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Abstract: Bergan-Wang approach has one governing equation in one variable only, namely the transverse deflection of a moderately 
thick plate. This approach faces no numerical difficulties as the thickness becomes very small. The solution of a fully clamped 
rectangular plate is presented using two different series solutions. The results of a square plate are compared with the results of the 
classical plate theory, Reissner- Mindlin theory and the three dimensional theory of elasticity for different aspect ratios. Two types of 
clamped boundary conditions are investigated. The obtained results show that Bergan-Wang approach gives good agreement for both 
very thin and moderately thick plates. 
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1. Introduction 

Plates might be classified according to thickness (݄) 

to spanሺܽ) ratio as follows: very thin plate 
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ସ
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very thick plates 
୦
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ଵ

ସ
 three-dimensional theory of 

elasticity should be applied. Classical plate theory 

[1-3] is widely accepted for the analysis of very thin 

plates. The governing equation of classical plate 

theory is: 

Δଶݓ ൌ
ܲ
ܦ

 (1)

where w  is the transverse deflection of the plate 

mid-plane, D ൌ
E୦య

ଵଶሺଵିνమሻ
 is the flexural rigidity, E is 
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Young’s modulus, ν  is the Poisson’s ratio, 

Δ ؠ
பమ

ப୶మ 
பమ

ப୷మ is the Laplacian operator and P is the 

applied distributed transverse load. 

The inclusion of shear deformation in plate 

deflection [4] is recommended in general in case of 

moderately thin and moderately thick plates. It is also 

recommended for very thin plates in locations of 

bending-stress concentrations such as near sudden 

changes in thickness or support conditions and near 

holes whose dimensions are comparable with the 

thickness or re-entered corners, and of course when 

studying composite materials. 

Reissner-Mindlin theory [5-7] is the plate theory 

that is most used in engineering applications. This 

theory leads to a sixth-order system of governing 

partial differential equations in three unknowns, 

namely, the transverse deflection of the middle plane 

w and the two rotations of the normal to the middle 

plane θ୶ and θ୷ (Fig.1). 

Due to the numerical difficulties encountered with 

Reissner-Mindlin theory in case of very thin plates [8], 

Bergan and Wang [9-10]  
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Fig. 1  Deflection of a thick plate (࢞ࢽ and ࢟ࢽ are the rotations of the normal due to shear only while ࢞ࣂ and ࢟ࣂ are the 

total rotations due to both bending and shear). 
 

proposed an approach which led to one partial 

differential equation of the eighth order of the 

transverse deflection w. This approach faces no 

difficulties as 



  becomes very small. According to 

this approach, the strain energy per unit area,  can be ܨ

written as the sum of bending contribution ܨ and 

shearing contribution ܨௌ . so ܨ ൌ ܨ   .ௌܨ

Where ܨ ൌ
ଵ

ଶ
ܭ

ܭܦ்  and ܨௌ ൌ
ଵ

ଶ
ௌܭ

ௌܭௌܦ்  in 

whichሺ  ሻ் denotes the transpose of a matrix and the 

suffix ܤሺܵሻ stands for bending (shear). 

For a homogeneous and isotropic material, the 

above matrices are given by: 

ܭ ൌ 

௫௫,ݓ െ ೣ,௫ߛ

௬௬,ݓ െ ௬,ߛ

௫௬,ݓ2 െ ௫,ߛ
െ ೣ,௬ߛ

 

ௌܭ ൌ ቂ
௫ߛ
௬ߛ

ቃ 

With 

௫ߛ ൌ െ݄
ଶሺݓ,௫௫௫   ௬௬௫ሻ,ݓ

௬ߛ                      ൌ െ݄
ଶሺݓ,௬௬௬   ௫௫௬ሻ,ݓ

ܦ               ൌ
ଷ݄ܧ

12ሺ1 െ ଶሻߥ
൦

1 ߥ 0
ߥ 1 0

0 0
1 െ ߥ

2

൪ 

ௌܦ ൌ
ܧ5

12ሺ1  ሻߥ
  ቂ1 0

0 1
ቃ 

  ݄
ଶ ൌ

݄ଶ

5ሺ1 െ ሻߥ
 

The moments (Fig.2) are given by: 

ܯ ൌ 
௫௫ܯ
௬௬ܯ

௫௬ܯ

 

ൌ ܦ ൦

௫௫,ݓ  ݄
ଶሺݓ,௫௫௫௫  ௬௬௫௫ሻ,ݓ

௬௬,ݓ  ݄
ଶሺݓ,௬௬௬௬  ௫௫௬௬ሻ,ݓ

2ሺݓ,௫௬  ݄
ଶ൫ݓ,௫௫௫௬  ௬௬௬௫൯ሻ,ݓ

൪ 

The shear forces are given by: 

ܳ ൌ ௌܦ 
௫௫௫,ݓ  ௬௬௫,ݓ

௬௬௬,ݓ  ௫௫௬,ݓ
൨. 

The governing equation for Bergan-Wang approach 

is: 

Δଶݓ  ݄
ଶΔଷݓ  ݄

ସΔସݓ ൌ
ܲ
ܦ

. (2)

This equation clearly converges to the classical 

fourth order partial differential equation as h
ଶ 

becomes very small. The difficulties of Bergan-Wang 

approach are the high order of the partial differential 

equation and the increased number of boundary 

conditions. A closed form solution for the case of 

simply supported square plate is given in [10] for 

different loadings. The clamped boundary conditions 

are more difficult [2]. 

In this work, two different series solutions of 

clamped rectangular plate (Fig. (2)) are used, namely: 

,ݔሺݓ ሻݕ ൌ   

∞

ୀଵ

  

∞

ୀଵ

ܹ 

൫1 െ cosሺ2ߙݔሻ൯൫1 െ cosሺ2ߚݕሻ൯, (3)
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,ݔሺݓ ሻݕ ൌ
4

ܾܽ
  

∞

ୀଵ

  

∞

ୀଵ

ܹ
כ sinሺߙݔሻsinሺߚݕሻ (4)

where ߙ ൌ
గ


ߚ , ൌ

గ


 and  ܽ , ܾ  are the side 

dimensions of the rectangular plate (Fig.2). For the 

case of classical plate theory, similar series are 

proposed [11, 12] .This is the first time, to the best 

knowledge of the authors, that such solutions were 

used for clamped plates based on Bergan-Wang 

approach. 

The coefficients:  ܹ  and  ܹכ
  are to be 

determined according to the method of solution. 

Because these two series are used to get the classical 

plate theory solutions, we can directly get separate 

expressions of the solutions due to bending and due to 

shear. This is in harmony with Shimpi’s work [13, 14] 

and Reddy’s solutions [7, 3]. 

The methods of solution are given for a clamped 

rectangular plate. The numerical results of a square 

plate are compared with the solution of classical plate 

theory, Reissner-Mindlin theory and the three 

dimensional theory of elasticity. For the moderately 

thick plates, the results are comparable. It is hoped 

that these results will serve as bench marks for finite 

element solution for Bergan-Wang approach. 

2. Boundary Conditions for a Clamped Plate 

The eighth-order differential equation needs four 

boundary conditions on each side of the plate. This is 

a problem in itself, because the boundary conditions 

of Reissner-Mindlin’s theory are only three which 

goes with the sixth-order of the system of equations 

governing the theory. Moreover, it is intuitively 

"reasonable" to have only three boundary conditions. 

A comparison with the case of classical plate theory, 

where the clamped boundary conditions are the 

imposition of zero values for w  and its normal 

derivative 
ப୵

ப୬
, one is motivated to impose, along each 

clamped edge, zero values for w and its normal first, 

second and third derivatives ( n  can be x  or y 

according to which direction is normal to the edge 

under study). This choice contradicts the mechanics of 

supports (the annulation of second normal derivative 

of w is a characteristic of a simple support). As a 

matter of fact, such a choice is a very severe clamping 

which cannot be realized in practice. Therefore, the 

boundary conditions were proposed to be; zero values 

for  w ,
ப୵

ப୬
, 

பయ୵

ப୬య  and 
பఱ୵

ப୬ఱ  [10]. Such a choice has 

fortunately been fulfilled by the series given in 

equation (3) 

∑  ∞
ୀଵ ∑  ∞

ୀଵ ܹ ൫1 െ cosሺ2ߙݔሻ൯ × 

൫1 െ cosሺ2ߚݕሻ൯. 

According to Reissner-Mindlin, there are two types 

of clamped boundary conditions: The soft one, for 

which we impose zero values for w, ߠ   and ܯ௦ 

(Fig.3) along each edge, and the hard one, where we 

impose zero values for ߠ ,ݓ and ߠ௦  stands for ݏ) 

tangential direction of the edge while ݊ stands for the 

normal to the edge under study) [15, 16]. 
 

 
Fig. 2  The rectangular plate. 
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Fig. 3  Moments expressed in tangential and normal axes. 
 

In [9], It has been shown that the expressions for 

 :as follows ݓ ௦  are related toܯ ௦ andߠ, ߠ

௦ߠ ൌ
ݓ∂
∂݊

 ݄
ଶ ቆ

∂ଷݓ
∂݊ଷ 

∂ଷݓ
ଶݏ∂ ∂݊

ቇ, (5)

ߠ ൌ
ݓ∂
ݏ∂

 ݄
ଶ ቆ

∂ଷݓ
ଷݏ∂ 

∂ଷݓ
∂݊ଶ ݏ∂

ቇ, (6)

௦ܯ ൌ 2ሺݓ,௦  ݄
ଶ൫ݓ,௦  ௦௦௦൯ሻ (7),ݓ

In this work, the soft clamped case has been chosen 

in addition to the imposition of zero value to the 

normal derivative of w. This choice which will be 

denoted by BC-I goes well with the choice of the 

aforementioned series. Application of the well-known 

Galerkin method [17, 18] has been used to find out the 

coefficients W୫୬ leading to very good results. 

Another interesting type of boundary conditions has 

been investigated. In addition to the two main 

boundary conditions on w  and 
ப୵

ப୬
 used in the 

classical plate theory, two more ones come from the 

decomposition of the eighth-order equation into two 

fourth-order equations. In fact, we can write down the 

Bergan-Wang equation (2) as follows: 

Δଶ൫ݓ  ݄
ଶΔݓ  ݄

ସΔଶݓ൯ ൌ
ܲ
ܦ

. (8)

Assuming 

ݑ ൌ ݓ  ݄
ଶΔݓ  ݄

ସΔଶ(9) ,ݓ

Then 

 Δଶݑ ൌ
ܲ
ܦ

. (10)

If we solve the first equation for u with boundary 

conditions: u ൌ 0  and 
ப୳

୬
ൌ 0  then we solve the 

second equation for w  with the two boundary 

conditions: w ൌ 0 and 
ப୵

ப୬
ൌ 0. Therefore, this type 

of boundary conditions, which will be denoted by 

BC-II, is the imposition of zero values along the 

clamped edge for   w ,   
ப୵

ப୬
 , ൫w  h

ଶΔw  h
ସΔଶw൯ 

and 

∂
∂n

൫w  h
ଶΔw  h

ସΔଶw൯ 

Clearly BC-II coincide well with the boundary 

conditions of the classical plate theory. Solving the 

problem needs only the usual methods of solving the 

classical plate theory with minor modifications. 

An application of the finite integral transform [12, 

19 and 20] has led to good results. Nevertheless, it is 

still believed that further investigations of the 

boundary conditions are needed. 

2.1 First Type of Clamped Boundary Conditions 

(Solved by GALERKIN’S Method) 

Consider a fully clamped isotropic rectangular plate 

of length a  and width  b , where 0  x  a 

and 0  y  b. The partial differential equation (2) 

governs the plate deflection. Applying the Laplacian 

operator in equation (2), gives the partial differential 

equation of the plate transverse deflection: 

∂ସݓ
ସݔ∂  2

∂ସݓ
ଶݔ∂ ଶݕ∂ 

∂ସݓ
ସݕ∂  

݄
ଶ ቆ

∂ݓ
ݔ∂  3

∂ݓ
ସݔ∂ ଶݕ∂  3

∂ݓ
ଶݔ∂ ସݕ∂ 

∂ݓ
ݕ∂ ቇ  

݄
ସ ቆ

ݓ଼∂
଼ݔ∂  4

ݓ଼∂
ݔ∂ ଶݕ∂  6

ݓ଼∂
ସݔ∂ ସݕ∂

 4
ݓ଼∂

ଶݔ∂ ݕ∂ 
ݓ଼∂
଼ݕ∂

ቇ ൌ
ܲ
ܦ

. 

(11)

Assuming the solution to be of the form given in 

equation (3): 

,ݔሺݓ ሻݕ ൌ   

∞

ୀଵ

  

∞

ୀଵ

ܹ 
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൫1 െ cosሺ2ߙݔሻ൯൫1 െ cosሺ2ߚݕሻ൯. (12)

Differentiate this proposed solution all the 

differentials that are needed to substitute in equation 

(2). 

  

∞

ୀଵ

  

∞

ୀଵ

ܹ ൈ 

ሾሼെሺ2ߙሻସcosሺ2ߙݔሻ൫1 െ cosሺ2ߚݕሻ൯  

2ሺ2ߙሻଶሺ2ߚሻଶcosሺ2ߙݔሻcosሺ2ߚݕሻ - 

ሺ2ߚሻସcosሺ2ߚݕሻ൫1 െ cosሺ2ߙݔሻ൯ሽ + 

݄
ଶሼሺ2ߙሻcosሺ2ߙݔሻ൫1 െ cosሺ2ߚݕሻ൯ െ 

3ሺ2ߙሻସሺ2ߚሻଶcosሺ2ߙݔሻcosሺ2ߚݕሻ െ 

3ሺ2ߙሻଶሺ2ߚሻସcosሺ2ߙݔሻcosሺ2ߚݕሻ  

        ሺ2ߚሻcosሺ2ߚݕሻ൫1 െ cosሺ2ߙݔሻ൯ሽ + 

 ݄
ସሼെሺ2ߙሻ଼cosሺ2ߙݔሻ൫1 െ cosሺ2ߚݕሻ൯  

4ሺ2ߙሻሺ2ߚሻଶcosሺ2ߙݔሻcosሺ2ߚݕሻ െ 

6ሺ2ߙሻସሺ2ߚሻସcosሺ2ߙݔሻcosሺ2ߚݕሻ  

4ሺ2ߙሻଶሺ2ߚሻcosሺ2ߙݔሻcosሺ2ߚݕሻ െ 

ሺ2ߚሻ଼cosሺ2ߚݕሻ൫1 െ cosሺ2ߙݔሻ൯ሽሿ ൌ
ܲ
ܦ

 (13)

Multiply both side by 

൫1 െ cosሺ2α୩xሻ൯ ቀ1 െ cos൫2β୪y൯ቁ 

Where ݇ and ݈ can take any integer value from 1 

to ∞. 

Double integrate both sides of the equation with 

respect to x and y with the limits of integration are 

set to be 0 ՜ a and 0 ՜ b respectively. 

ܵܪܴ ൌ   


   






൫1 െ cosሺ2ߙݔሻ൯ × 

൫1 െ cosሺ2ߚݕሻ൯݀(14) .ݕ݀ݔ

For a homogeneous plate with uniform load: 

ܵܪܴ ൌ
ܲ
ܦ

න  





න  





൫1 െ cosሺ2ߙݔሻ൯ ൈ 

൫1 െ cosሺ2ߚݕሻ൯݀ݕ݀ݔ 

ൌ
ܲ
ܦ

න  





න  





൜
1  cosሺ2ߙݔሻcosሺ2ߚݕሻ െ

cosሺ2ߙݔሻ െ cosሺ2ߚݕሻ ൠ  ݕ݀ݔ݀

ൌ
ܲ
ܦ

ܾܽ. (15)

 

To find ܵܪܮ we start by performing the following 

integrals: 

න  





cosሺ2ߙݔሻcosሺ2ߙݔሻ݀ݔ ቊ
ܽ
2

  if ݉ ൌ ݇

0 if ݉ ് ݇
, (16)

න  





cosሺ2ߙݔሻ݀ݔ ൌ 0, (17)

  

∞

ୀଵ

  

∞

ୀଵ

න  





න  





ܹሾሼെሺ2ߙሻସcosሺ2ߙݔሻ ൈ 

൫1 െ cosሺ2ߚݕሻ൯ + 

2ሺ2ߙሻଶሺ2ߚሻଶcosሺ2ߙݔሻcosሺ2ߚݕሻ െ 

ሺ2ߚሻସcosሺ2ߚݕሻ൫1 െ cosሺ2ߙݔሻ൯ሽ  

݄
ଶሼሺ2ߙሻcosሺ2ߙݔሻ൫1 െ cosሺ2ߚݕሻ൯ െ 

3ሺ2ߙሻସሺ2ߚሻଶcosሺ2ߙݔሻcosሺ2ߚݕሻ െ 

3ሺ2ߙሻଶሺ2ߚሻସcosሺ2ߙݔሻcosሺ2ߚݕሻ  

ሺ2ߚሻcosሺ2ߚݕሻ൫1 െ cosሺ2ߙݔሻ൯ሽ  

݄
ସሼെሺ2ߙሻ଼cosሺ2ߙݔሻ൫1 െ cosሺ2ߚݕሻ൯  

4ሺ2ߙሻሺ2ߚሻଶcosሺ2ߙݔሻcosሺ2ߚݕሻ െ 

6ሺ2ߙሻସሺ2ߚሻସcosሺ2ߙݔሻcosሺ2ߚݕሻ  

4ሺ2ߙሻଶሺ2ߚሻcosሺ2ߙݔሻcosሺ2ߚݕሻ െ 

ሺ2ߚሻ଼cosሺ2ߚݕሻ൫1 െ cosሺ2ߙݔሻ൯ሽሿ × 

ൣ൫1 െ cosሺ2ߙݔሻ൯൫1 െ cosሺ2ߚݕሻ൯൧݀ݕ݀ݔ ൌ 

ሾെሺ2ߙሻସ  ݄
ଶሺ2ߙሻ െ ݄

ସሺ2ߙሻ଼ሿ × 

െ
ଵ

ଶ
ൣ ܹଵ  ܹଶ. . .  ܹሺିଵሻ  ܹሺାଵሻ. . . ൧൨+ 

ሾെሺ2ߚሻସ  ݄
ଶሺ2ߚሻ െ ݄

ସሺ2ߚሻ଼ሿ  ൈ 

ቈെ
1
2

ൣ ଵܹ  ଶܹ. .  ሺܹିଵሻ  ሺܹାଵሻ. . ൧  

ሼ
3
4

ቈ
ሺ2ߙሻସ െ ݄

ଶሺ2ߙሻ  ݄
ସሺ2ߙሻ଼ 

ሺ2ߙሻସ െ ݄
ଶሺ2ߙሻ  ݄

ସሺ2ߙሻ଼   

2 ቀ
ଵ

ସ
ሺ2ߙሻଶሺ2ߚሻଶቁ  3݄

ଶ × 

൬െ
1
4

ሺ2ߙሻସሺ2ߚሻଶ െ
1
4

ሺ2ߙሻଶሺ2ߚሻସ൰  

4݄
ସ ൬

1
4

ሺ2ߙሻሺ2ߚሻଶ 
1
4

ሺ2ߙሻଶሺ2ߚሻ൰ 

6݄
ସ ൬

1
4

ሺ2ߙሻସሺ2ߚሻସ൰ሽ ܹ. (18)
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For ݇ ൌ 1 ՜ M  and ݈ ൌ 1 ՜ N  we perform the 

above integral M ൈ N times to get M ൈ N equations 

to be solved for the M ൈ N unknowns ܹ. 

After calculating the unknowns we substitute with 

their values in equation (11) to find the deflection at 

any point on the plate. 

2.2 Second Type of Clamped Boundary Conditions 

(Solved by Finite Integral Transform (FIT) Method 

This method involves solving the eighth degree partial 

differential equation of the plate transverse by solving 

two forth order differential equations consecutively. 

This is done as described in [12]. We solve equation 

(9) assuming the solution to be of the form: 

,ݔሺݑ ሻݕ ൌ
4

ܾܽ
  

∞

ୀଵ

  

∞

ୀଵ

ܷsinሺߙݔሻsinሺߚݕሻ, (19)

where 

ܷ ൌ න  





න  





,ݔሺݑ ሻ. (20)ݕߚሻsinሺݔߙሻsinሺݕ

The boundary conditions on u  are applied by 

imposing zero values to 

u|୶ୀ , u|୷ୀ , u|୶ୀୟ , u|୷ୀୠ , 
ப୳

ப୶
ቚ

୶ୀ
, 

ப୳

ப୷
ቚ

୷ୀ
, 

ப୳

ப୶
ቚ

୶ୀୟ
, and 

ப୳

ப୷
ቚ

୷ୀୠ
. 

After solving (19), the solution is substituted in 

equation (18) to obtain the following partial 

differential equation: 

ݓ  ݄
ଶ ቆ

∂ଶݓ
ଶݔ∂ 

∂ଶݓ
ଶݕ∂ ቇ

 ݄
ସ ቆ

∂ସݓ
ସݔ∂  2

∂ସݓ
ଶݔ∂ ଶݕ∂


∂ସݓ
ସݕ∂

ቇ ൌ ,ݔሺݑ  ሻݕ

(21)

Again a double finite sine integral transform is 

used. 

,ݔሺݓ ሻݕ ൌ
4

ܾܽ
  

∞

ୀଵ

  

∞

ୀଵ

ܹsinሺߙݔሻsinሺߚݕሻ (22)

ܹ ൌ න  





න  





,ݔሺݓ ሻ (23)ݕߚሻsinሺݔߙሻsinሺݕ

The same procedure is repeated where the boundary 

conditions are applied by imposing zero values 

to ݓ|௫ୀ, ݓ|௬ୀ, ݓ|௫ୀ, ݓ|௬ୀ, 

ப௪

ப௫
ቚ

௫ୀ
, 

ப௪

ப௬
ቚ

௬ୀ
, 

ப௪

ப௫
ቚ

௫ୀ
, and 

ப௪

ப௬
ቚ

௬ୀ
. 

3. Numerical Results 

A square fully clamped plate of unit length with 

uniform distributed load is studied. The deflection at 

its mid-point is calculated. This is done with different 

thickness to side length ratios, starting at a very small 

ratio and ending at a ratio 0.13, which is almost the 

limit of moderately thick plate. 

All values for the deflection are normalized so they 

would be compared to the references. The normalized 

deflection is given as wഥ ൌ
୵୯ୟర

D
 where q  is the 

amplitude of the uniform distributed load. 

The plates with the same ratios were modeled using 

the finite element package ANSYS [21] using two 

different types of elements. The first type is the 

Shell181 element which relies on the 

Reisnner-Mindlin plate theory. The second type is the 

Block20 3D element which was used to find the 3D 

solution of the same plates. 

The results of the four methods are summarized in 

table (1). 

Figure (4) illustrates the change of the mid-point 

deflection with the change of the thickness ratio. At 

small thickness ratios, which can be considered a thin 

plate, all the solutions converge to the thin plate 

theory solution which was given In [1]. 

As the thickness ratio increases the difference 

increases  between  the  Bergan-Wang  approach 

solutions and the two used finite element solutions 

which are based on Reissner-Mindlin and the 3D 

elasticity theory. The relative error related to 3D 

solution is given in Table 2 showing that first 
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Table 1  The normalized mid-point deflection of a fully clamped plate using different methods (FIT stands for Finite integral 
transform). 

h⁄a 
(WRM) 
x103 

(W3D) 
x103 

(WBC-I) 
x103 

(WBC-II) 
x103 

*RE 
(WBC-I)x103 

**RE 
(WBC-II)x103 

0.001 1.265 - 1.265 1.263 0.031 0.159 

0.01 1.268 - 1.267 1.264 0.037 0.274 

0.02 1.275 - 1.274 1.267 0.061 0.623 

0.03 1.288 - 1.286 1.272 0.126 1.190 

0.04 1.305 1.318 1.301 1.280 0.279 1.953 

0.05 1.327 1.338 1.320 1.288 0.550 2.896 

0.06 1.353 1.361 1.341 1.300 0.945 3.979 

0.07 1.385 1.391 1.364 1.313 1.479 5.190 

0.08 1.420 1.422 1.389 1.327 2.199 6.569 

0.09 1.460 1.457 1.414 1.343 3.139 8.017 

0.10 1.504 1.492 1.441 1.364 4.216 9.334 

0.11 1.552 1.541 1.470 1.390 5.308 10.427 

0.12 1.605 1.588 1.502 1.422 6.375 11.364 

0.13 1.661 1.638 1.537 1.457 7.496 12.302 
 

Table 2  The relative error of the normalized mid-point deflection of a fully clamped plate with respect to the 3D solution. 

h⁄a 
*RE 
(WRM) 

**RE 
(WBC-I) 

***RE 
(WBC-II) 

0.04 1.031 1.308 2.964 

0.05 0.828 1.373 3.700 

0.06 0.555 1.495 4.512 

0.07 0.438 1.910 5.605 

0.08 0.152 2.347 6.711 

0.09 -0.211 2.935 7.823 

0.10 -0.818 3.433 8.592 

*RE (wRMሻ ൌ  
୵యDି୵RM

୵యD
ൈ 100, **RE (wBCିIሻ ൌ  

୵యDି୵BCషI

୵యD
ൈ 100, 

***RE (wBCିIIሻ ൌ  
୵యDି୵BCషII

୵యD
ൈ 100 

 

boundary conditions give better results than those of 

second boundary conditions. 

wRM  Reissner-Mindlin solution, wBCିI 

Bergan-Wang solution with first B.C’s, wଷD  3D 

solution, wBCିII Bergan-Wang solution with second 

B.C’s, 

*RE (wBCିIሻ ൌ  
୵యDି୵BCI

୵యD
ൈ 100, 

**RE (wBCିIIሻ ൌ  
୵యDି୵BCII

୵యD
ൈ 100 

To check the convergence of the two methods, the 

problem of a clamped square thin plate was solved by 

the two methods described in the previous two 

sections. The value of the thickness ratio was taken 

0.00001. The number of terms of the series solution 

was varied and the normalized deflection at the 

mid-point of the plate was calculated and checked 

with the classical plate theory solution. 

3.1 Convergence of Galerkin’s Method 

It was found that increasing the number of terms  

in the series makes the solution converges to the 

classical plate theory solution after taking 10 terms.  

It was also found that taking an odd number of   

terms gives a solution more convergent than if any  

of the two adjacent even numbers is taken as the 

number of the series terms. This is illustrated in figure 

(5). 
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The solution using this method involves solving a 

system of linear equations of the order ݉ଶ for ݉ ൌ ݊. 

3.2 Convergence of Finite Integral Transform method 

(FIT) 

Using a value of m and n equals 300 we could 

get the value of the mid point normalized deflection of 

the plate to be 0.001263. It was found that the 

convergence of this method is very slow. 

The solution using this method involves solving 

two systems of linear equations each of the order 4m 

for equal values of m and  n . 
 

 
Fig. 4  Comparison between different solutions. 
 

 
Fig. 5  The convergence of the series solution in Galerkin’s method with increasing number of terms. 
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Fig. 6  The convergence of the series solution in FIT method with increasing number of terms 
 

 
Fig. 7  The asymptotic convergence of FIT solution for even number of terms divisible 
 

Investigating the different values of series terms it 

was found that: 

The odd number of terms gives exactly the same 

result of the previous even number. 

The even number of terms that is divisible by 4 

gives a result which is upper asymptotic to the 

solution while the even number that is not divisible by 

4 gives a result which is lower asymptotic to the 
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solution. This is illustrated in figures (6) and (7).This 

makes it important to carefully choose the number of 

terms in the series. 

4. Conclusions 

The Bergan-Wang approach used in solving for the 

deflection of plates, proved to have a powerful feature. 

It can be used for thin, moderately thin and 

moderately thick plates. The choice of zero values 

for ݓ , ݓ , ߠ  and ܯ௦  as the boundary conditions 

gave good results for all thickness ratios till the 

moderately thick plates. Nevertheless, it is still 

believed that further investigations on the boundary 

conditions of a fully clamped plate are needed. Further 

studies are needed to find the effect of the thickness 

ratio near the abrupt change in thickness, at holes and 

near the edges. The flexibility of finite element 

method compared with the series solution can help in 

this direction. Moreover, the finite element method 

will clarify the effect of thickness (through the 

factor ݄
ଶ) on the solution at the boundary. A special 

care is needed in deciding the number of terms used in 

the series solution. This is due to both the expenses of 

solving the linear system and convergence. 
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