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Abstract: We study special functions related to Lotka-Volterra equations and negative Volterra 
equation intro-duced from zero curvature representations . At first we show the relationships between 
Lotka-Volterra equations introduced from zero curvature representations and symmetric orthogonal 
polynomials. Sec-ondarily, we describe the relationships between negative Volterra equations with a 
special solutions and cylinder functions.
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1 Introduction

In this paper we study Lotka-Volterra equations and negative Volterra equations related to special
functions {ϕn(λ, t)} satisfying the identities

λϕn(λ, t) = ϕn+1(λ, t) + un(t)ϕn−1(λ, t),

where we denote n as a natural number and λ, t as a real number. At first we consider the relationships
between Lotka-Volterra equations

d

dt
un(t) = un(t)(un+1(t)− un−1(t))

and symmetric orthogonal polynomials satisfying three term recurrence

λPn(λ, t) = Pn+1(λ, t) + un(t)Pn−1(λ, t), P−1(λ, t) = 0, P0(λ, t) = 1

For this relationships there are many investigations([1], [3], [6], [8]). Here we describe this relationships
using zero curvature representations([3], [6]).

Secondarily, we consider the relationships between negative Volterra equations

d

dt
un(t) = qn−1(t)− qn(t), un(t) = qn(t)qn−1(t)

and special functions satisfying the identities

λψn(λ, t) = ψn+1(λ, t) + un(t)ψn−1(λ, t)

Negative Volterra equations were introduced by Pritula and Vekslerchik[4]. Here giving special solutions

qn(t) =
t

2n
for negative Volterra equations, we show that there is relationships between negative Volterra

equations and cylinder functions([2],[9]).
Within this framework, we introduce in the next section the notion of symmetric orthgonal polynomials

and describe the relationships between Lotka-Volterra equations and symmetric orthogonal polynomials.
In section 3, we derive a relationships between cylinder functions and negative Volterra equations with

special soulutions qn(t) =
t

2n
.
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2 Orthogonal polynomials

In this section we refer the general property of orthogonal polynomials([1],[4]). At first we define the
moments, and we will construct orthogonal polynomials by using the determinants with elements as we
denote the moments.

2.1 Moment and Hankel determinant for orthogonal polynomials

We let the vector space V = {xn ∈ R | n = 1, 2, 3, · · · }. We define the linear functional L : V −→ R. By
using this linear functional L , we define moments sk as

sk = L(xk) =
∫
x∈Λ

xkdµ(x) (k = 0, 1, 2, 3, · · · ),

where we denote µ as Borel measure on Λ = suppµ ⊂ R. Here we want to define Hankel determinant
with the elements as we denote this moment {sk}.

τn =

∣∣∣∣∣∣∣∣∣
s0 s1 · · · sn−1

s1 s2 · · · sn
...

... · · ·
...

sn−1 sn · · · s2n−2

∣∣∣∣∣∣∣∣∣
2.2 Monic orthogonal polynomials represented by determinants

We denote {Pn(x)} as a monic n th polynomials with respect to variant x. Now we can get the monic
orthogonal polynomials Pn(x) using the Hankel determinants τn

Pn(x) =
1

τn

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 · · · sn
s1 s2 · · · sn+1

...
... · · ·

...
sn−1 sn · · · s2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
It follows from it that we have the orthogonality

L(xmPn(x)) =
τn+1

τn
δnm (m = 0, 1, 2, · · ·n)

2.3 Three term recurrences for orthogonal polynomials

Assume that we have the equality

xPn(x) = a(n+1)
n Pn+1(x) + a(n)n Pn(x) + a(n−1)

n Pn−1(x) + · · ·+ a(1)n P1(x) + a(0)n P0(x)

We operate L [ · Pn−1(x)] on both side of above equality and then it follows from the orthogonality

L(xmPn(x)) =
τn+1

τn
δnm that we have

L(xPn(x)Pn−1(x)) = a(n−1)
n L(Pn−1(x)Pn−1(x))

Thus, we obtain

L(xnPn(x)) = a(n−1)
n L(xn−1Pn−1(x))

τn+1

τn
= a(n−1)

n

τn
τn−1

a(n−1)
n =

τn+1τn−1

τ2n

Moreover we operate L [ · Pn(x)], and then we can get

L(xPn(x)Pn(x)) = L(a(n)n Pn(x)Pn(x))
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By Laplace expansion of Hankel determinant for orthogonal polynomials and the orthogonality we
have the equality

L

x
xn − 1

τn

∣∣∣∣∣∣∣∣∣
s0 s1 · · · sn−2 sn
s1 s2 · · · sn−1 sn+1

...
...

...
...

...
sn−1 sn · · · s2n−3 s2n−1

∣∣∣∣∣∣∣∣∣x
n−1

 1

τn

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 · · · sn−1 sn
s1 s2 · · · sn sn+1

...
...

...
...

...
sn−1 sn · · · s2n−2 s2n−1

1 x · · · xn−1 xn

∣∣∣∣∣∣∣∣∣∣∣

 = a(n)n

τn+1

τn

Moreover we obtain

1

τn

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 · · · sn
s1 s2 · · · sn+1

...
... · · ·

...
sn−1 sn · · · s2n−1

sn+1 sn+2 · · · s2n+1

∣∣∣∣∣∣∣∣∣∣∣
− τn+1

τ2n

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 · · · sn−1

s1 s2 · · · sn
...

... · · ·
...

sn−2 sn−1 · · · s2n−3

sn sn+1 · · · s2n−1

∣∣∣∣∣∣∣∣∣∣∣
= a(n)n

τn+1

τn

Thus we have

a(n)n =
1

τn+1

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 · · · sn
s1 s2 · · · sn+1

...
... · · ·

...
sn−1 sn · · · s2n−1

sn+1 sn+2 · · · s2n+1

∣∣∣∣∣∣∣∣∣∣∣
− 1

τn

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 · · · sn−1

s1 s2 · · · sn
...

... · · ·
...

sn−2 sn−1 · · · s2n−3

sn sn+1 · · · s2n−1

∣∣∣∣∣∣∣∣∣∣∣
In the case of k = 0, 1, 2, · · ·n− 2, we operate L [ · Pn(x)], and then we have

L(xPn(x)Pk(x)) = L(a(k)n Pk(x)Pk(x))

L(xk+1Pn(x)) = a(k)n

τk+1

τk
k = 0, 1, 2, · · ·n− 2

a(k)n = 0 (k = 0, 1, 2, · · ·n− 2)

For all monic orthogonal polynomials, we have three term recurrences

xPn(x) = Pn+1(x) + a(n)n Pn(x) + a(n−1)
n Pn−1(x)

2.4 Favard’s theorem

At first we put a
(n)
n = bn and a

(n−1)
n = un. Then we have the equalities

xPn(x) = Pn(x) + bnPn(x) + unPn−1(x)

Next we put P−1(x) = 0 and P0(x) = 1.
Assume bn is real and un > 0 for all n = 1, 2, · · · .

Then the zeros of the polynomials generated by xPn(x) = Pn+1(x) + bnPn(x) + unPn−1(x), P−1(x) = 0,
P0(x) = 1 are real and simple. Furthermore the zeros of Pn and Pn−1 interplace.

Let
xN,1 > xN,2 > · · · > xN,N

be the zero of PN (x).
Theorem (Favard) If we have the three term recurrence

xPn(x) = Pn+1(x) + bnPn(x) + unPn−1(x)

with P−1(x) = 0 and P0(x) = 1, and we assume

bn ∈ R and un > 0

for all n > 0, then there exists a distribution function µ such that we have∫
x∈Λ

Pn(x)Pm(x)dµ(x) = ζnδnm
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where ζn denotes

ζn =
n∏

j=1

uj

To prove this theorem we introduce the following lemma
Lemma 1 (Helly’s selection theorem[5]) We assume the sequence {xN,j}nj=1 ⊂ Λ Let Θ be a family
of functions defined on Λ and satisfying the conditions

sup
∆

n∑
k=1

| f(xk)− f(xk−1) |≤ C sup
x∈Λ

| f(x) |≤M (f ∈ Θ)

for suitable C and M , where the least upper bounded is taken over all finite partitions

∆ : xN,n < xN,n−1 < xN,n−2 < · · · < xN,1

Then Θ contains a sequence which converges for ever x ∈ Λ.

proof Let f = h− g, where h is the total variation of f on [xN,n, x]. Then the functions h corresponding
to all f ∈ Θ satisfy the condition of the lemma, since

sup
∆

n−1∑
k=1

| h(xN,k+1)− h(xN,k) |= sup
∆

n−1∑
k=1

| f(xN,k+1)− f(xN,k) |≤ C sup
x∈Λ

| h(x) |≤ C

Now we choose a sequence {fn} from Θ such that hn converges to a limit h on Λ. Then the functions
gn = hn − fn are also satisfy the conditions of the lemma. Therefore {fn} contains a subsequence {fnk

}
such that {gnk

} converges to a limit g∗ on Λ. Then lim
k→∞

fnk
(x) = f∗(x), where f∗ = h∗ − g∗.

Let r1, · · · , rn, · · · be the rational points on Λ. It follows from the conditions of the lemma that the set
of numbers

f(r1) (f ∈ Θ)

is bounded. Hence there is a sequence of functions {f (1)n } converging at the point r1. Similarly, {f (1)n }
contains a subsequence {f (2)n } converging at the point r2 as well as at r1, {f (2)n } contains a subsequence

{f (3)n } converging at the point r3 as well as at r1 and r2, and so on. Then the diagonal sequence {Fn} =

{f (n)n } will converge at every rational point of Λ. The limit of this sequence is a function F , definded only
at the points r1, · · · , rn, · · · . We complete the definition of F at the remaining points of Λ by setting

F (x) = lim
r→x−0

F (r),

if x is irrational where we denote r as rational number.
The resulting function F is then the limit of {Fn} at every continuity point of F . In fact, let x∗ be such

point. Then given any ε > 0, there is a δ > 0 such that

| F (x∗)− F (x) |< ε

6
(1)

if | x∗ − x |< δ. Let r and r
′
be rational numbers such that

x∗ − δ < r
′
< x∗ < r

′′
< x∗ + δ

and let n be so large that

| Fn(r
′
)− F (r

′
) |< ε

6
, | Fn(r

′′
)− F (r

′′
) |< ε

6
(2)

It follows from (1) and (2) that we have

| Fn(r
′
)− Fn(r

′′
) | ≤ | Fn(r

′
)− F (r

′
) | + | F (r

′
)− F (x∗) | + | F (x∗)− F (r

′′
) | + | F (r

′′
)− Fn(r

′′
) |

<
2

3
ε
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Moreover we have

| F (x∗)− Fn(x
∗) | ≤ | F (x∗)− F (r

′
) | + | F (r

′
)− Fn(r

′
) | + | Fn(r

′
)− Fn(x

∗) |

<
ε

6
+
ε

6
+

2

3
ε

= ε

Therefore
lim
n→∞

Fn(x
∗) = F (x∗),

since ε > 0 is arbitrary.
Thus we have constructed a sequence {Fn} of functions in Θ converging to a limit function F everywhere

except possibly at discontinuity points of F . This lemma was proved.
Now we introduce a sequence of right continuous step functions{νn} by

νN (∞) = 0, νN (xN,j + 0)− νN (xN,j − 0) = ρ(xN,j)

where we define a sequence

ρ(xN,j) =
ζN−1

P
′
N (xN,j)PN−1(xN,j)

j = 1, 2, · · ·N

Lemma 2 The moments

∫
R

xjdνN (x), 1 ≤ j ≤ 2N − 2 do not depend on ζk for k > ⌊(j + 1)/2⌋, where

⌊a⌋ denotes the integer part of a.

proof The fixed j choose N > 1+ j/2 and write xj as xsxℓ, with 0 ≤ ℓ, s ≤ N − 1. Then express xs and xℓ

as linear combinations of P0(x), · · · , PN−1(x). Thus the evaluation of

∫
R

xjdνN (x) involves only ζ0, · · · ,
ζ⌊(j+1)/2⌋

(Proof of Favard’s theorem)
Since

1 = ζ0 =

∫
R

dνN (x) = νN (∞)− νN (−∞)

then the νN ’s are uniformly bounded. From Helly’s selection theorem it follows that there is subsequence
ηNk

which converges to a distribution function µ. It follows from Lemma 2 and Helly’s selection theorem
that {{νN} − {ηNk

}} also converges to µ. It is clear that the limiting function µ of any subsequence will
have infinitely many points of increase.

Thus Favard’s theorem was proved.

3 Zero curvature representations

There are many investigations of the relationships between integrable systems and special functions. For
example, there is the relationships between Toda molecule equations and orthogonal polynomials. At first,
we have three term recurrences for orthogonal polynomials

P t
n+1(λ) + bn(t)P

t
n(λ) + un(t)P

t
n−1(λ) = λP t

n(λ)

Here we put

Φt
n(λ) =

(
P t
n(λ)

−P t
n−1(λ)

)
,

then we obtain the linear equations
Φt

n+1(λ) = Lt
n(λ)Φ

t
n(λ),

where we denote

Lt
n(λ) =

(
λ− bn(t) un(t)

−1 0

)
.

Next we assume that we have
d

dt
Φt

n(λ) = At
n(λ)Φn(λ),
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where we denote

At
n(λ) =

(
αt
n(λ) βt

n(λ)
γtn(λ) δtn(λ)

)
.

Then we differentiate both hand of Φt
n+1(λ) = Lt

n(λ)Φ
t
n(λ), then we can get the equations

∂

∂t
Lt
n(λ)−At

n+1(λ)L
t
n(λ) + Lt

n(λ)A
t
n(λ) = 0

Therefore we have four equations
ḃn(t) = (λ− bn(t))(α

t
n(λ)− αt

n−1(λ)) + βt
n+1(λ) + un(t)γ

t
n(λ)

u̇n(t) = un(t)(α
t
n+1(λ)− δtn(λ))− (λ− btn)β

t
n(λ)

δtn+1(λ) = αt
n(λ) + (λ− bn(t))γ

t
n+1(λ)

βt
n(λ) = −γtn+1(λ)un(t)

It follows from four equations that we have two equations ḃn(t) = (λ− bn(t))(α
t
n(λ)− αt

n+1(λ))− γtn+2(λ)un+1(t) + un(t)γ
t
n(λ)

u̇n(t) = un(t)(α
t
n+1(λ)− αt

n−1(λ)− (γtn(λ)− γtn+1(λ))λ
+γtn(λ)bn−1(t)− bn(t)γ

t
n+1(λ)).

(3)

Moreover we put αt
n(λ) = 0, γtn(λ) = 1, we can get Toda lattice equations{

ḃn(t) = un(t)− un+1(t)
u̇n(t) = un(t)(bn−1(t)− bn(t))

Here we put the moments

sk(t) = Lt(λk) =

∫
x∈Λ

xk
exp(−V (x, t))∫

y∈Λ

exp(−V (y, t))dµ(y)

dµ(x),

where we denote V (x, t) as a function on (x, t) ∈ Λ×R. Then we can obtain the solution of Toda equations
represented by Hankel determinants

bn(t) =
1

τn+1(t)

∣∣∣∣∣∣∣∣∣∣∣

s0(t) s1(t) · · · sn(t)
s1(t) s2(t) · · · sn+1(t)
...

... · · ·
...

sn−1(t) sn(t) · · · s2n−1(t)
sn+1(t) sn+2(t) · · · s2n+1(t)

∣∣∣∣∣∣∣∣∣∣∣
− 1

τn(t)

∣∣∣∣∣∣∣∣∣∣∣

s0(t) s1(t) · · · sn−1(t)
s1(t) s2(t) · · · sn(t)
...

... · · ·
...

sn−2(t) sn−1(t) · · · s2n−3(t)
sn(t) sn+1(t) · · · s2n−1(t)

∣∣∣∣∣∣∣∣∣∣∣
(5)

and

un(t) =
τn+1(t)τn−1(t)

τn(t)2

where we denote

τn(t) =

∣∣∣∣∣∣∣∣∣
s0(t) s1(t) · · · sn−1(t)
s1(t) s2(t) · · · sn(t)
...

... · · ·
...

sn−1(t) sn(t) · · · s2n−2(t)

∣∣∣∣∣∣∣∣∣
191



Following Aptekarev, Branquinho and Marcellan [1], V (x, t) = xt holds.
Next we will introduce Lotka-Volterra equations. At first, when we put bn(t) = 0 in the equations(1),

we assume that un(t) become vn(t). Then we obtain two equations{
0 = λ(αt

n(λ)− αt
n+1(λ))− γtn+2(λ)vn+1(t) + vn(t)γ

t
n(λ)

v̇n(t) = vn(t)(α
t
n+1(λ)− αt

n−1(λ)− (γtn(λ)− γtn+1(λ))λ).
(6)

Next we put αt
n(λ) = vn(t) and γ

t
n(λ) = −λ, then we can obtain

d

dt
vn(t) = vn(t)(vn+1(t)− vn−1(t)).

Now we refer relationships between moments sn(t)and vn(t). We assume that we have

s2k−1(t) = Lt
[
λ2k−1

]
=

∫
x∈Λ

x2k−1 exp(−V (x, t))∫
y∈Λ

exp(−V (y, t))dµ(y)

dµ(x) = 0 (k = 1, 2, 3 · · · )

Then we get bn(t) = 0. Moreover we have the equality

τn(t) = fn(t)fn−1(t)

where we denote

τ2n(t) =

∣∣∣∣∣∣∣∣∣∣∣

s0(t) 0 s2(t) · · · s2n−2(t) 0
0 s2(t) 0 · · · 0 s2n(t)
...

...
... · · ·

...
...

s2n−2(t) 0 s2n(t) · · · s4n−4(t) 0
0 s2n(t) 0 · · · 0 s4n−2(t)

∣∣∣∣∣∣∣∣∣∣∣
,

τ2n−1(t) =

∣∣∣∣∣∣∣∣∣∣∣

s0(t) 0 s2(t) · · · 0 s2n−2(t)
0 s2(t) 0 · · · s2n−2(t) 0
...

...
... · · ·

...
...

0 s2n−2(t) 0 · · · s2n−6(t) 0
s2n−2(t) 0 s2n(t) · · · 0 s4n−4(t)

∣∣∣∣∣∣∣∣∣∣∣
and

f2n−1(t) =

∣∣∣∣∣∣∣∣∣
s0(t) s2(t) · · · s2n−2(t)
s2(t) s4(t) · · · s2n(t)
...

... · · ·
...

s2n−2(t) s2n(t) · · · s4n−4(t)

∣∣∣∣∣∣∣∣∣
f2n(t) =

∣∣∣∣∣∣∣∣∣
s2(t) s4(t) · · · s2n(t)
s4(t) s6(t) · · · s2n+2(t)
...

... · · ·
...

s2n(t) s2n+2(t) · · · s4n−2(t)

∣∣∣∣∣∣∣∣∣
Therefore we obtain

vn(t) =
τn+1(t)τn−1(t)

τn(t)2
=
fn+1(t)fn(t)fn−1(t)fn−2(t)

fn(t)fn−1(t)fn(t)fn−1(t)
=
fn+1(t)fn−2(t)

fn(t)fn−1(t)

Following Aptekarev, Branquinho and Marcellan [1], V (x, t) = x2t holds.

3.1 Symmetric orthogonal polynomials

It follows from Φ̇t
n(λ) = At

n(λ)Φ
t
n(λ) that we have(

φ̇n

−φ̇n−1

)
=

(
vn λvn
−λ vn−1 − λ2

)(
φn

−φn−1

)
=

(
vnφn − λvnφn−1

−λφn + (λ2 − vn−1)φn−1

)
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Hence we have the coupled equation

φ̇n = vnφn − λvnφn−1

φ̇n−1 = λφn − (λ2 − vn−1)φn−1
(7)

It follws from this coupled equation that we get the equality

vnφn − λvnφn−1 = λφn+1 − (λ2 − vn)φn. (8)

Thus we have three term recurrences

λφn = φn+1 + vnφn−1. (9)

By (7) and (9),

φ̇n = vnφn − vnλφn−1

= vnφn − vn(φn + vn−1φn−2)

= vnφn − vnφn − vnvn−1φn−2

= −vnvn−1φn−2 (10)

Thereby we obtain
φ̇n = −vnvn−1φn−2 (11)

Therefore we have the following result
THEOREM (Vinet and Zhedanov (1998)[8]) If φ−1 = 0, φ0 = 1 hold, then φn is symmetric orthog-
onal polynomials.

4 Negative Volterra equations and Cylinder functions

In this section we consider the relationship between special functions satisfying the identities

λψn(λ, t) = ψn+1(λ, t) + wn(t)ψn−1(λ, t)

and negative Volterra equations. By using ψn(λ, t) satisfying the identities, we construct Lax pair{
Ψn+1 = UnΨn

Ψ̇n = VnΨn,

where we denote

Ψn =

(
ψn(λ, t)

−ψn−1(λ, t)

)
and denote

Un =

(
λ wn(t)
−1 0

)

Vn =

(
αt
n(λ) βt

n(λ)
γtn(λ) δtn(λ)

)
It follows form this pair that zero curvature representation

d

dt
Un = Vn+1Un − UnVn

holds. From this representation we obtain two equations{
0 = λ(αt

n(λ)− αt
n+1(λ))− γtn+2(λ)wn+1(t) + wn(t)γ

t
n(λ)

ẇn(t) = wn(t)(α
t
n+1(λ)− αt

n−1(λ)− (γtn(λ)− γtn+1(λ))λ).
(12)

If we let αt
n(λ) = 0, βt

n(λ) = −qn−1(t)

λ
, γtn(λ) =

1

λqn−1(t)
, δtn(λ) =

1

qn−1(t)
, then we can get the

equations
ẇn = qn−1 − qn
wn = qnqn−1,

(13)
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where we denote as qn ≡ qn(t) , wn = wn(t) We call this equation ”Negative Volterra equations”. The
reason we call ”Negative ” is that γn depend on λ−1. Now follows it from Ψ̇n = VnΨn that we obtain{

ψ̇n = qn−1

λ ψn−1

ψ̇n−1 = − 1
λqn−1

ψn + 1
qn−1

ψn−1.
(14)

Remark. {ψn} is not symmetric orthogonal polynomials. We show this fact by proof of contradiction.
Assume that {ψn} is symmetric orthogonal polynomials. Then ψ−1(λ, t) = 0 and ψ0(λ, t) = 1 hold. Then

we have ψ̇1(λ, t) =
q0(t)

λ
ψ0(λ, t). Since ψ1(λ, t) = λ and λ doesn’t depend on t, we have 0 =

q0(t)

λ
· 1.

Namely q0(t) = 0. Thus we obtain w1(t) = q1(t)q0(t) = q1(t) · 0 = 0. This fact w1(t) = 0 conflicts with
Favard’s theorem. Therefore it was shown that {ψn} is not symmetric orthogonal polynomials.

Well we will consider what functions {ψn} is. Since we can get ψn−1 =
λ

qn−1
ψ̇n from (14), we obtain

∂

∂t

(
λ

qn−1
ψ̇n

)
= − 1

λqn−1
ψn +

λ

q2n−1

ψ̇n

−λq̇n−1

q2n−1

ψ̇n +
λ

qn−1
ψ̈n = − 1

λqn−1
ψn +

λ

q2n−1

ψ̇n

− q̇n−1

qn−1
ψ̇n + ψ̈n = − 1

λ2
ψn +

1

qn−1
ψ̇n

Therefore we have the ordinary differential equations

ψ̈n − 1 + q̇n−1

qn−1
ψ̇n +

1

λ2
ψn = 0 (15)

We let qn =
t

2n
which we can regard as the special solution for negative Volterra equations (13) and

then we obtain ordinary diffrential equations

ψ̈n − 2n− 1

t
ψ̇n +

1

λ2
ψn = 0, (16)

Here we describe the solutions of this ordinary differential equations. At first we start from Bessel
equations([2], [9]).

t2C̈n(t) + tĊn(t) + (t2 − n2)Cn(t) = 0

Here we put ψn(λ, t) = tβn−αCn

(
tβ

λ

)
. Then we obtain

ψ̇n = (βn− α)tβn−α−1Cn

(
tβ

λ

)
+ tβn−αĊn

(
tβ

λ

)
β

λ
tβ−1

ψ̇n = (βn− α)t−1ψn +
β

λ
tβ(n+1)−α−1Ċn

(
tβ

λ

)
Thus we have

Ċn

(
tβ

λ

)
=
λ

β
t−β(n+1)+α+1(ψ̇n − (βn− α)t−1ψn)

Moreover we differentiate this equality

C̈n

(
tβ

λ

)
=

(
λ

β

)2

tα−2β−βn+1
{
tψ̈n + (1 + 2α− 2βn− β)ψ̇n + (α− βn)(α− βn− β)t−1ψn

}
On the eqaution

t2C̈n(t) + tĊn(t) + (t2 − n2)Cn(t) = 0

we substitute
tβ

λ
for t, then we obtain

t2β

λ2
C̈n

(
tβ

λ

)
+
tβ

λ
Ċn

(
tβ

λ

)
+

(
t2β

λ2
− n2

)
Cn

(
tβ

λ

)
= 0
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Substituting ψn for Cn, we obtain

ψ̈n − 2(βn− α)− 1

t
ψ̇n +

(
1

λ2
β2t2β + α(α− 2βn)

)
t−2ψn = 0

We let α = 0 and β = 1, then we get the equations

ψ̈n − 2n− 1

t
ψ̇n +

1

λ2
ψn = 0

Recurrence formulae for cylinder functions
Following Watson[9], we have two recurrences for cylinder functions C

Cn−1(t) + Cn+1(t) =
2n

t
Cn(t)

Cn−1(t)− Cn+1(t) = 2Ċn(t)

At first we consider the recurrence Cn−1(t) + Cn+1(t) = 2n
t Cn(t). We substitute

t

λ
for t, then we can

obtain

Cn−1

(
t

λ

)
+ Cn+1

(
t

λ

)
=

2n

t
λCn

(
t

λ

)
.

Multiplying both sides by tn+1,

tn+1Cn−1

(
t

λ

)
+ tn+1Cn+1

(
t

λ

)
= tn2nλCn

(
t

λ

)
.

hold. Here we put ψt
n(λ) ≡ tnCn

(
t

λ

)
, we can get the recurrence

t2ψt
n−1(λ) + ψt

n+1(λ) = 2nλψt
n(λ). (17)

Moreover put ψt
n(λ) ≡ (2n− 2)(2n− 4)(2n− 6) · · · 4 · 2Pt

n(λ), we have the identities

t2

n−2∏
j=1

2j

Pt
n−1(λ) +

 n∏
j=1

2j

Pt
n+1(λ) = 2nλ

n−1∏
j=1

2j

Pt
n(λ)

and
t2Pt

n−1(λ) + 2n(2n− 2)Pt
n+1(λ) = 2n(2n− 2)λPt

n(λ)

hold. Thus we can get

λPt
n(λ) = Pt

n+1(λ) +
t2

2n(2n− 2)
Pt

n−1(λ),

excluding n = 0 and n = 1. Next we deform Cn−1(t) − Cn+1(t) = 2Ċn(t). We substitute
λ

tn
ψ̇t
n(λ) −

λn

tn+1
ψt
n(λ) for Ċn

(
t

λ

)
on this recurrence, we have

2

(
λ

tn
ψ̇t
n(λ)−

λn

tn+1
ψt
n(λ)

)
= Cn−1

(
t

λ

)
− Cn+1

(
t

λ

)
Multiplying bothside by tn,

2

(
λψ̇t

n(λ)−
λn

t
ψt
n(λ)

)
= t · tn−1Cn−1

(
t

λ

)
− t−1tn+1Cn+1

(
t

λ

)
2λψ̇t(λ)− 2λn

t
ψt
n(λ) = tψt

n(λ)− t−1ψt
n+1(λ) (18)

It follows from (17) and (18) that we have

2λψ̇t
n(λ)−

t2ψt
n−1(λ) + ψt(λ)

t
= tψt

n−1(λ)− t−1ψt
n+1(λ)

2λψ̇t
n(λ)− tψt

n−1(λ)− t−1ψt
n+1(λ) = tψt

n−1(λ)− t−1ψt
n+1(λ)

2λψ̇t
n(λ) = 2tψt

n(λ)

ψ̇t
n(λ) =

t

λ
ψt
n−1(λ)
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Multiplying both side by
1

2n−1(n− 1)!
,

ψ̇t
n(λ)

2n−1(n− 1)!
=
t

λ

ψt
n−1(λ)

2n−1(n− 1)!

Therefore we obtain

Ṗt
n(λ) =

t

2(n− 1)λ
Pt

n−1(λ)

Moreover it follows from the equations

ψ̈n +
2n− 1

t
ψ̇n +

1

λ2
ψn = 0

that we have

∂2

∂t2

(
ψn

2n−1(n− 1)!

)
− 2n− 1

t

∂

∂t

(
ψn

2n−1(n− 1)!

)
+

1

λ2

(
ψn

2n−1(n− 1)!

)
= 0.

Therefore we can obtain
∂2

∂t2
Pt

n(λ)−
2n− 1

t

∂

∂t
Pt

n(λ) +
1

λ2
Pt

n(λ) = 0.

Hence we have the following result
PROPOSITION If we have two recurrences and one second order differential equations

λPt
n(λ) = Pt

n+1(λ) +
t2

2n(2n− 2)
Pt

n−1(λ)

Ṗt
n(λ) =

t

2(n− 1)λ
Pt

n−1(λ)

∂2

∂t2
Pt

n(λ)−
2n− 1

t

∂

∂t
Pt

n(λ) +
1

λ2
Pt

n(λ) = 0,

excluding n = 0 and n = 1, then we obtain the cylinder functions

Pt
n(λ) =

tn

2n−1(n− 1)!
Cn

(
t

λ

)
.

5 Conclusion

In this paper we demonstrated special functions related to Lotka-Volterra equations and negative Volterra
equations introduced from zero curvature representations. We showed that there is the relationships be-
tween Lotka-Volterra equations and symmetric orthogonal polynomials, and the relationships between
negative Volterra equations with special solutions and cylinder functions. The relationships between neg-
ative Volterra equations and cylinder functions give us establish a new property of Bessel functions.
On future issues, our view is demonstarating a relationships between discrete negative Volterra equations

u(m+1)
n − u(m)

n = δ
(
q
(m)
n−1 − q(m+1)

n

)
u(m)
n = q(m)

n q
(m)
n−1

introduced by using Hirota’s direct method and special functions, where we denote n, m as a integer
number. It is well-known that we can obtain the discrete Lotka- Volterra equations

D(m+1)
n

(
λ(m+1) −D

(m+1)
n−1

)
= D(m)

n

(
λ(m) −D

(m)
n+1

)
from the spectral transfomation and three term recurrences for symmetric orthogonal polynomials[6]. But
we do not know special functions connected to discrete negative Volterra equations. Thus we will discover
the relationships between discrete negative Volterra equations and special functions.
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