a1 b1 a2 b2 a3 b3 Material 

i 
( )1IK a

q aπ
 ( )1IK b

q aπ
 ( )2IK a

q aπ
 ( )2IK b

q aπ
 ( )3IK a

q aπ
 ( )3IK b

q aπ
 

1 -10a -a - - - - 3 2.64646 2.32390 - - - - 
1 2.64152 2.31896 - - - - 
2 2.61608 2.29355 - - - - 

a 10a - - - - 3 1.92826 1.69324 - - - - 
1 1.92466 1.68964 - - - - 
2 1.90612 1.67112 - - - - 

2 -10a -a a 10a - - 3 2.79616 2.78183 2.49131 1.88048 - - 
1 2.78602 2.77005 2.47955 1.87042 - - 
2 2.73710 2.71172 2.42161 1.82265 - - 

3 -10a -a a 10a 20a 30a 3 2.80726 2.80211 2.52131 1.92882 1.27418 1.07002 
1 2.79482 2.78738 2.50634 1.91558 1.26218 1.05897 
2 2.74008 2.72012 2.43745 1.85530 1.21570 1.02021 

3 a 20a 40a 60a 80a 100a 3 2.60378 1.98864 0.92460 0.67463 0.29481 0.21148 
1 2.57977 1.96318 0.90152 0.65433 0.28250 0.20194 
2 2.48162 1.85925 0.83307 0.60154 0.26073 0.18744 

 
Table 5. The normalized SIFs determined under fixed-grip loading δh=ln0.1 for a strip weakened by different 
numbers of cracks for h=40a. 
N a1 b1 a2 b2 a3 b3 Material 

i 
( )1IK a

q aπ
 ( )1IK b

q aπ
 ( )2IK a

q aπ
 ( )2IK b

q aπ
 ( )3IK a

q aπ
 ( )3IK b

q aπ
 

1 -10a -a - - - - 3 3.29259 2.53213 - - - - 
1 3.27033 2.50990 - - - - 
2 3.16308 2.40331 - - - - 

a 10a - - - - 3 1.74798 1.34426 - - - - 
1 1.73617 1.33247 - - - - 
2 1.67923 1.27588 - - - - 

2 -10a -a a 10a - - 3 3.40282 2.91594 2.32950 1.51653 - - 
1 3.36564 2.87179 2.28605 1.48136 - - 
2 3.21251 2.68141 2.10524 1.35268 - - 

3 -10a -a a 10a 20a 30a 3 3.40436 2.92028 2.33766 1.53348 0.66689 0.47730 
1 3.36538 2.87326 2.29057 1.49399 0.64026 0.45626 
2 3.21166 2.68047 2.10496 1.35645 0.58450 0.41988 

3 a 20a 40a 60a 80a 100a 3 2.17301 1.21992 0.24244 0.12483 0.02210 0.01084 
1 2.12330 1.17011 0.22197 0.11243 0.01980 0.00992 
2 1.93621 0.99285 0.19859 0.09705 0.01897 0.00923 
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Table 6. The normalized SIFs determined under fixed-grip loading δh=ln0.2 for a strip weakened by different 
numbers of cracks for h=80a. 
N a1 b1 a2 b2 a3 b3 Material 

i 
( )1IK a

q aπ
 ( )1IK b

q aπ
 ( )2IK a

q aπ
 ( )2IK b

q aπ
 ( )3IK a

q aπ
 ( )3IK b

q aπ
 

1 -10a -a - - - - 3 2.47182 2.25708 - - - - 
1 2.46711 2.25238 - - - - 
2 2.44289 2.22817 - - - - 

a 10a - - - - 3 1.98111 1.80900 - - - - 
1 1.97734 1.80523 - - - - 
2 1.95792 1.78583 - - - - 

2 -10a -a a 10a - - 3 2.62614 2.72796 2.52526 1.98949 - - 
1 2.61609 2.71626 2.51358 1.97949 - - 
2 2.56770 2.65841 2.45600 1.93190 - - 

3 -10a -a a 10a 20a 30a 3 2.63970 2.75272 2.56190 2.04849 1.52578 1.34135 
1 2.62685 2.73745 2.54634 2.03467 1.51313 1.32965 
2 2.57134 2.66871 2.47543 1.97221 1.46312 1.28739 

3 a 20a 40a 60a 80a 100a 3 2.72729 2.26875 1.33696 1.07241 0.59932 0.47329 
1 2.69896 2.23815 1.30715 1.04525 0.58113 0.45869 
2 2.58965 2.11963 1.21563 0.96877 0.54084 0.42914 

 
Table 7. The normalized SIFs determined under fixed-grip loading δh=ln0.2 for a strip weakened by different 
numbers of cracks for h=40a. 
N a1 b1 a2 b2 a3 b3 Material 

i 
( )1IK a

q aπ
 ( )1IK b

q aπ
 ( )2IK a

q aπ
 ( )2IK b

q aπ
 ( )3IK a

q aπ
 ( )3IK b

q aπ
 

1 -10a -a - - - - 3 2.86555 2.38438 - - - - 
1 2.84540 2.36426 - - - - 
2 2.74840 2.26769 - - - - 

a 10a - - - - 3 1.84073 1.53165 - - - - 
1 1.82779 1.51872 - - - - 
2 1.76548 1.45668 - - - - 

2 -10a -a a 10a - - 3 2.98195 2.78786 2.38092 1.69093 - - 
1 2.94610 2.74504 2.33859 1.65647 - - 
2 2.80070 2.56124 2.16138 1.52792 - - 

3 -10a -a a 10a 20a 30a 3 2.98424 2.79429 2.39305 1.71611 0.95441 0.75203 
1 2.94569 2.74722 2.34535 1.67539 0.92518 0.72833 
2 2.79939 2.55979 2.16092 1.53358 0.85553 0.67861 

3 a 20a 40a 60a 80a 100a 3 2.35019 1.56811 0.50759 0.32121 0.09903 0.06215 
1 2.29087 1.50733 0.47657 0.29950 0.09244 0.05827 
2 2.07301 1.29635 0.42513 0.25816 0.08394 0.05111 
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Table 8. The normalized SIFs determined under fixed-grip loading δh=ln5 for a strip weakened by different 
numbers of cracks for h=80a. 
N a1 b1 a2 b2 a3 b3 Material 

i 
( )1IK a

q aπ
 ( )1IK b

q aπ
 ( )2IK a

q aπ
 ( )2IK b

q aπ
 ( )3IK a

q aπ
 ( )3IK b

q aπ
 

1 -10a -a - - - - 3 1.80900 1.98111 - - - - 
1 1.80523 1.97734 - - - - 
2 1.78583 1.95792 - - - - 

a 10a - - - - 3 2.25708 2.47182 - - - - 
1 2.25238 2.46711 - - - - 
2 2.22817 2.44289 - - - - 

2 -10a -a a 10a - - 3 1.98949 2.52526 2.72796 2.62614 - - 
1 1.97949 2.51358 2.71626 2.61609 - - 
2 1.93190 2.45600 2.65841 2.56770 - - 

3 -10a -a a 10a 20a 30a 3 2.02491 2.58986 2.82340 2.77936 3.62662 3.94279 
1 2.00763 2.56894 2.80178 2.75977 3.60764 3.92488 
2 1.94143 2.48302 2.70941 2.67342 3.52542 3.85099 

3 -100a -80a -60a -40a -20a -a 3 0.47329 0.59932 1.07241 1.33696 2.26875 2.72729 
1 0.45869 0.58113 1.04525 1.30715 2.23815 2.69896 
2 0.42914 0.54084 0.96877 1.21563 2.11963 2.58965 

 
Table 9. The normalized SIFs determined under fixed-grip loading δh=ln5 for a strip weakened by different 
numbers of cracks for h=40a. 
N a1 b1 a2 b2 a3 b3 Material 

i 
( )1IK a

q aπ
 ( )1IK b

q aπ
 ( )2IK a

q aπ
 ( )2IK b

q aπ
 ( )3IK a

q aπ
 ( )3IK b

q aπ
 

1 -10a -a - - - - 3 1.53165 1.84073 - - - - 
1 1.51872 1.82779 - - - - 
2 1.45668 1.76548 - - - - 

a 10a - - - - 3 2.38438 2.86555 - - - - 
1 2.36426 2.84540 - - - - 
2 2.26769 2.74840 - - - - 

2 -10a -a a 10a - - 3 1.69093 2.38092 2.78786 2.98195 - - 
1 1.65647 2.33859 2.74504 2.94610 - - 
2 1.52792 2.16138 2.56124 2.80070 - - 

3 -10a -a a 10a 20a 30a 3 1.70646 2.42505 2.87118 3.15459 5.52251 6.70679 
1 1.65290 2.35290 2.79124 3.07675 5.44042 6.63108 
2 1.51816 2.15032 2.55674 2.83853 5.12749 6.34236 

3 -100a -80a -60a -40a -20a -a 3 0.06215 0.09903 0.32121 0.50759 1.56811 2.35019 
1 0.05827 0.09244 0.29950 0.47657 1.50733 2.29087 
2 0.05111 0.08394 0.25816 0.42513 1.29635 2.07301 
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Table 10. The normalized SIFs determined under fixed-grip loading δh=ln10 for a strip weakened by different 
numbers of cracks for h=80a. 
N a1 b1 a2 b2 a3 b3 Material 

i 
( )1IK a

q aπ
 ( )1IK b

q aπ
 ( )2IK a

q aπ
 ( )2IK b

q aπ
 ( )3IK a

q aπ
 ( )3IK b

q aπ
 

1 -10a -a - - - - 3 1.69324 1.92826 - - - - 
1 1.68964 1.92466 - - - - 
2 1.67112 1.90612 - - - - 

a 10a - - - - 3 2.32390 2.64646 - - - - 
1 2.31896 2.64152 - - - - 
2 2.29355 2.61608 - - - - 

2 -10a -a a 10a - - 3 1.88048 2.49131 2.78183 2.79616 - - 
1 1.87042 2.47955 2.77005 2.78602 - - 
2 1.82265 2.42161 2.71172 2.73710 - - 

3 -10a -a a 10a 20a 30a 3 1.92422 2.57108 2.89967 2.98519 4.39051 4.99442 
1 1.90517 2.54792 2.87563 2.96332 4.36907 4.97410 
2 1.83440 2.45497 2.77469 2.86761 4.27451 4.88813 

3 -100a -80a -60a -40a -20a -a 3 0.21148 0.29481 0.67463 0.92460 1.98864 2.60378 
1 0.20194 0.28250 0.65433 0.90152 1.96318 2.57977 
2 0.18744 0.26073 0.60154 0.83307 1.85925 2.48162 

 
Table 11. The normalized SIFs determined under fixed-grip loading δh=ln10 for a strip weakened by different 
numbers of cracks for h=40a. 
N a1 b1 a2 b2 a3 b3 Material 

i 
( )1IK a

q aπ
 ( )1IK b

q aπ
 ( )2IK a

q aπ
 ( )2IK b

q aπ
 ( )3IK a

q aπ
 ( )3IK b

q aπ
 

1 -10a -a - - - - 3 1.34426 1.74798 - - - - 
1 1.33247 1.73617 - - - - 
2 1.27588 1.67923 - - - - 

a 10a - - - - 3 2.53213 3.29259 - - - - 
1 2.50990 3.27033 - - - - 
2 2.40331 3.16308 - - - - 

2 -10a -a a 10a - - 3 1.51653 2.32950 2.91594 3.40282 - - 
1 1.48136 2.28605 2.87179 3.36564 - - 
2 1.35268 2.10524 2.68141 3.21251 - - 

3 -10a -a a 10a 20a 30a 3 1.54026 2.39704 3.04354 3.66710 8.16037 10.8449 
1 1.47568 2.30767 2.94225 3.56538 8.04507 10.7365 
2 1.33758 2.08802 2.67410 3.26972 7.58146 10.2976 

3 -100a -80a -60a -40a -20a -a 3 0.01084 0.02210 0.12483 0.24244 1.21992 2.17301 
1 0.00992 0.01980 0.11243 0.22197 1.17011 2.12330 
2 0.00923 0.01897 0.09705 0.19859 0.99285 1.93621 
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4. Conclusions 

In this study, SIFs at the edges of the cracks 
in an elastic strip weakened by N-collinear cracks are 
obtained for the special cases of N=1, N=2 and N=3. 
It is assumed that the crack sides are loaded by 
uniform crack surface pressure and fixed-grip loading.  

The case of N=1 is approached by Gauss 
Quadrature formulas. The same problem has been 
solved by Iterative method and Gauss Chebyshev 
Quadrature in the previous studies [11,12] and the 
results for the normalized SIF values are compared 
with [13].  

The case of N=2 is approached by Gauss 
Quadrature formulas and Iterative method. It is 
established that, when the distance between the cracks 
increases, i.e., ε=a/b increases, normalized SIFs 
decrease. Also, it is obvious that the crack propagation 
starts at x=±a. When the crack sides are loaded by 
uniform crack surface pressure it has seen that 

( ) ( ) ( ) ( )/ /π π− =I IK a q a K a q a  and 

( ) ( ) ( ) ( )/ /π π− =I IK b q b K b q b . When the crack 

sides are loaded by fixed-grip loading, if loading 
conditions are given symmetrically as 

( ) ( )1 2,   δ δ−= =x x
f fq x q e q x q e , then normalized SIFs 

at the both edges are equal, i.e., 

( ) ( ) ( ) ( )/ /π π− =I IK a q a K a q a  and 

( ) ( ) ( ) ( )/ /π π− =I IK b q b K b q b . Comparison of 

Table 4 and Table 10 shows that when the strip is 
weakened by symmetric two cracks, the SIFs under 
fixed-grip loading δh=ln0.1 at the left edge (a1) are 
same with the SIFs under fixed-grip loading δh=ln10 
at the right edge (b2). The same comparison can be 
done for Table 6 and Table 8 for the fixed-grip 
loading δh=ln0.2 and δh=ln5. 

The case of N is approached by Gauss 
Quadrature formulas. The presented results show that 

when crack numbers in a strip increase, cracking starts 
to spread faster. Also, it is obvious that increasing of 
crack length leads to increasing of SIFs. When the 
crack sides are loaded by uniform crack surface 
pressure, the crack starts to spread at the inner sides. 
On the other hand, when the crack sides are loaded by 
fixed-grip loading, if δh<0, cracking starts at the left 
crack; and if δh>0, cracking starts at the right crack.  

 Finally, for all cases of N from tables and figures, 
it can be concluded that under uniform crack surface 
pressure, when relative thickness of the strip increases 
SIFs increase, too. It causes to decrease of strip’s 
resistance. If the crack sides are loaded by fixed-grip 
loading, for δh<0, while thickness of the strip 
decreases, the normalized SIFs on axis –Ox increase; 
but rather, the normalized SIFs on axis Ox decrease. 
Another point, for δh>0, while the thickness of the 
strip decreases, the normalized SIFs on axis –Ox 
decrease, conversely, the normalized SIFs on axis Ox 
increase. Also, the cracks in the strip composed of 
Material 3 starts to spread faster by comparision with 
the strips made from Material 1 and Material 2. So, 
between the strips which have same geometry and 
same cracks, the resistance of  strip made from 
Material 3 is the lowest. Additionally, when material 
orthotrophy parameter E1/E2 increases, SIFs increase, 
too. As a result, when material anisotrophy increases, 
critical load decreases and so strip resistance 
decreases. 
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