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Abstract: With a growing consumer market of battery electric vehicles, customers’ demand for technology and features is on the rise. 
The range and, to a certain extent, the range estimation will play a key factor in customers’ purchase decisions. In order to guarantee a 
precise range estimation over the usage life of battery electric vehicles, a method is presented that combines adaptive filter algorithms 
with statistical approaches. The statistical approach uses recurring driving cycles over the lifetime in order to derive the aging status of 
the traction battery. It is implied that the variance of the energy usage of these driving cycles is within certain bounds. This fact should 
be proven by an experimental case study. The dataset used in this paper is open to the public. 
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1. Introduction 

A key factor for the breakthrough of e-mobility into 

private automotive markets is an improved operational 

range and reliable range estimation algorithms [1, 2]. 

The user acceptance of a BEV will significantly 

decrease if the car owner cannot rely on the range used 

for the route calculation. In order to face this problem, 

much scientific effort was taken to minimize the 

uncertainties of the range estimation. The uncertainty 

of the available energy—SOC (state of charge)—and 

the degradation effects—SOH (state of health)—of the 

traction battery is still a great challenge today. The 

accuracy depends on precise parameters and precisely 

integrated measuring technology and requires, to some 

extent, a significant amount of calculational power. 

These circumstances lead to high expenses when 

mass-producing BEVs. In order to minimize costs, a 

new method for SOC/SOH determination is introduced: 

the CCM (commuter’s cycle monitoring) [3, 4]. The 

method combines a Kalman filter in order to estimate 

the SOC with a historical data approach in order to 

update the degradation parameters (SOH). A trend of 
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degeneration is derived from recurring driving 

cycles—e.g. the cycle of a commuter. An automatic 

comparison of these cycles derives the actual aging 

status of the LITB (lithium ion traction batteries). This 

information is used to update the parameters of the 

Kalman filter for SOC estimation. Recurring driving 

cycles, performed over the lifetime of a BEV, are 

implied [5]. The implementation and validation of the 

CCM method is the subject of ongoing research. 

Furthermore, it is implied that the variation of recurring 

driving cycles, taking account of different 

environmental conditions, is under a certain limit. 

The following paper presents an experimental study 

on the variation of a characteristic commuter cycle that 

is derived from published driving behavior [2, 6]. 

Multiple, identical driving routes were performed with 

a test BEV extended by an energy measurement setup. 

In Chapter 2, the state of the art regarding SOC and 

SOH estimation is characterized. The test vehicle and 

the measuring system are described in Chapter 3. A 

detailed description of the experiment and procedure is 

given in Chapter 4. The results discussed in Chapter 5 

outline the limits of variation. It is shown that the 

theoretical approach of CCM could show promising 

results in a real driving environment. The raw data of 
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the experiment (including the driving route, the energy 

consumption for traction and auxiliaries) are open to 

the public (refer to Chapter  6). 

2. Related Work 

The calculation and estimation of the internal states 

of LITB has been investigated in previous decades. 

Plett introduced a series of three papers [7-9] in 2004 

that showed promising solutions for estimating both 

the SOC and the SOH of LITBs. Estimating the SOC 

using an adaptive filter approach is considered state of 

the art. 

In Refs. [10, 11], well-structured benchmarks of 

different SOH estimation approaches can be found. 

The techniques are divided into experimental 

techniques and adaptive methods. For online 

implementation (no up- or downlink to an external 

server), only the adaptive model-based methods are 

outlined by the authors. Experimental techniques using 

direct measurements are neglected because of costs in 

this paper. Data driven experimental techniques are 

neglected because of the need for an external data 

connection. Furthermore, the accuracy of experimental 

techniques is rather low [10]. 

Utilizing adaptive methods on the SOH problem is 

still a great challenge. A guaranteed convergence of the 

time-discrete parameter estimators (Joint-Kalman filter, 

dual Kalman filer and Spherical Simplex Kalman filter) 

cannot be proven. Moreover, not only the convergence, 

but also the significant amount of calculation and 

parameterization effort is a disadvantage of these 

methods. A further overview based on adaptive filter 

algorithms is provided by Refs. [10, 11]. CCM 

presents a promising combined method of using an 

adaptive model based approach (Extended Kalman 

filter) for SOC and a data driven approach for SOH 

estimation without the use of external data. Only the 

characteristics of completed recurring driving trips are 

calculated. This enables a low cost implementation 

because no extra computational power is needed during 

operation. A low standard deviation of the recurring 

trips is a prerequisite in order to guarantee the 

reliability of the method. 

3. System Description 

3.1 Test Vehicle 

The test vehicle used in the experiments is a first 

generation Volkswagen e-Golf. It is a series vehicle 

with a permanent, magnet-synchronous machine, and 

front-wheel drive. The e-Golf has an empty weight of 

1,510 kg, accelerates from 0-100 km/h in 10.4 s, and 

can reach a maximum speed of 140 km/h. The drag 

coefficient is given as 0.281, the front surface with 

0.615 m², and the rolling resistance coefficient with 

0.0065. The combined power consumption in the 

NEDC (New European driving cycle) is 12.7 kWh/100 

km. This results in an operational range of 190 km. 

Table 1 provides an overview of the vehicle and its 

drive train. 

3.2 Measuring Equipment 

The test vehicle is equipped with the following 

high-precision measuring system. In order to evaluate 

the traffic  situation and  the driving  behavior on  the 
 

Table 1  Specification of the test vehicle. 

Vehicle  

Type Volkswagen e-Golf 

Range 190 km (NEDC) 

Top speed 140 km/h 

Empty weight 1,510 kg 

Standard consumption 12.7 kWh/100 km (NEDC) 

Motor  

Technology Permanent synchronous 

Power 85 kW (115 HP) at 3,000 RPM 

Torque 270 Nm 

Gear ratio 9.76 

Revolutions Max. 12.000 RPM 

Battery  

Cell type Panasonic/Sanyo, NMC 

No of cells 264 

Circuitry 88 serial, 3 parallel 

Voltage 323 V nominal 

Capacity 75 Ah 

Energy 21.2 kWh nominal 

Energy density 68 Wh/kg 
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reference route, the longitudinal dynamics of the 

vehicle must be detected. The GPS (global positioning 

system) provides a simple way to determine the 

position. For this, the high-sensitivity GPS receiver, 

CANgpsG.i.n., 1 Hz from Garmin with a CAN 

(controller area network) interface is installed on the 

vehicle roof. This records the following characteristics: 

date and time, vehicle position (geographical length, 

width and height), speed and direction. With a 12 V 

supply voltage, its current consumption is 80 mA. The 

GPS is accurate to within 15 m in 95% of cases. 

In order to measure the energy consumption for 

traction and auxiliaries, the HV-battery voltage is 

continuously recorded. Likewise, two current sensors, 

one for the auxiliary consumption and one for the 

traction, are installed. The electricity consumption of 

the air-conditioning unit is recorded by a LEM energy 

sensor HTR 50-SB, which is designed for measuring 

ranges of ± 100 A and a nominal current of 50 A. The 

electricity consumption of the traction unit is recorded 

by a LEM HTR 500-SB, which is designed for 

measuring ranges of ± 1,000 A and a nominal current 

of 500 A. Both sensors measure the current at a 

frequency of 10 kHz. The accuracy in the range of the 

nominal current is indicated by ≤ ± 2% [12]. 

Fig. 1 provides an overview of the test vehicle and 

the measuring system. 
 

 
Fig. 1  Schematic overview of test vehicle and measuring 
system.  

The system structure can be divided into the 

measuring system and the test vehicle (Volkswagen 

e-Golf). The main component of the vehicle is the HV 

battery, which can be loaded via a DC or an AC voltage 

socket; whereby, the AC voltage has to be converted to 

DC voltage via an AC/DC charger. Behind the AC/DC 

charger, the first current sensor is integrated to measure 

the charge and auxiliary current. In addition, a DC/DC 

converter is integrated in the battery charger, which 

supplies the electric air compressor and the HV-heating. 

Further, the second current sensor and the internal 

voltage measure both, the inverter and the DC/DC 

converter power. The inverter converts the direct 

current of the HV battery into three-phase alternating 

current with variable frequency and amplitude, thus 

providing the desired torque at the electric motor. The 

inverter of the e-Golf uses a voltage range of 255-360 

V and delivers a maximum phase current of 430 A [13]. 

The DC/DC converter is appended to the power 

electronics to supply the 12 V on-board power supply.  

All the measuring equipment is interconnected by a 

CAN bus in the measuring system. This CAN transfers 

the data of all sensors and allows for simplistic data 

logging. All relevant data are transmitted on two 

separate CAN buses, both recorded by one data logger. 

The advantage of a single data logger is the 

simultaneous recording of the different measurement 

data, avoiding a subsequent data synchronization step. 

An overview of the complete measuring system and the 

interaction of the subsystems in the test vehicle can be 

seen in Fig. 1. In this figure, the dotted lines symbolize 

data transfer over a CAN bus and the solid lines 

symbolize two or three-phased current flow. The 

measured values of the two current sensors, the voltage 

tap, and the GPS signal are connected to CAN 2 via 

CAN interfaces. The communication of the OBD II 

interface runs via the separate CAN 1 in order to ensure 

a fault-free transfer. Final, the entire measurement data 

are collected on the data logger GL1000 by Vector. It 

requires a supply voltage of 12 V, whereby its     

own current consumption is 55 mA. Table 2 provides an 
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Table 2  Accuracy of used sensors.  

Measuring equipment Measuring range Accuracy Current consumption 

Current sensor auxiliaries LEM HTR 50-SB ± 100 A ≤ ± 2% 
Max.  
20 mA 

Current sensor battery LEM HTR 500-SB ± 1,000 A ≤ ± 2% 
Max.  
20 mA 

GPS receiver CANgpsG.i.n.  
1 Hz 
0.01 
0.1 km/h 

80 mA 

Data logger Vector GL1000   55 mA 
 

overview of the sensors used in this study and their 

measurement accuracy. 

4. Experimental Setup and Procedure 

In the following Chapter, the experimental setup and 

procedure will be described. As stated in the 

introduction, the focus of this publication is the 

examination of the energy consumption in recurring 

driving trips to detect the energy variation in realistic 

driving trips. Multiple identical driving routes were 

performed with the test BEV, extended with the energy 

measurement setup described in Chapter 3. A very 

important requirement regarding the research of 

recurring driving trips is the underlying data basis. The 

information was collected from the suburban area north 

of Munich in the state of Bavaria, Germany. It provides 

the essential information of realistic driving behavior. 

The real driving profile was defined regarding standard 

cycles and various mobility studies in order to obtain a 

realistic illustration of a typical mobility pattern [2, 6]. 

Furthermore, local conditions had to be considered. 

The framework conditions provide a circuit with start 

and finish in the city of Garching near Munich.  

Fig. 2 provides an overview of the driven route. The 

inverted triangle indicates the start and the destination 

of the circuit. The route begins with a typical urban 

traffic section with numerous stops and a normal 

driving speed between 40-50 km/h (dotted line). 

Afterwards, a short intercity section is driven at a speed 

between 70-100 km/h (solid line) before the drive ends 

with the motor-way section and a maximum speed of 

120 km/h (dashed/dotted line). A higher speed would 

not be justified, as there is a speed limit on motorways 

in most European countries [14]. 

A route length of 18.79 km results when the given 

conditions are adapted. The share of urban, intercity 

and motorway travel is 67%, 22% and 11% 

respectively. The driver is required to comply with the 

applicable speed limits. All of this attempts to represent 

a typical commuter cycle on urban and rural roads in 

terms of top speed, acceleration, and total duration. A 

map matching is not necessary to improve the GPS 

position accuracy, since the standard deviation of the 

measured travel distance of all reference trips is only 

13 m or 0.07 % [15]. This resulted in the following 

speed profile shown in Fig. 3 with a length of 18.79 km 

and an average travel time of 1,589 s. 

Fifty trips with a total driving distance of 939.5 km 

were conducted in order to obtain sufficient statistical 

safety [16, 17]. The journeys took place in the   

period from December 2016 to March 2017 and, if 

possible, with sufficient daylight to avoid the additional 
 

 
Fig. 2  Overview of the route. 

       urban
       intercity
       motorway



Experimental Study of Energy Consumption Variation in Recurring Driving Trips 

  

257

 
Fig. 3  Representative speed profile. 
 

consumption by the headlights. The ambient 

temperature ranged from –8 °C to +19 °C. As in 

real-life use, the vehicle has been operated over the 

entire SOC range. Furthermore, the trips took place in 

blocks with several trips in a row. In addition, the trips 

27, 28 and 49 were carried out with a payload of 100 kg 

and trip 50 carried a payload of 200 kg to examine a 

possible influence on the energy consumption by the 

targeted variation of the load weight. During the 

driving cycle, a height difference of +/– 91 m is 

overcome. Accordingly, the average slope is +/– 0.7%. 

Since the reference route is a circuit, there is no overall 

difference between the start and the end, and thus, no 

potential energy must be applied. For this reason, the 

slope profile has no influence on the variance of the 

energy consumption since it is not a variable to the 

repeated travel of the same route profile. The average 

standing time of all trips is 12.1%, the average low 

speed share (< 50 km/h) 52.9%, and the high speed 

share (> 90 km/h) 6.0%. Table 3 provides an overview 

of the driving cycle parameters and their standard 

deviation. 

The driving time and the average speed show a slight 

variance with a standard deviation of 5.7% and 5.5%. 

The small proportion of the speed > 90 km/h of 5.9%, 

and the appropriate proportion of the speed < 50 km/h 

of 54.8%, correspond to the typical use of electric 

vehicles in the city [2]. The high standard deviations of 

the stops per kilometer with 28.3%, the standing time 

with 30.1% and the speed > 90 km/h with 18.2% are 

exceptional. Fig. 4 shows the average speeds and the 

shares of the speed ranges of the individual trips. The 

aforementioned sizable percentage deviation of the 

standing time and the range of the average speed of the 

individual trips are clearly recognizable. 

The simultaneous variation of the average speed can 

be seen according to the varying speed shares. The 

gradations are clear, despite similar trips running on the 

same reference cycle under similar conditions. The 

measuring trips also cover a wide longitudinal dynamic 

range. They have a longitudinal acceleration in a range 

of +/– 3.5 m/s². With 16%, the sector around a speed of 

50 km/h accounts for the largest share. Therefore, the 

measuring trips can be assumed to be representative 

and realistic.  
 

Table 3  Relevant parameters of the driving cycles.  

Parameter Average value Standard deviation

Length 18.79 km 0.07% 

Duration 1,589 s 5.7% 

Average speed 42.7 km/h 5.5% 

Top speed 117.2 km/h 3.3% 

Acceleration 0.46 m/s² 6.6% 

Max. acceleration 2.47 m/s² 11.0% 

Deceleration 0.42 m/s² 7.1% 

Number of stops 0.47 1/km 28.3% 

Acceleration time 31.7% 4.7% 

Standstill 10.5% 30.1% 
Low speed  
< 50 km/h 

54.8% 7.7% 

High speed  
> 90 km/h 

5.9% 18.2% 

 

 
Fig. 4  Clustered speed profile. 
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5. Results 

After the representation and classification of the 

longitudinal dynamic characteristics of the reference 

trips in Chapter 4, the results discussed below outline 

the limits of the energy consumption variation. The 

overall aim in this study is to investigate the 

comparability and reproducibility of real-world 

commuter cycles. For this purpose, the energy of the 

electric drive train was primarily considered. The total 

energy consumption 

Bୟ୲ܧ ൌ  ୲ܷୣ୰୫ ڄ ݐ୲ୣ୰୫dܫ
௧భ

௧బ
       (1) 

is measured via the voltage tap (terminal) ୲ܷୣ୰୫ and 

the current sensor ܫ୲ୣ୰୫ on the HV battery. 

In the present study, an average energy consumption 

of 16.3 kWh/100 km was measured over all reference 

runs. Fig. 5 shows the course of the energy 

consumption ܧBୟ୲ of each trip. 

The energy consumptions of the individual trips 

have synchronous profiles over the reference distance. 

The average energy consumption is 3.06 kWh and the 

standard deviation is 0.20 kWh, or 6.5%, respectively. 

The outliers result from the following different special 

influences. The upper three trips 6, 13 and 27 have an 

increased energy consumption. The maximum value is 

measured with 3.63 kWh during trip 6. Trips 6 and 13 

have an above-average heating energy consumption 

since they took place at the beginning of a series of 

trips with a low ambient temperature. Trip 27 has an 

excessively high drive energy since it was carried out 

with a load of 100 kg. Besides, the three trips 48, 49 

and 50 differ significant downwards. The reason for 

this is a considerably higher outside temperature of 

18 °C and 19 °C compared to the rest of the trips. The 

minimum value is 2.47 kWh, measured during trip 49. 

This results in a lower heating energy consumption, a 

higher drive efficiency, and a corresponding higher 

recuperation energy. In the following detailed 

comparison of the reference trips, the outliers are not 

taken into account since they were not carried out 

under comparable conditions, as this is assumed using 

the method CCM. 

The energy consumption ܧBୟ୲  of the individual 

reference runs with the average value of 3.06 kWh, 

which is shown in Fig. 6. The low standard deviation of 

0.10 kWh, or 3.2%, should be clearly highlighted. 

Furthermore, the low bandwidth of 0.41 kWh is 

shown. Thus, the maximum value is 3.30 kWh at trip 

16 and the minimum value is 2.88 kWh at trip 20. An 

average energy consumption of 16.3 kWh/100 km was 

measured from the reference drives. This results in an 

additional consumption of 28.3% compared to the 

NEDC specification of 12.7 kWh/100 km, which also 

contains the charge losses. The reason for this was a 

higher drive power and the auxiliary energy, which is 

not taken into account in the NEDC. The 

corresponding shares of total energy consumption are 

therefore considered in more detail below. Fig. 7 shows 

the individual components of the energy consumption 

of all trips. The energy is composed of the share of the 

driving energy, the recuperation energy, and the 

heating energy. The drive train energy consumption 

୲୰ୟ୬ୱܧ ൌ  ୲ܷୣ୰୫ ڄ ሺܫ୲ୣ୰୫ െ ݐୟ୳୶ሻ dܫ
௧భ

௧బ
    (2) 

 

 
Fig. 5  Course of the energy consumption. 

 

 
Fig. 6  Overall energy consumption. 
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Fig. 7  Components of the energy consumption.  
 

is measured via the voltage tap ୲ܷୣ୰୫ and the current 

sensor on the HV battery ܫ୲ୣ୰୫. 

The drive power is the largest with an average of 

93%, or 3.48 kWh. In addition, the heating consumes 

an average of 0.26 kWh, or 7%. Recuperation can 

recover an average of 0.63 kWh of the drive energy. 

The low standard deviation of the drive energy of  

2.8% should be noted. This is less than the standard 

deviation of the total energy with 3.2%. The 

recuperation energy already has a significantly higher 

deviation of 9.7%. The auxiliary energy consumption 

of the heating system surpasses this with a deviation of 

24.1%. However, due to its lower share of total 

consumption, the heating energy is less important with 

an absolute standard deviation of 0.06 kWh. Table 4 

summarizes the results of the energy consumption of 

the reference runs, meaning without the effects of the 

special influences. 

The recuperative driving energy has a great 

influence on the energy balance of a BEV, which is 

why it should be considered separately hereafter. 

During the reference trips, an average of 17.7% of the 

driving power could be recovered. Fig. 8 shows the 

recuperation energy of the individual reference runs 

with their standard deviation of 0.06 kWh and 9.7%, 

respectively. 

One reason for the high standard deviation of 9.7% is 

the maximum recuperation power of 45 kW. This limit 

is reached by 37 of the 40 reference trips under 

comparable conditions. The recuperation power is 

limited by the maximum charging current of the HV 

battery. This occurs with a fully charged battery and 

with a maximum deceleration to avoid damaging the 

battery pack. The drive train, including the motor with 

its maximum output of 85 kW, would offer further 

potential. The reference trips 16, 24, 35, 40 and 43 

were started with a fully charged battery. The 

recuperation energy of these trips amounts to an 

average of 0.564 kWh or 16.3% of the drive energy. 

For the remaining reference runs, the average 

recuperation energy is 0.625 kWh or 17.9% of the 

drive energy. This corresponds to a reduction in 

recuperation energy of 9.8% when the battery is fully 

charged and a total energy increase of 1.6%. 

However, the driving behavior mainly affects the 

standard deviation of the recuperation energy. An 

aggressive driving behavior contributes to increased 

drive-energy consumption with high average 

accelerations and decelerations. If the driving power in 

a reference trip increases by 10% or 0.33 kWh, the 

recuperation energy is increased by 26%, or 0.14 kWh, 
 

Table 4  Measurement results.  

Measurements Value Standard deviation 
Overall energy 
consumption 

3.06 kWh 0.10 kWh 3.2% 

Driving energy 3.47 kWh 0.10 kWh 2.8% 

Recuperation energy 0.63 kWh 0.06 kWh 9.7% 

Heat energy 0.26 kWh 0.06 kWh 24.1% 
 

 
Fig. 8  Recuperation energy. 
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respectively. Thus, the recuperation reduces the 

variance of the total energy consumption and increases 

the comparability of the individually recurring driving 

trips. However, a further increase in the drive energy, 

due to a more aggressive driving behavior with higher 

average accelerations or decelerations, will 

increasingly have an effect on the recuperation energy 

since, as described above, the percentage of the 

decelerations outside the maximum recuperation 

deceleration also increases. 

6. Conclusions 

The results show that under comparable ambient 

conditions, the energy consumption of recurring 

driving cycles is in a standard deviation of 3.2%. 

Implying the fact that a BEV user carries out recurring 

cycles over the lifetime of the car, aging phenomena 

can be observed with a high certainty. These results are 

an important element for further work on the CCM 

approach. The dataset is available for download under 

the following link: 

https://syncandshare.lrz.de/dl/fiLzvMkBBgh8kUzp

cRL5MWoi/Dataset.zip 
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