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1. Introduction  

Aligned spaces and Higgs spaces generalize 
topological spaces and, for this reason, I believe in 
their potential to play important roles. For the moment, 
however, they are not receiving as much attention as 
they deserve. In this note we extend to aligned spaces 
and to Higgs spaces the concept of compactness of 
topological spaces. Aligned spaces were introduced in 
[1], and dealt with in [2], [3] and [6], for example. As 
defined in [1], an aligned space, denoted ( )V C,  is a 
set V  with a family C  of subsets, called convex 
sets, such that:  

A1) V C,∅ ∈ ; and  
A2) A B C A B C, ∈ ⇒ ∩ ∈ .  
A topological space is an aligned space which 

satisfies the additional condition that unions of a finite 
number of sets of C  also belong to C .  

Concerning Higgs spaces, denoted ( )H δ, , they 
appear in [4], [5], [6] and [7], for instance. To define 
them, H  is a set and δ  is the so-called derived 
operator which maps the set ( )P H  of all subsets of 
H  into itself and which satisfies the following two 
conditions:  
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B1) For A B H, ⊆ , if A B⊆  then 
( ) ( )A Bδ δ⊆ ; and  
B2) If ( )x Aδ∈  then ( { })x A xδ∈ − .  
A Higgs space becomes a topological space when 

the following additional conditions are satisfied:  
B3) ( )δ ∅ = ∅ ; and  
B4) ( ) ( ) ( )A B A Bδ δ δ∪ ⊆ ∪ . Since, by B1, 
( ) ( ) ( )A B A Bδ δ δ∪ ⊆ ∪ , here, in B4, we can 

write ( ) ( ) ( )A B A Bδ δ δ∪ = ∪ .  
Now, given a Higgs space, call a set A H⊆  

closed when ( )A Aδ ⊆  or, equivalently, 
( )A A Aδ= ∪ . Trivially, when A  is closed, we 

have  

( ) ( ( )) ( )A A A A A Aδ δ δ δ≡ ∪ ⊆ ≡ ∪  

For any A H⊆ , we call ( )A Aδ∪  the closure 
of A . The reason is that ( )A Aδ∪  is the smallest 
closed set containing A . In fact, let A B⊆  and B  
closed. We may write ( ) ( )A B Bδ δ⊆ ⊆ . From 

these inequalities we get ( )A A B B Bδ∪ ⊆ ∪ = , 
hence B  cannot be smaller than ( )A Aδ∪ .  

If we write ( ) ( )F A A Aδ= ∪ , it is easy to verify 
that F  is a closure. In fact,  

C1) ( )A F A⊆ ;  
C2) ( ) ( )A B F A F B⊆ ⇒ ⊆ ; and  
C3) 2 ( ) ( )F A F A= . This follows from the fact 

that ( ( )) ( )A A A Aδ δ δ∪ ⊆ ∪ .  

D 
DAVID  PUBLISHING 

 

                                                           

mailto:siper@mat.uc.pt


A Short Note on Compactness in Aligned Spaces and Higgs Spaces 152 

If the derived operator meets conditions B3 and B4, 
then we have:  

C4) ( ) ( )F δ∅ = ∅ ∪ ∅ = ∅ ; and  

C5) 
( ) ( ) ( ) ( )

( ) ( )
F A F B A A B B

A B A B F A B
δ δ

δ
∪ = ∪ ∪ ∪

= ∪ ∪ ∪ = ∪
.  

The closure we have just defined with these five 
axioms is a topological closure, hence we have here a 
topological space defined in terms of a closure 
operator.  

In a Higgs space, given two complementary sets 

A  and cA , if one of them is closed we say that the 
other one is open. A set A  is open, if and only if 

( )cA Aδ∩ = ∅ . In fact, with cA A∩ = ∅  and 
cA A H∪ = , if cA  is closed, that means 

( )c cA Aδ ⊆ , then ( )cA Aδ∩ = ∅ . On the other 
hand, suppose now that ( )cA Aδ∩ = ∅ . Since 

cA A∩ = ∅  and cA A H∪ = , we get 
( )c cA Aδ ⊆  which means cA  is closed and, by the 

very definition, A  is open.  
When dealing with an aligned space ( )V C, , let 

Q  be the family of the complements of its convex 
sets. Call them concave sets. In terms of concave sets, 
we may present an alternative definition:  

Let V  be a set and Q  a family of subsets of V  
such that:  

D1) V Q∅, ∈ ;  
D2) A B Q A B Q, ∈ ⇒ ∪ ∈ .  
Then ( )V Q,  is an aligned space and the sets of 

the family Q  are called its concave sets.  
If the finite intersections of sets of Q  are also in 

Q , then ( )V Q,  is a topological space whose open 
sets are the sets of Q .  

2. Aligned Spaces 

As pointed out in [6], many basic concepts in the 
study of topological spaces may be extended to 
aligned spaces. Let us look here at the concept of 
compact space. Let ( )V Q,  be an aligned space 
defined in terms of concave sets. We have:  

Definition of a compact aligned space: The aligned 
space ( )V Q,  is said to be compact when every 
covering of V  by concave sets has a finite 
sub-covering.  

To give a definition in terms of convex sets, let us 
first recall that a family F  of sets is said to have the 
finite intersection property when every finite 
subfamily of F  has a non-empty intersection. Note 
that a family with the finite intersection property may 
have an empty intersection: an example is the family 
of the open intervals {(0 1 ) 1 2 3 }n n, / | = , , , ... . We 
prove:  

Theorem 1: The aligned space ( )V C,  is compact 
if and only if every family of convex sets with the 
finite intersection property has itself a non-empty 
intersection.  

Proof: 1. Suppose V  is a compact aligned space 
and C  is a family of convex sets such that each 
finite subfamily 1{ }nC C, ...,  has a non-empty 
intersection; this means, 1 na C C∃ ∈ ∩...∩ . Their 
complements are concave sets 1 nH H, ...,  and 

1 na H H∉ ∪...∪ . In words: if, for every finite 
family of convex sets, there exists one point a  
which belongs to their intersection, then, for every 
finite family of concave sets, there is one point which 
does not belong to their union.  

As a consequence, given a covering H  of V  by 
concave sets, we cannot extract from it a finite 
sub-covering, which contradicts the hypothesis that 
V  is compact. If V  is in fact compact, then H  is 
not a covering, there will be at least one point, say a , 
not covered by any set in H ; therefore, a  belongs 
to all sets in C , that means, C  has a non-empty 
intersection.  

2. Now suppose V  is not compact, that means, 
there is a covering H  by concave sets such that no 
finite subfamily of H  covers V ; by other words, 
given a finite subfamily 1 nH H, ...,  there is at least 
one point 1 na H H∉ ∪...∪ . This is true for all 
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finite subfamilies of H . Let C  be the family of the 
complementary sets of the sets in H . There is always 
one point, say a , such that 1 na C C∈ ∩...∩ . But 
since H  covers V , there is no point a H∉ , 
hence there is no point which belongs to all sets in C ; 
hence the intersection of all sets of C  is empty, 
although C  has the finite intersection property. This 
completes the proof.  

Trivially, we can read the statement of Theorem 1 
as a second definition of a compact aligned space, 
given in terms of convex sets.  

3. Higgs Spaces 

Since we first defined Higgs spaces in terms of 
closed sets, let us give a first definition of 
compactness as follows:  

Definition of a compact Higgs space: The Higgs 
space ( )H δ,  is said to be compact when every 
family of closed sets with the finite intersection 
property has itself a non-empty intersection.  

Traditionally, compactness of topological spaces is 
defined in terms of open sets. We may honour this 
tradition by proving now the following result:  

Theorem 2: A Higgs space ( )H δ,  is compact 
(according to the above definition) if and only if every 
covering of H  by open sets has a finite 
sub-covering.  

Obviously, to prove this theorem is the same as to 
prove that, in a Higgs space, the following two 

statements are equivalent:  
Statement X: Every family of closed sets with the 

finite intersection property has itself a non-empty 
intersection.  

Statement Y: Every covering of H  by open sets 
has a finite sub-covering.  

There is no need to explicit the details of such a 
proof. We just ask the reader to follow the proof of 
Theorem 1, replacing convex sets by closed sets and 
concave sets by open sets.  
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