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Abstract: Intervertebral disc flexibility is influenced by lifestyle, loading history, trauma, preexisting conditions, age and 
degeneration. With regard to degeneration, intervertebral discs become less flexible and stiffer. In this study, a testing protocol using 
bending and torsion loading was developed to gain the flexibility curves and stiffness of ten cadaveric lumbar discs. Measurements of 
rotation in the sagittal plane (flexion-extension), coronal plane (right-left lateral bending) and transverse plane (torsion) due to a 5 
N-m load are reported. Results show that overall normal discs are more flexible and behave in a nonlinear fashion. The testing results 
were used in a develop finite element model of an intervertebral disc to investigate the stresses and strains in the disc components: 
annulus fibrosus and nucleus pulposus with regard to degeneration. Simulation of bending and torsion loadings show large strains in 
the annulus and nucleus from a normal disc, in contrast higher stresses develop in the annulus from a degenerated disc. The proposed 
methodology is novel, versatile, functional and economic with implications in bioengineering, medical sciences and the clinical field. 
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1. Introduction  

Intervertebral disc loading in life involves a 
combination of tension, compression, torsion and 
bending. Such loads appear in physiological 
movements: bending forward, backwards or twisting 
alone or in combination, such as in running, swimming 
or lifting [1]. Disc loading in bending, torsion and 
compression has been investigated, and reported values 
for radial bulging, axial and rotational stiffness, and 
flexibility have been gained [2-4]. However, it is not 
clear how combine loading affects the inside of the disc 
[5]. Most studies are limited to single loads and only a 
handful address combine loading with finite element 
analysis to investigate load sharing and state of stress 
and strain inside the disc [6, 7]. Since continuous 
mechanical loading leads to progressive disc 
deformation, abnormal disc function, and multiple 
degeneration scenarios [8, 9] intervertebral disc 
biomechanics becomes relevant to investigate [1, 4]. 
Thus, the objectives of this study were (1) to evaluate 
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range of motion or flexibility of human cadaveric 
degenerated discs using a developed loading protocol 
in bending and torsion, and (2) to investigate the stress 
and strain distributions inside the disc, particularly the 
nucleus pulposus and annulus fibrosus using one 
magnetic resonance imaging based FEM (finite 
element model) of intervertebral disc degeneration 
developed by Ref. [10]. The paper is organized as 
follows: Sections 2-4 give materials and 
methodologies, Sections 5-6 cover results of testing 
and simulation, Section 7 addresses the implications 
and Section 8 gives the main conclusions. 

2. The Specimens 

Five lumbar spines from elderly donors were 
obtained from Hospital Clinic of Barcelona, Spain. 
Each spine was further dissected into two motion 
segments corresponding to lumbar levels L23 and L45. 
All ten motion segments were inspected to verify the 
absence of infections, osteoporosis and spondylitis, 
after which an MRI (magnetic resonance imaging) was 
done to all segments in accordance with Ref. [11], after 
which all specimens were stored at -50 °C. 
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presence of these latter pathologies which are 
classified as mild degenerative and its relation with 
combine loading in bending and torsion is relevant for 
disc injuries and failure perspectives [2, 19, 20]. 

Finite element models of intervertebral disc using 
medical images have been developed [21, 22], but 
only few studies have also included a testing protocol 
for collecting input data. The disc model in this study 
was adequate to perform simulation in bending and 
torsion loadings in accordance with the testing 
protocol. The model estimates the stress and strains 
inside the disc components: annulus fibrosus and 
nucleus pulposus with respect to degeneration on the 
basis of input values of the Mooney constants that 
account for osteophytosis and osteochondrosis, as 
with other reports [23]. Thus, degenerated discs 
develop higher stresses while normal discs develop 
higher strains. Bending simulation shows that flexion, 
extension, right and left lateral loading causes convex 
and concave curvature in the disc, which implies 
combine tensile and compression stresses and higher 
strains which occurred in the disc posterior side, as 
reported elsewhere [24-26]. Torsion simulation 
showed large shearing in the annulus periphery, 
suggesting a main load carrier upon removal of 
posterior elements, as previously suggested by Refs. 
[7, 14, 27]. These findings are relevant because stress 
and strain concentration sites are source of disc injury 
and failure, more often in combine loading, such as 
bending and torsion. 

8. Conclusions 

A methodology has been implemented for the 
analysis of physiological movement in the lower spine, 
such as bending down, uprising, twisting or lifting. 
The technique can be used to investigate other organs 
or medical devices with implications in 
bioengineering, life sciences and the clinical field. 
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